
Extreme Mechanics Letters 13 (2017) 10–16
Contents lists available at ScienceDirect

Extreme Mechanics Letters

journal homepage: www.elsevier.com/locate/eml

Droplet motion driven by tensotaxis
Jesus Bueno a,∗, Yuri Bazilevs b, Ruben Juanes c, Hector Gomez d

a Departamento de Métodos Matemáticos e de Representación, Universidade da Coruña. Campus de Elviña, 15192, A Coruña, Spain
b Department of Structural Engineering, University of California, San Diego. 9500 Gilman Drive, La Jolla, CA 92093, USA
c Department of Civil and Environmental Engineering, Massachusetts Institute of Technology. 77 Massachusetts Avenue, Cambridge, MA 02139, USA
d School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907, USA

a r t i c l e i n f o

Article history:
Received 26 November 2016
Received in revised form
10 January 2017
Accepted 10 January 2017
Available online 12 January 2017

Keywords:
Tensotaxis
Soft materials
Fluid–structure interaction (FSI)
Complex fluids
Navier–Stokes–Korteweg equations (NSK)
Isogeometric analysis (IGA)

a b s t r a c t

It is well documented that cells canmigrate in response to gradients in stiffness (durotaxis) and gradients
in strain (tensotaxis) in the underlying substrate. Understanding the potential physical mechanisms
at play during this motion has motivated recent efforts to unravel the role of surface tension in the
interaction between droplets and soft solids. Here, we present a multiphysics phase-field model of
fluid–solid interaction, which allows us to isolate the effects of strain gradients—something difficult to
achieve in experiments. Our high-fidelity numerical simulations in two and three dimensions elucidate
the physics of tensotaxis, and showhow localized forces in a soft substrate can be used tomove andmerge
droplets deposited on it.

© 2017 Published by Elsevier Ltd.
1. Introduction

Understanding wetting – the affinity of a solid to a fluid – is es-
sential in many natural and engineered processes spanning a wide
range of length and time scales, including microfabrication [1,2],
microfluidics [3–5], and porous media flow applications like oil re-
covery [6,7] and geologic carbon sequestration [8]. While wetting
and spreading of fluids on rigid substrates has been studied ex-
tensively (e.g., [9,10]), the interaction of a partially-wetting fluid
with a deformable solid substrate has started to receive attention
more recently [11–17]. In particular, detailed measurements using
confocal microscopy have revealed the universal character of the
deformation of soft substrates near the contact line [13], and the-
ory and experimental observation have elucidated important as-
pects of the interaction between droplets and soft substrates. For
example, it was recently shown that liquid drops on deformable
substrates attract or repel by the so-called inverted Cheerios ef-
fect [18], and that dropletsmove spontaneously on substrateswith
stiffness variations [19]. The latter phenomenon is reminiscent of
durotaxis—cell motion along stiffness gradients [20,21]. However,
while cells tend to move toward stiffer substrates, droplets have
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been reported to migrate toward softer regions. This observation
has rekindled the debate about the role of mechanics in cell duro-
taxis.

It has also been observed that cells undergo tensotaxis, that is,
motion along strain gradients. Tensotaxis has been consistently ob-
served for fibroblasts which migrate toward areas of higher com-
pressive strains [20]. While several mechanistic models have been
proposed [22,23], the understanding of tensotaxis is still very lim-
ited. Controlled experimental studies of tensotaxis are particularly
challenging because prestraining the substrate is often accompa-
nied by an increase in the substrate stiffness as a result of nonlin-
ear material response [24], thus producing a combination of ten-
sotaxis and durotaxis. A theoretical model that allows isolating the
effects of tensotaxis would contribute to a better understanding of
the process.

