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Wettability control of droplet durotaxis

Jesus Bueno, *a Yuri Bazilevs,b Ruben Juanes c and Hector Gomezd

Durotaxis refers to cell motion directed by stiffness gradients of an underlying substrate. Recent work has

shown that droplets also move spontaneously along stiffness gradients through a process reminiscent of

durotaxis. Wetting droplets, however, move toward softer substrates, an observation seemingly at odds

with cell motion. Here, we extend our understanding of this phenomenon, and show that wettability of

the substrate plays a critical role: while wetting droplets move in the direction of lower stiffness,

nonwetting liquids reverse droplet durotaxis. Our numerical experiments also reveal that Laplace

pressure can be used to determine the direction of motion of liquid slugs in confined environments. Our

results suggest new ways of controlling droplet dynamics at small scales, which can open the door to

enhanced bubble and droplet logic in microfluidic platforms.

1 Introduction

The ability to generate and manipulate liquid droplets as well
as to control how they interact with solid substrates has
attracted increased interest in the scientific community due
to a number of applications in which droplet dynamics plays a
fundamental role. Understanding, predicting and controlling
these processes is essential, for example, in the design of new
materials and devices at small scales;1–4 droplets are present in
optofluidic optical attenuators,5 microfluidic electronic paper6

and, in general, in bubble- and droplet-based microfluidic
platforms7–10 that are used for industrial, biological and
chemical applications, such as high- and ultrahigh-throughput
screening,11–13 enzymatic assays14 and chemical synthesis.15

During the past decades, important advances have been
achieved in the study of droplet motion in solid substrates.16–19

Different mechanisms have been identified and explored to over-
come the contact angle hysteresis and induce droplet motion,
ranging from the use of chemical, thermal and electrical
gradients20–22 to the manipulation of the surface topography23

or the application of external vibrations.24 However, despite
significant progress in recent years, droplet motion—especially
in relation to deformable substrates—is not fully understood. New
mechanisms to control droplet motion on deformable solids have
been proposed recently.25 For example, droplet motion may be
driven by gradients in strain of the substrate26—a process termed

tensotaxis by analogy with the behavior previously observed in
cells.27 Another cell motion mechanism—durotaxis—had already
inspired new ways of controlling droplet dynamics: wetting
droplets deposited on substrates with nonuniform stiffness tend
to move toward the softer parts of the substrate.28 This directed
motion, however, is seemingly opposite to the behavior observed
in cells.27

As it turns out, a central element of droplet durotaxis
has heretofore remained unexplored. Here, we show that the
behavior of droplets on substrates with nonuniform stiffness
depends critically on the wettability of the substrate with
respect to the liquid: while wetting droplets move toward the
softer parts of the substrate—in agreement with the experi-
ments reported by Style et al.28—nonwetting droplets exhibit
the opposite behavior and move in the direction of greater
stiffness—similarly to the response of cells to rigidity gradients
of the underlying substrate.27 We also elucidate the role of
Laplace pressure in this mechanism, and our results suggest
that Laplace pressure may be used to control the direction of
motion of nonwetting droplets.

This improved understanding of the impact of wetting on
droplet durotaxis stems from a computational model of the
interaction of deformable solids and multiphase fluids, which
accounts for the dynamically coupled, nonlinear problem in
three dimensions. The proposed theory allows to make predic-
tions via high-fidelity numerical simulations that elucidate the
phenomenon and inform future experimental designs.

2 Model of droplet durotaxis

When a small liquid droplet is deposited on a flat, rigid and
chemically homogeneous solid surface, the droplet tends to
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adopt a spherical shape and modify its contact angle until it
reaches the mechanical equilibrium. The value of the static
contact angle a depends on the surface tension at the liquid–
vapor gLV, solid–vapor gSV and solid–liquid gSL interfaces, and
can be approximated by taking the following balance of forces
at the contact line [see Fig. 1(A)],

gSL + gLV cos (a) = gSV. (1)

This expression, known as the Young–Dupré equation, has
been known for almost two centuries. Eqn (1), however, is only
valid for ideal solid surfaces, where the solid is flat and infinitely
rigid. When the Laplace pressure or the surface tension at the
liquid–vapor interface are sufficiently strong so as to deform the
substrate, the Young–Dupré equation is no longer valid; see
Fig. 1(B). This may happen for slender structures29–31 but also
when the droplet is small or when it is deposited on a sufficiently
soft substrate.32,33 The elastocapillary length scale LEC B gLV/E,
where E is the substrate’s Young modulus, allows to estimate
when the elastocapillary forces are relevant and the Young–Dupré
equation breaks down.