Here, we show that liquid droplets on soft substrates undergo
tensotaxis. Droplets move toward areas of higher compressive
strains, the same behavior observed in cell migration. Ourmethod-
ology is based on a theoreticalmodel that describes the coupled in-
teraction of a solid and a fluid with liquid and gaseous phases. We
solve the governing equations by means of high-fidelity numeri-
cal simulations, and show that tensotaxis enables the motion and
merging of droplets. The migration patterns depend on the solid
deformation globally, thus pointing to the usefulness of a compu-
tational approach to help elucidate the physics of tensotaxis.
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Fig. 1. Droplet motion driven by tensotaxis. (A) Liquid droplet (blue) deposited
on a rigid substrate (gray). The surface tensions at the contact line γLV , γSV and
γSL are represented with arrows. (B) Liquid droplet on a soft substrate. The solid
is deformed under the combined action of the surface tensions and the internal
Laplace pressure1p. The plot shows that the static contact angleα and the apparent
contact angle ϕ are different when the solid is deformable. (C) Tensotaxis can
be triggered by inserting a microneedle in the substrate and moving it toward
the droplet or away from the droplet. The deformation produced by the droplet
has been computed using the model presented in Section 2.1. The computational
domainΩ = [0, 1.0]×[0, 0.5] is discretizedwith a uniformmesh of 512×256C1-
quadratic elements. We have adopted the parameters ν = 0.45, µ = 1/1024,γ = 1/512,E = 0.1, andθ = 0.39. Neither gravity nor other external forces were
considered in this simulation, i.e.,

f s = 0.0. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

2. Model of droplet tensotaxis

The static configuration that droplets adopt on rigid, flat sub-
strates is governed by the Young–Dupré equation, γSL +γLV cosα =

γSV , where α is the static contact angle, and γLV , γSV and γSL de-
note the interfacial tension at the liquid–vapor, solid–vapor and
solid–liquid interfaces, respectively [25] [Fig. 1(A)]. When the sub-
strate is soft, elastocapillary forces create a dimple below the
droplet and a ridge at the contact line. This produces a rotation
of the liquid–vapor interface [13], which after deformation is ori-
ented at an apparent contact angle ϕ < α with respect to the hori-
zontal [Fig. 1(B)]. Elastocapillary forces are relevant when the elas-
tocapillary length lec = γLV/Es (Es is the Young modulus of the
solid) is comparable to the droplet radius. For values of lec much
smaller than the droplet radius, the deformation of the solid is neg-
ligible. Most theoretical efforts to understand the interaction of
droplets and deformable substrates are based on thin film descrip-
tions of the fluid problem and linear elastic solids [12,18]. The ap-
proaches are variational and allow computing a minimum-energy
configuration. Here,we study the interaction betweendroplets and
a soft solid by developing a three-dimensional model that couples
the nonlinear dynamics of a solid with a fluid composed of a liquid
and a gaseous phase. We obtain numerical solutions to the pro-
posed equations with a computational method based on isogeo-
metric analysis [26]. Using this computational approach, we show
that droplet tensotaxis emerges in a system that mimics the one
employed in cell locomotion experiments [20]. A microneedle is
inserted into the substrate and exerts a force either toward the
droplet or away from the droplet [Fig. 1(C)]. The droplet moves in
the direction of the force applied by the needle.

2.1. Methods

We develop a fluid–structure interaction model that couples a
Saint Venant–Kirchhoff solid with a complex fluid. Our choice of a
Saint Venant–Kirchhoff model for the solid allows us to consider
geometric nonlinearities with a linear material response. As a
consequence, the strains introduced in the substrate to trigger
tensotaxis do not alter the stiffness of the solid, avoiding a situation
with simultaneous tensotaxis and durotaxis. The fluid is governed
by the Navier–Stokes–Korteweg (NSK) equations, a phase-field
theory that allows for the stable coexistence of a liquid and a
gaseous phase.

Solid mechanics equations
The solid dynamics is described by the Lagrangian form of the

momentum balance equation

ρs
0
∂2u
∂t2


X

= ∇X · P + ρs
0f

s, (1)

where ∇X is the gradient with respect to the material coordi-
nates X and |X indicates that the time derivative is taken by hold-
ing X fixed; u is the solid displacement and ρs

0 is the mass den-
sity in the initial configuration; f s represents body forces per unit
mass, and P is the first Piola–Kirchhoff stress tensor. The Saint
Venant–Kirchhoff model is described by the stored elastic energy
density [27,28]

W =
λs

2
(tr(E))2 + µs tr(E2). (2)