For most solids and typical values of liquid surface tension,
this results in immeasurably small elastocapillary length scales
that are much smaller than the radius of the droplet. In these
cases, the deformation of the solid is negligible and the Young–
Dupré theory is valid. For soft solids such as gels, however,
LEC can approach or even exceed the size of wetting droplets.
In such cases, in which small droplets wet soft substrates, the
interfacial forces create a ridge at the contact line and the
Laplace pressure dimples the substrate under the droplet;32,34

see Fig. 1(B). As a consequence, there is a rotation of the contact
line33 and the apparent contact angle, that is, the angle formed
by the liquid–vapor interface and the undeformed surface of
the substrate (j in Fig. 1), differs from the angle predicted by
the Young–Dupré equation. When a droplet is deposited on a
substrate with variable stiffness, the rotation of the contact
line—and thus, the apparent contact angle—is different at each
side of the droplet, resulting in an imbalance of horizontal
forces that may trigger the motion of the droplet.

Different models can be found in the literature for the
interaction of droplets and deformable substrates.32,35,36 How-
ever, most of these works are based on linear elastic solids and

thin film descriptions of the fluid that allow for the computa-
tion of minimum-energy configurations. To advance our under-
standing of the impact of wettability—especially in the regime of
nonwetting droplets—here we propose to model the interaction
between droplets and deformable solids using a three-dimensional
theory that couples a two-phase fluid with a nonlinear solid.
The fluid is composed of a liquid and a gaseous phase sepa-
rated by a diffuse interface that accurately captures surface
tension.37 The proposed model is solved computationally using
a spline-based finite-element method known as isogeometric
analysis38 (IGA), ideally suited for the simulation of high-order
partial differential equations that arise as a result of modeling
of the interfacial effects.

3 Methods

We developed a model for the interaction of liquid droplets and
deformable and impermeable substrates, similar to the one
presented in Bueno et al.39 The model captures the coupling
between a nonlinear hyperelastic solid and a multiphase fluid that
permits the stable coexistence of a liquid and a gaseous phase
separated by a diffuse interface endowed with surface tension.

3.1 Solid mechanics

We use the momentum balance equation to describe the behavior
of the solid, which in Lagrangian form can be expressed as

rs0
@2u

@t2

����
X

¼ rX � P: (2)

Here, rX is the gradient with respect to the material
coordinates X and |X indicates that the time derivative is taken
by holding X fixed; u is the solid displacement and rs

0 is
the mass density in the initial configuration; P is the first
Piola–Kirchhoff stress tensor. As constitutive theory we adopt
a nonlinear hyperelastic material. We use the generalized
neo–Hookean model with dilatational penalty proposed by Simo
and Hughes.40 In this model, the second Piola–Kirchhoff stress
tensor can be defined as

S ¼ mJ�2=d I � 1

d
trðCÞC�1

� �
þ k

2
ðJ2 � 1ÞC�1; (3)

where I represents the identity tensor, d denotes the number of
spatial dimensions and tr(�) stands for the trace operator; k and
m are the material bulk and shear moduli, which are expressed
as a function of the Young modulus E and the Poisson ratio n
using the relations k = E/(3(1 � 2n)) and m = E/(2(1 + n)); J is the
determinant of the deformation gradient, that is, J = det(F),
where F = I + rXu. C denotes the Cauchy–Green deformation
tensor, i.e., C = FTF. The first Piola–Kirchhoff stress tensor is
obtained by taking P = FS. The solid Cauchy stress tensor can be
computed using rs = J�1FSFT = J�1PFT.