Here, tr(·) denotes the trace operator whereas λs and µs are the
first and second Lamé parameters, which can be written as a func-
tion of the Young modulus Es and the Poisson ratio ν: λs

=

νEs/((1+ν)(1−2ν)) andµs
= Es/(2(1+ν)). The Green–Lagrange

strain tensor is defined by E = (C−I)/2,where I denotes the iden-
tity tensor and C = F TF is the Cauchy–Green deformation tensor.
Here, F denotes the deformation gradient, i.e., F = I + ∇Xu. The
second Piola–Kirchhoff stress tensor can be computed from W as
S = ∂W/∂E while the first Piola–Kirchhoff stress tensor is ob-
tained by P = FS . The Cauchy stress tensor in the solid is given
by σs

= J−1FSF T
= J−1PF T , where J = det(F).

Fluid mechanics equations
We use the isothermal Navier–Stokes–Korteweg (NSK) equa-

tions to describe the fluid dynamics. The NSK equations account
for mass and momentum conservation. They describe single-
component two-phase flow and naturally allow for phase trans-
formations, which can happen spontaneously due to pressure
and/or temperature variations. The multiphase nature of the flow
is treated using the phase-field method. Phase-field models, also
known as diffuse-interface models, represent an alternative to
sharp-interface models, in which interfaces are replaced by thin
transition regions. The underlying idea is to define an order param-
eter, or phase-field, that varies smoothly over the entire computa-
tional domain and acts as a marker for the location of the different
phases [29]. In the NSK theory, the fluid density itself is the phase-
field that identifies the liquid and vapor phases. Phase-fieldmodels
have been successfully used in many fields (e.g., [30–35]), includ-
ing the description of partial wetting [36,37]. The phase-fieldmod-
eling permits, in our case, a unified and efficient computational
treatment of the coupled multiphysics problem.

In the Eulerian description, the isothermal NSK equations are
given by

∂ρ

∂t
+ ∇ · (ρv) = 0, (3a)

∂ (ρv)
∂t

+ ∇ · (ρv ⊗ v) − ∇ · σ f
= 0, (3b)

where ρ is the density, v is the velocity vector, σ f is the fluid stress
tensor and ⊗ denotes the outer vector product. The Cauchy stress
tensor for the fluid is defined as σ f

= τ − pI + ς, where τ is the
viscous stress tensor, p denotes the pressure, and ς is the so-called
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Fig. 2. Mechanism of tensotaxis. Left panels refer to the case in which the applied force pulls the droplet. Right panels refer to case in which the applied force pushes the
droplet. (A) and (B) Initial configuration of a droplet on a deformable substrate. We apply a force per unit mass that points away from the droplet (A) and toward the droplet
(B) in the marked rectangular region. (C) and (D) The droplet moves in the direction of the applied force. The dashed black line represents the position of the droplet at the
initial time. (E) and (F) Streamlines of the fluid velocity colored with the velocity magnitude. The droplet is represented by a black, solid line. (G) Vertical displacements at
the fluid–solid interface at three different dimensionless times, t = 235, t = 471 and t = 1884. (H) Vertical displacements at the fluid–solid interface at time t = 1962,
t = 3924 and t = 7848. (I) and (J) Time evolution of the apparent contact angles at the left (blue dashed line) and right (red dashed line) contact lines of the droplet. Trend
lines are plotted using a blue and red solid lines, respectively. The difference in apparent contact angles between the two contact lines is responsible for the motion of the
droplet. The computational domain is the rectangle Ω = [0, 1.0] × [0, 0.5], which is discretized with a uniform mesh of 128 × 64 C1-quadratic elements. On the left, right
and lower boundaries of the computational domain, we impose zero velocity in normal direction. On the upper boundary, zero velocity is imposed in both directions. The
static contact angle is α = 75◦ . We have used the parameters ν = 0.45, µ = 1/256, γ = 1/64,E = 0.7554, andθ = 0.39. The magnitude of the force applied on the
substrate is

f s = 0.16215. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Korteweg tensor. As we consider Newtonian fluids, the viscous
stress tensor is given by

τ = µ̄

∇v + ∇

Tv

+ λ̄∇ · vI, (4)

where µ̄ and λ̄ are the viscosity coefficients, which are assumed to
be related through the Stokes hypothesis, that is, λ̄ = −2µ̄/3. The
Korteweg tensor [38,39] is defined by

ς = λ


ρ1ρ +

1
2

|∇ρ|
2

I − λ∇ρ ⊗ ∇ρ, (5)
where | · | denotes the Euclidean norm of a vector, and λ > 0 is the
capillarity coefficient. The Korteweg tensor results in the capillary
forces that are withstood by the liquid–vapor interfaces.

We use the Helmholtz free-energy of a van der Waals fluid [40,
41] to allow for stable coexistence of liquid and gas phases. Using
the Helmholtz free-energy and standard thermodynamics [41], we
obtain the van der Waals equation, which gives the pressure p in
terms of density and temperature θ , i.e.,

p = Rb


ρθ

b − ρ


− aρ2. (6)
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Fig. 3. Pulling and pushing the droplet. Left panels refer to the case in which the applied force pulls the droplet. Right panels refer to case in which the applied force
pushes the droplet. (A) and (B) Droplet velocity with respect to time for different Poisson’s ratios ν. The velocity of the droplet is computed as the average of the contact line
velocities. When pulling, the droplet initially accelerates and then decelerates as it passes through the localized applied force, and is eventually trapped (A). When pushing,
the magnitude of the velocity is monotonically decreasing as the influence of the applied force decreases as the droplet moves away from the force (B). (C) and (D) Droplet
velocity with respect to the position of the droplet center Xc , which is assumed to be at the midpoint between the contact line positions at each time step. In all cases the
velocity is reduced as the Poisson ratio drops, and for ν = 0 the applied force induces no droplet motion.
Here, a and b are positive constants and R is the specific gas
constant.

Since the NSK system includes a third-order spatial derivative
of the fluid density in the linear momentum balance equation, the
classical solid-wall boundary conditions are insufficient to render
a well-posed boundary value problem. Therefore, we additionally
impose the boundary condition ∇ρ · nf

= |∇ρ| cosα, where nf

denotes the unit outward normal to the fluid boundary, and α is
the contact angle between the liquid–vapor interface and the solid
surface, measured in the liquid phase (see Fig. 1). This boundary
condition prescribes the contact angle α at the fluid–structure
interface, while the apparent contact angle ϕ is determined as part
of the solution to the coupled equations as a result of the substrate
deformation.

Coupled problem
The differential equations governing the solid and fluidmotions

must be satisfied simultaneously. These equations are coupled
at the fluid–solid interface through compatibility conditions. We
impose kinematic compatibility (v = ∂u/∂t) and traction balance
(σ f nf

− σsnf
= 0).

Computational method

Our computational approach is similar to those presented
in [42,43]. We solve the coupled system composed by Eqs. (1) and
(3) subject to the kinematic compatibility and traction balance con-
straints. Eq. (1) is solved in the reference (undeformed) configu-
ration of the solid domain. Eq. (3) is solved in the spatial domain
occupied by the fluid, which changes over time. This requires the
use of geometrically flexible algorithms, such as the finite element
method. Here, we use isogeometric analysis, which is a spline-
based finite-element-like method that combines geometric flexi-
bility with smooth basis functions [44,26]. The use of smooth basis
functions allows for a direct discretization of higher-order partial
differential equations such as the NSK equation. To enable the use
of classical finite-difference-typemethods for time integration, we
recast the NSK equations in an arbitrary Lagrangian Eulerian (ALE)
formulation:

∂ρ

∂t

x + (v −v) · ∇ρ + ρ∇ · v = 0, (7a)

ρ
∂v
∂t

x + ρ (v −v) · ∇v − ∇ · σ f
= 0. (7b)

Here,v is the fluid domain velocity andx is a coordinate in a ref-
erence domain that is used for computational purposes. Eqs. (1)
and (7) can then be written in variational form and discretized
in space using isogeometric analysis. We use the generalized-α
method [45] as a time integration scheme. The nonlinear system
of equations is solved using a Newton–Raphson iteration proce-
dure, which leads to a two-stage predictor–multicorrector algo-
rithm. The resulting linear system is solved using a preconditioned
GMRES method.