3.2 Fluid mechanics

The behavior of the fluid is described by the isothermal form of
the Navier–Stokes–Korteweg (NSK) equations. The NSK system

Fig. 1 Wetting on rigid and deformable substrates at small scales. (A) Liquid
droplet (blue) deposited on a rigid substrate (dark gray). The spherical shape
adopted by the droplet depends on the surface tensions at the contact line:
gLV, gSV and gSL. The static contact angle a is given by the Young–Dupré
equation. (B) Liquid droplet on a soft substrate (light gray). The surface
tension at the liquid–vapor interface gLV creates a ridge at the contact
line and the Laplace pressure Dp dimples the substrate under the droplet.
The contact lines rotate and thus, the apparent contact angle j differs from
the Young–Dupré contact angle a.
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constitutes the most widely accepted theory for the description
of single-component two-phase flows and it naturally allows for
phase transformations in the fluid due to pressure and/or
temperature variations. Since we are only interested in studying
droplet motion on solid substrates, we select a parameter
regime in which mass transfer between the liquid and gaseous
phase is negligible. Our approach is based on the diffuse-
interface or phase-field method,37 i.e., an alternative to sharp-
interface models in which interfaces are replaced by thin
transition regions. This means that the liquid–vapor surface
tension is not a point/line load but it is distributed over a small
area that corresponds to the thickness of the interface, which
leads to a smooth solid surface at the contact line. The phase-
field method allows an efficient computational treatment of the
coupled multiphysics problem. In the Eulerian description, the
NSK equations can be expressed as

@r
@t
þr � ðrmÞ ¼ 0; (4a)

@ðrmÞ
@t
þr � ðrm � mÞ � r � rf ¼ 0; (4b)

where # represents the outer vector product, r is the fluid
density and v denotes the velocity vector. rf is the Cauchy stress
tensor of the fluid, i.e., rf = s � pI + 1. Here, s stands for the
viscous stress tensor, p denotes the pressure, and 1 is known
as the Korteweg tensor. We consider Newtonian fluids, so the
viscous stress tensor takes the form

s = �m(rv + rTv) + �lr�vI, (5)

where �m and �l are the viscosity coefficients. We assume that the
Stokes hypothesis is satisfied, that is, �l = �2�m/3. In order to
allow for the stable coexistence of liquid and gas phases we
derive the thermodynamic pressure from the Helmholtz free-
energy of a van der Waals fluid.41,42 The resulting van der Waals
equation is expressed as

p ¼ Rb
ry

b� r

� �
� ar2; (6)

and gives the pressure p in terms of density and temperature y.
a and b are positive constants and R is the specific gas constant.
The Korteweg tensor43,44 is defined by

1 ¼ l rDrþ 1

2
rrj j2

� �
I � lrr�rr: (7)

where l 4 0 is the capillarity coefficient and |�| denotes the
Euclidean norm of a vector. The Korteweg tensor gives rise to
the capillary forces that are withstood by the liquid–vapor
interfaces.

For the fluid problem we adopt the classical solid-wall
boundary conditions. Additionally, the third-order partial spatial
derivatives of the fluid equations require an extra condition to
render a well-posed boundary value problem. To do so, we
impose rr�nf = |rr|cos a, where nf is the unit outward normal
to the fluid boundary, and a is the contact angle between the
liquid–vapor interface and the tangent line to the solid surface

at each point (see Fig. 1). Note that this boundary condition
allows the imposition of the contact angle a at the fluid–
structure interface and this is, in fact, what we do in our
simulations. The apparent contact angle j—measured with
respect to the undeformed surface of the substrate—is deter-
mined as part of the solution of the problem and changes as
the substrate is deformed.

3.3 Coupled problem

The partial differential equations and boundary conditions
associated with the fluid and structure problems must be
satisfied simultaneously.45 The two systems are coupled at the
fluid–structure interface in order to ensure compatible kinematics
(v = qu/qt) and transmission of tractions (rfnf � rsnf = 0) between
the fluid and solid domains.