We express the problem in non-dimensional form by rescaling
length, time, mass and temperature by L0, L0/

√
ab, bL30 and θc ,

respectively, where L0 = 1 is a length scale of the computational
domain and θc = 8ab/(27R) is the so-called critical temperature.
Using this non-dimensionalization, the problem is characterized
by the following dimensionless numbers,

γ =

√
λ/a
L0

(dimensionless surface tension), (8)
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µ =
µ̄

L0b
√
ab

(dimensionless viscosity), (9)

θ =
θ

θc
(dimensionless temperature), (10)

ν (Poisson ratio), (11)

E =
Es

ρs
0ab

(dimensionless Young modulus), (12)

f s =
f s

ab/L0
(dimensionless body force). (13)

In all our computations, the values adopted for the dimensionless
surface tension and viscosity were chosen according to the upscal-
ingmethod proposed in [46],which relates these parameters to the
computational mesh.

3. Results

We begin by performing numerical simulations of droplet mo-
tion that mimic the experiments conducted for cells [Fig. 1(C)]. In
our computations, the effect of the needle is modeled as a horizon-
tal force per unit mass applied on a localized area [Fig. 2(A)–(B)].
Our simulations show that the droplet moves in the direction of
the force [Fig. 2(C)–(D)]. The coupling between solid and fluid elic-
its flow of the gas phase surrounding the droplet [Fig. 2(E)–(F)].
The applied load produces vertical displacements in the solid, as
it would be expected in a material with a nonzero Poisson ratio
[Fig. 2(G)–(H)]. These vertical displacements are opposite in sign
at each side of the load. The droplet’s excess pressure produces a
depression of the substrate, while the localized force at the con-
tact line pulls up the solid. Away from the droplet the substrate
acquires a flat shape, but the vertical displacement is different at
both sides of the droplet and is controlled by the external force ap-
plied to the substrate: positive where the load induces compres-
sive stresses, and negative on the side where the load induces ten-
sile stresses. The difference in vertical displacements at either side
of the droplet produces a rotation of the droplet that drives mo-
tion. This can be understood with a force balance in the deformed
contact line, which is rotated due to the solid compliance [13]. The
solid deformation produces different apparent contact angles at
the two contact lines, leading to an unbalanced horizontal force
similar to that present when the wettability of the substrate is dif-
ferent at either contact line [Fig. 2(I)–(J)]. The tensotaxis mecha-
nism is independent of gravity, which is negligible at this scale.

Further insight into the mechanics of tensotaxis is gained by
plotting the droplet velocitywith respect to time and space (Fig. 3).
It is apparent from these simulations that the behavior is remark-
ably different depending on the direction of the applied force.
Pulling induces increasing velocities of the droplet as the contact
line approaches the region of the applied force, but ultimately trap
the droplet in the loaded area [Fig. 3(A) and (C)]. In contrast, push-
ing repels the dropletmonotonically, albeit with a time-decreasing
velocity [Fig. 3(B) and (D)]. In all cases, the droplet velocity is
smaller as the Poisson ratio decreases—indeed, the droplet remains
immobile if the Poisson ratio is zero. All these observations are con-
sistent with the proposed mechanism of droplet tensotaxis.

To more faithfully represent the physical reality we also carried
out 3D simulations of tensotaxis. The 3D analogue of the needle
experiment in Fig. 1(C) is shown in Fig. 4. A horizontal force applied
at the center of the substrate drives dropletmotion in the direction
of the force [Fig. 4(B)]. A cross section of the system through the
(diagonal) axis of symmetry shows that the substrate deformation
is consistentwith the picture that emerges from the 2D simulations
[Fig. 4(C)].
Fig. 4. Three-dimensional droplet motion triggered by tensotaxis. (A) Initial
configuration of the numerical experiment. A liquid droplet is deposited on a
deformable substrate. A horizontal force is applied at the center of the substrate.
(B) The dropletmoves in the direction of the applied force. The black, dashed line on
the surface of the substrate indicates the initial position of the droplet. (C) Vertical
displacement of the solid–liquid interface at the diagonal plane [green color in
panel (B)] at different times, t = 63 (red), t = 125 (green), t = 188 (yellow),
and t = 251 (blue). The computational domain Ω = [0, 0.8]× [0, 0.8]× [0, 0.4] is
discretized with 80 × 80 × 40 C1-quadratic elements. On the upper boundary, we
prescribe zero velocity in the horizontal and vertical directions. On the lateral and
lower boundaries, zero velocity is imposed in normal direction. We have adopted
ν = 0.45,µ = 1/200,γ = 1/50,E = 0.7554, andθ = 0.39. The load that triggers
dropletmotion is a body force per unitmass of value