In the diffuse-interface formulation that we have adopted,
solid surface tension is not required to avoid the singularity
of the stress field and achieve mechanical equilibrium.46

Therefore, even though solid surface tension can be easily
added to the formulation, we have neglected it for simplicity.
Admitting that considering solid surface tension in the formulation
changes the details of the fluid–solid surface interface deformation,
we have verified that the qualitative behavior of wetting and
nonwetting droplets on substrates with nonuniform stiffness
remains unchanged in the presence of solid surface tension.

3.4 Computational method

We solve the coupled system consisting of eqn (2) and (4) subject to
the kinematic and traction compatibility conditions at the fluid–
structure interface. The solid eqn (2) are solved in the reference
(undeformed) configuration whereas the fluid eqn (4) are solved in
the spatial domain occupied by the fluid, which changes over time.
This requires the use of geometrically flexible algorithms, such as
the finite element method. In this regard, we employ isogeometric
analysis, which combines geometric flexibility with smooth basis
functions,38,47 allowing for the direct discretization of higher-order
partial differential equations, such as the NSK system. To enable
the use of classical finite-difference-type methods for time integra-
tion, we express the Navier–Stokes–Korteweg system in an Arbitrary
Lagrangian Eulerian (ALE) formulation, although other alternatives
are also possible, such as the space–time technique.48,49 In ALE
form, the NSK equations can be written as follows

@r
@t

����
x̂

þ ðm � m̂Þ � rrþ rr � m ¼ 0; (8a)

r
@m

@t

����
x̂

þ rðm � m̂Þ � rm �r � rf ¼ 0; (8b)

where x̂ represents a coordinate in a reference domain and m̂

denotes the fluid domain velocity. Eqn (2) and (8) are written in
variational form and discretized in space using isogeometric
analysis. We integrate in time using the generalized-a method.50

A Newton–Raphson iteration procedure is utilized to solve
the nonlinear system of equations. This leads to a two-stage
predictor–multicorrector algorithm in which the resulting linear
system is solved using a preconditioned GMRES method.
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We solve the FSI problem in nondimensional form by rescaling
the units of measurement of time, length, mass and temperature

by L0=
ffiffiffiffiffi
ab
p

, L0, bL0
3 and yc, respectively. Here, L0 = 1 is a length

scale of the computational domain and yc = 8ab/(27R) is the
so-called critical temperature. Using this nondimensionaliza-
tion, the problem can be characterized by five dimensionless
numbers, i.e., the Poisson ratio n and the dimensionless Young
modulus Ê = E/(rs

0ab) for the solid problem and the dimensionless

surface tension ĝ ¼
ffiffiffiffiffiffiffiffi
l=a

p
=L0, viscosity m̂ ¼ �m= L0b

ffiffiffiffiffi
ab
p� �

and
temperature ŷ = y/yc for the fluid equations.

4 Results
Wettability and droplet durotaxis

The dynamics of wetting droplets (a o 901) on substrates with
nonuniform stiffness has been studied previously.33 However,
the role that liquid wettability plays in droplet durotaxis remains
unexplored. To study this problem we start by mimicking
the experiments conducted by Style et al.33 We model a solid
substrate (see Fig. 2) composed of two different layers; the lower
layer is a rigid material (dark gray) and the upper layer is a
deformable solid (light gray). Both materials extend along the
solid substrate but their thickness varies in one of the hori-
zontal directions so that the total thickness of the composite
substrate remains constant. The rigid layer has a lenticular
shape (see inset in Fig. 2) and is coated with the deformable

solid, creating a flat solid surface. This configuration results in
a substrate that has a nonuniform rigidity. The solid is stiffer in
the regions where the thickness of the soft material is smaller.

We place a nonwetting droplet (a = 1201) on one of the
softer regions of the substrate and let the droplet evolve freely
in the absence of gravity/external forces. In Fig. 2 we show
the configuration of the liquid droplet at time t = 181 (the
isosurface of dark blue color represents the liquid–vapor inter-
face of the droplet). The initial position of the droplet is
indicated in semitransparent light blue color. We also plot
the streamlines of the fluid velocity along the mid-plane. The
streamlines are colored with the velocity magnitude. The
numerical experiment in Fig. 2 shows an important result.
The nonwetting droplet advances in the direction of higher
stiffness with a time-decreasing velocity; in contrast with what
had been observed for wetting droplets.

This observation shows that the direction of droplet durotaxis
may be reversed by simply altering the wettability of the liquid.
To further study the mechanisms of durotaxis, in what follows,
we adopt a simplified configuration in two dimensions and with
solid substrates of constant rigidity gradients.

4.1 Mechanistic underpinning of droplet durotaxis

We start by comparing the behavior of wetting and nonwetting
droplets on deformable substrates with nonuniform stiffness.
We use our nonlinear fluid–structure interaction model to

Fig. 2 Nonwetting droplets move in the direction of higher stiffness. A liquid droplet (blue) that forms a contact angle of a = 1201 with the solid surface is
deposited on a substrate with nonuniform stiffness. The substrate is composed of a soft (light gray) and a rigid material (dark gray). The initial position
of the droplet is indicated by a semitransparent spherical cap. The droplet moves to the right, where the thickness of the soft material is smaller. We
plot the streamlines of the fluid velocity along the mid-plane, which are colored with the velocity magnitude. The computational domain is a box of
size 1.0 � 0.8 � 0.5. The computational mesh is comprised of 100 � 80 � 50 C1-quadratic elements. We have used the parameters n = 0.125, m̂ = 1/200,
ĝ = 2/100, and ŷ = 0.39. The stiffness of the substrate is Ê = 0.42 in the soft material and Ê = 124.2 in the rigid material. The radius of the droplet is R = 0.11.
See Methods section for the definition of these quantities.
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simulate a solid substrate (gray in Fig. 3) with spatially variable
stiffness dynamically coupled to a two-phase fluid with surface
tension. The rigidity of the substrate follows a linear profile and
is lower on the left boundary (light gray) and higher on the right
boundary (dark gray) of the solid domain. We place a liquid
droplet (blue) on the solid surface and let it move freely in
absence of external forces. We analyze the behavior for two

different Young–Dupré contact angles. Fig. 3(A) and (B) show
the initial configuration of the droplets. The left column
in Fig. 3 illustrates the time evolution of a wetting droplet
(a = 601), and the right column the corresponding evolution of a
nonwetting droplet (a = 1201). In both problems, the solid is
softer on the left contact line, which leads to a higher ridge of
the substrate; see Fig. 3(G) and (H).

Fig. 3 Droplet motion driven by durotaxis. (A and B) Show the initial configurations: a liquid droplet (blue) is deposited on a substrate (gray) with
nonuniform stiffness. On the left column, the droplet initially forms a contact angle of a = 601 with the substrate. On the right column, the droplet is a
nonwetting liquid with a = 1201. In both cases, the rigidity of the solid follows a linear profile reaching a maximum at the right end. (C and E) Show the
wetting droplet at two different instants. (D and F) Present the time evolution of the nonwetting droplet. The initial position of the droplets is illustrated
with a black solid line that represents the liquid–vapor interface at t = 0. (C–F) Also show the streamlines of the fluid velocity colored by velocity
magnitude. The results show that wetting droplets move toward softer parts of the substrate with an increasing velocity magnitude [(C) and (E)].
Nonwetting droplets move toward stiffer areas with a decreasing velocity magnitude [(D) and (F)]. (G and H) Present the deformed configuration of the
fluid–solid interface for the wetting and nonwetting problems. In both cases, the substrate is softer on the left contact line. The computational domain is
a box of size 1.0 � 0.5, discretized with a mesh of 256 � 128 C2 elements. The substrate thickness is 0.15 and its Poisson ratio n = 0.125. The maximum
value of the Young modulus is Êmax = 2.75. The minimum value is Êmin = 0.1 for the wetting droplet and Êmin = 0.01 for the non-wetting liquid. For the
fluid, we have adopted the parameters, m̂ = 1/512, ĝ = 2/256, and ŷ = 0.39. The radius of the droplets is R = 0.13. This choice leads to a ratio LEC/R in the
range LEC/R A (5.3 � 10�3, 1.38) for the wetting droplet and LEC/R A (6.7 � 10�3, 13.8) for the nonwetting case.
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The results of our simulations show a remarkable difference
in the behavior of wetting and nonwetting droplets, consistent
with the three-dimensional results of Fig. 2. While the wetting
droplet moves toward the softer part of the substrate, the
nonwetting droplet advances in the opposite direction, i.e., it
migrates up rigidity gradients. Similar numerical experiments
were carried out for other linear stiffness profiles and other
values of the Young–Dupré contact angle (data not shown). The
results unveiled that the value of the contact angle a for which
the direction of the motion is reversed depends on the stiffness
of the substrate for a given liquid droplet and Poisson ratio.
For the cases that we have analyzed, the motion is reversed for
a A [1051,1081], where the larger values correspond to stiffer
substrates. We have also observed that this value increases with
the Poisson ratio.