f s = 1.376. The static contact
angle is α = 75◦ . (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

The investigation of tensotaxis behavior in the presence ofmul-
tiple droplets is revealing. The presence of multiple droplets in-
creases the complexity of the problem, as we must consider their
mechanical interactions through the deformable substrate, as well
as through the fluid domain. We simulate this interaction in a sys-
tem with two droplets of different size, each ‘‘pushed’’ toward
the other by the action of a localized force [Fig. 5(A)]. As the
droplets approach each other, they eventually coalesce [Fig. 5(B)]
and quickly readjust into a single droplet, trapped by the two ap-
plied forces of opposite sign [Fig. 5(C)]. These predictions illustrate
the ability of the phase-field methodology to simulate complex
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Fig. 5. Droplet coalescence induced by tensotaxis. (A) Setup of the numerical
experiment. Two forces of the same magnitude are applied on the substrate,
pushing the droplets toward the center of the domain. (B) When the droplets are
sufficiently close, capillary forces promote coalescence of the two droplets. The
black, dashed line on the surface of the substrate represents the initial position
of the droplets. (C) Vertical displacement at the solid–fluid interface at different
times, t = 66 (red), t = 240 (green), t = 267 (yellow), and t = 314
(blue). The computational domain is the box Ω = [0, 0.8] × [0, 0.8] × [0, 0.4],
which is comprised of 80 × 80 × 40 C1-quadratic elements. On the lateral and
lower boundaries, we impose zero velocity in normal direction. On the upper
boundary, zero velocity is prescribed in the horizontal and vertical directions. We
have adopted ν = 0.45,µ = 1/200,γ = 1/50,E = 0.7554, andθ = 0.39. The load
that triggers droplet motion is a body force per unit mass of value

f s = 2.7519.
The static contact angle is α = 75◦ . (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

scenarios of tensotaxis in 3D, in which the coupling between sur-
face tension forces and substrate deformation lead to droplet mo-
tion, coalescence and trapping.

4. Conclusions

Tensotaxis, or motion driven by strain gradients, has been re-
producibly observed for several cell types, but the mechanisms
that control the process remain unknown. Here, we have shown
that simple liquid droplets on soft substrates also undergo tenso-
taxis. We have used a nonlinear coupled model of fluid–structure
interaction to elucidate the physics of droplet tensotaxis. Our re-
sults indicate that droplet tensotaxis is controlled by the global de-
formation of the solid, making the migration pattern sensitive to
boundary conditions and additional external loads. Although the
droplet always moves in the direction of the force – as observed
in cell locomotion experiments – our results reveal the symmetry-
breaking depending on thenature of the applied force. Upon the ac-
tion of pulling forces, a droplet first accelerates but is then trapped
as it traverses the localized force. The action of pushing forces, in
contrast, leads to monotonic motion of the droplet with decay-
ing velocity. The computational model suggests that droplet ten-
sotaxis occurs for arbitrary values of the applied force, while cell
tensotaxis has been only observed for loads that are larger than a
threshold value. This might be a consequence of active contractile
forces exerted by the cell on the substrate, which are not consid-
ered in droplet tensotaxis. Our computational model also reveals
the key role of Poisson’s ratio in tensotaxis, and the ability of local-
ized forces to induce droplet coalescence. These observations from
computational modeling allow us to gain insight into the mecha-
nisms that govern tensotaxis, and may suggest new experimental
studies for cell migration.
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