The streamlines of the fluid velocity, colored by velocity
magnitude in Fig. 3, show that droplet motion is able to create a
vortical structure in the vapor phase. For the wetting droplet
(left column), the magnitude of the droplet velocity increases
with time [Fig. 4(A)]. For the nonwetting droplet (right column),
the velocity magnitude decreases with time [Fig. 4(B)]. This
indicates that droplets move faster in softer areas of substrates
with constant stiffness gradients.

The mechanistic explanation for the observed droplet
velocity rests on the apparent contact angle at the front and

rear contact lines of the droplets (relative to the displacement
direction); see Fig. 4(C) and (D) for the wetting and nonwetting
droplets, respectively. In both cases, the droplet moves toward
the contact line in which the apparent contact angle is smaller,
that is, the ‘‘softer’’ contact line in wetting droplets and the
‘‘stiffer’’ contact line in nonwetting droplets. For a wetting
droplet, the difference between the two apparent contact angles
increases with time, as does the velocity magnitude [Fig. 4(A)
and (C)]. In contrast, for a nonwetting droplet, the difference
between the apparent contact angles at each side of the droplet
decreases with time. As the droplet moves to the stiffer region,
the surface tension and the Laplace pressure produce a smaller
deformation of the substrate and a smaller rotation of the
contact line. As a result, the apparent contact angle approaches
the static contact angle predicted by Young–Dupré equation.
When both rear and front apparent contact angles reach the
same value, the droplet stops. These results indicate that the
dynamics of the droplets seem to be primarily controlled by
the apparent contact angles at opposite sides of the droplet.

The wetting and nonwetting droplets analyzed in these
simulations have the same radius and surface tension and,
thus, the Laplace pressure is also the same in both cases. If we
assume that the droplets have the shape of a circular segment,
the distance between the two contact lines will be the same in
both cases because the wetting and nonwetting contact angles

Fig. 4 Time evolution of the droplet velocity and the apparent contact angles for the wetting and nonwetting droplets shown in Fig. 3. (A) The wetting
droplet moves faster as it advances toward the softer part of the substrate. (B) The nonwetting droplet decelerates as it advances toward the stiffer region.
The velocity results are consistent with the evolution of the apparent contact angle difference at both sides of the droplets. (C and D) Show the time
evolution of the apparent contact angles at the front and the rear contact lines. (C) For the wetting droplet, the apparent contact angle on the left (front)
side is smaller than the contact angle on the right (rear) contact line. The difference between both contact angles increases as the droplet moves toward
the softer area. (D) The nonwetting droplet also moves in the direction of the smaller apparent contact angle (right contact line). As the droplet moves
toward the stiffer area, the difference between the front and the rear contact angles decreases.
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are supplementary. Since the Laplace pressure takes the same
value in both cases and acts on the same length, the contact
line rotation produced by the Laplace pressure has the same
sign for the wetting and the nonwetting droplet, that is, clock-
wise for the left contact line and counter-clockwise for the right
contact line. Note also that the apparent contact angle is
smaller than the Young–Dupré contact angle for wetting
droplets [Fig. 4(C)]. For nonwetting droplets, the opposite is
true [Fig. 4(D)]. This indicates that the rotation of the contact
lines produced by surface tension has different sign for wetting
and nonwetting droplets. For example, in the left contact line
the rotation seems to be clockwise for wetting droplets and
counter-clockwise for nonwetting droplets. This suggests that
the rotation induced by the surface tension in nonwetting
droplets has opposite sign and greater absolute value than
the rotation caused by the Laplace pressure.

To confirm this hypothesis we carried out several computa-
tions on substrates with uniform stiffness for a given droplet
radius and surface tension; see Fig. 5. We measured the steady-
state value of the apparent contact angle j on a soft substrate
(gray solid line) for different Young–Dupré contact angles a. We
compared our measurements with the values of j on a infinitely
rigid solid (black solid line). The insets in the bottom right
corner show the steady-state configuration adopted by the left
contact line of a wetting (a = 601) and a nonwetting droplet
(a = 1201) in the soft substrate. Let us call fg and fDp the contact
line rotations produced by surface tension and Laplace pressure,
respectively. The total rotation of the contact line is f = fg + fDp.
Although surface tension and Laplace pressure do not act
independently to produce rotations of the contact line, this
additive splitting is useful to explain our findings. The results
in Fig. 5 confirm that the rotation of the contact line, f, changes
sign approximately when a I 1051. Since fDp does not change
sign, we can conclude that the sign of fg varies with wettability;
for j \ 1051, fg and fDp have opposite sign and |fg| 4 |fDp|.
These observations suggest that a relative increase of the Laplace
pressure with respect to surface tension could potentially change
the sign of the total rotation at the contact lines and thus reverse
the direction of droplet motion for nonwetting droplets.

4.2 Controlling durotaxis by confinement

To study the role of Laplace pressure in droplet motion driven
by durotaxis, we propose a system in which this quantity can be
easily manipulated. We place a liquid slug in between two
identical planar surfaces forming a capillary bridge (see Fig. 6).
In this system, the Laplace pressure scales with the distance
between the two solid surfaces. Thus, one can alter the relative
strength of the Laplace pressure with respect to surface tension
by changing the distance between the solids while keeping the
Young–Dupré contact angle a constant.

We carry out two different simulations; see Fig. 6(A) and (B)
for the initial configurations. In both cases, the solids have a
nonuniform stiffness that follows a linear profile. They are
softer on the left boundary (light gray) and stiffer on the right
boundary (dark gray). Each simulation has a different distance
between the two solids, while the Young–Dupré contact angle is

the same for both cases, a = 1201, corresponding to a nonwetting
liquid slug. For the larger separation between substrates (left
column of Fig. 6), the Laplace pressure is lower. In this case, the
liquid moves toward the stiffer parts of the substrate. The
dynamics seems to be controlled by surface tension. The time
evolution of the difference between the apparent contact angles
at both sides of the liquid bridge is similar to that observed for
the nonwetting droplet analyzed in Fig. 4(D). When the gap
between substrates is 10 times smaller (right column of Fig. 6),
the Laplace pressure is 10 times larger. In contrast with the
previous case, here the capillary bridge moves toward the softer
part of the solid, showing that durotaxis of liquid slugs can be
reversed by judiciously manipulating the Laplace pressure in
confined environments.

5 Conclusions

It is generally accepted that, when a droplet is deposited on
deformable substrates, the surface tension at the liquid–vapor
interface and the Laplace pressure of the droplet produce a
rotation of the contact lines.32,33,36,51,52 The numerical experi-
ments conducted here show that this rotation is remarkably

Fig. 5 Apparent contact angle j with respect to the contact angle a
predicted by Young–Dupré equation for a given liquid droplet and for
substrates of uniform stiffness. In rigid substrates, the deformation pro-
duced by surface tension and Laplace pressure is negligible and the
apparent contact angle matches the Young–Dupré equilibrium contact
angle (black solid line). For sufficiently soft substrates, the Laplace pressure
Dp and the surface tension gLV deform the solid, inducing a rotation f of
the contact line (gray solid line). When j = 901, surface tension points
vertical and induces no rotation of the contact line, i.e., fg = 0. The rotation
is entirely produced by the Laplace pressure, i.e., f = fDp, which is
constant for all the computations with the same substrate stiffness (blue
dotted area). The remaining contribution to the rotation (red striped area)
is attributed to surface tension. Note that for j I 1051, fg = �fDp and
the apparent contact angle matches the Young–Dupré contact angle. For
j \ 1051, |fg| Z |fDp| and the final apparent contact angle exceeds the
contact angle predicted by the Young–Dupré equation. The insets in the
bottom right corner show the left contact line of a wetting (a = 601) and a
nonwetting droplet (a = 1201) for the soft substrate. The computations
were performed on a box of size 1.0 � 0.5 and using 256 � 128 C2

elements. The droplet radius is R = 0.13 and the substrate thickness 0.15.
We have used the parameters n = 0.125, Êsoft = 0.2, m̂ = 1/512, ĝ = 2/256,
and ŷ = 0.39. The ratio LEC/R takes the value LEC/R = 0.69.
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different for wetting and nonwetting droplets. While in wetting
droplets the rotation induced by surface tension and the Laplace
pressure have the same sign, this is not always the case for
nonwetting droplets: the rotation induced by surface tension
may oppose and even exceed the rotation produced by the
Laplace pressure, resulting in apparent contact angles that are
larger than the Young–Dupré contact angle. Our results also
indicate that the total rotation of the contact line is larger in
softer substrates regardless of the wettability of the liquid. These
observations explain why in our simulations the apparent con-
tact angle is smaller in the softer part of the substrate for wetting
droplets, while the opposite is observed for nonwetting droplets.

Our results support the theory proposed by Style et al.28 which
suggests that–analogously to droplet motion driven by interfacial
energy gradients26—droplet durotaxis is to a large extent controlled
by the difference between the apparent contact angles at the rear
and the front contact lines of the droplet. Droplets move in the
direction of the contact line that presents a smaller apparent
contact angle. We have shown that for nonwetting droplets this
may produce motion toward stiffer areas, mimicking the behavior

of cell durotaxis. For wetting droplets, the contact angle difference
and the droplet velocity both increase as the droplet moves toward
softer areas of the substrate. In contrast, for nonwetting droplets,
the contact angle difference and the velocity both decrease as
droplets advance toward stiffer areas. Droplets move faster in the
softer areas of the substrate for constant stiffness gradients.

Our study opens new possibilities to control the dynamics of
droplets on soft substrates. The Laplace pressure may be used
to reverse the direction of durotaxis for nonwetting liquid slugs
under confinement. Droplet motion can also be controlled by
simply altering the total wettability of the liquid, which can be
accomplished, e.g., by using surfactants.

Several aspects of droplet durotaxis are still unexplored and
should be the focus of future research. The interaction of
multiple droplets in substrates with nonuniform stiffness or
the influence of variable stiffness gradients in droplet velocity
could unveil interesting behavior for a better understanding of
this phenomenon. Droplet durotaxis appears to be a powerful
way of controlling not only the velocity but the direction of
droplet motion.

Fig. 6 Laplace pressure can be used to alter the direction of confined liquid slugs. A liquid droplet (blue) is placed in between two identical solids (gray)
forming a capillary bridge. The solids’ stiffness increases linearly from left to right. We analyze two different cases for the same Young–Dupré contact
angle (a = 1201) and the same surface tension. We do modify the distance between the solids. On the left column the gap is bigger, which results in a
lower Laplace pressure. (A and B) Represent the initial configurations of the problem. (C–F) Depict the configuration of the capillary bridges at different
time instants. The results show that for large Laplace pressures (right column) the droplet moves toward softer regions. For low Laplace pressure, the
liquid moves toward stiffer areas. The computational domain is a box of size 1.0 � 0.5 for the left problem and a box of size 1.0 � 0.25 for the right
problem. They are both discretized with 256� 128 C1 quadratic elements. We use the parameters m̂ = 1/512, ĝ = 2/256, ŷ = 0.39 and n = 0.125. The rigidity
of the substrate varies linearly between Êmin = 0.34 and Êmax = 8.28. The thickness of the solids is 0.15 and 0.115 for the left and the right problems,
respectively. Note that for visualization purposes in the right problem we are only showing the central part of the domain.
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