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MSC: We propose a thermodynamic approach to modeling unsaturated flow in porous media, where the liquid satura-
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to an entropy function of the system, and we show that the model describes an entropy-increasing process for an

The new formulation reproduces gravity fingering during infiltration in soil. We show that the nonlinear and
singular structure of the capillary pinning function in the fourth-order term plays a fundamental role in the

behavior and stability of infiltration fronts, promoting front pinning and the persistence of fingered infiltration

at relatively large flux ratios.

1. Introduction

Fluid dynamics through unsaturated porous media is key in under-
standing the distribution of soil moisture, which in turn regulates the
interactions between climate, soil and vegetation. These interactions are
essential in the description of the hydrological, ecological and meteo-
rological processes (Rodriguez-Iturbe, 2000). Many infiltration models
have been developed based on a variety of empirical, conceptual and
physical approaches (Buckingham, 1907; Richards, 1931; Horton, 1933;
Philip, 1957; 1969), but these models generally assume stable wetting
and drying fronts when the medium is homogeneous. Gravity-driven
displacement of one fluid by another in porous media, however, is often
subject to hydrodynamic instability, whereby fluid invasion takes the
form of preferential flow paths or fingers (Sahimi, 1993; Frette et al.,
1992; Méheust et al., 2002); examples include secondary oil migration
in reservoir rocks (Thomas and Clouse, 1995; Meakin et al., 2000; Luo
et al., 2004), and infiltration of rainfall water in dry soil (Hill and Par-
lange, 1972; Glass et al., 1989d; Ritsema et al., 1998).

Since the 1970s, carefully designed experiments have repeatedly
shown gravity fingering during infiltration in homogeneous sands
(Diment and Watson, 1985; Glass et al., 1989d; 1990; Selker et al.,
1992a; 1992b; Lu et al., 1994; Bauters et al., 1998; 2000; Yao and Hen-
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drickx, 2001; Sililo and Tellam, 2000; Flekkgy et al., 2002; Wang et al.,
2004; Wei et al., 2014). The selected pattern of the phenomenon is a
winner-takes-all process, in which the fastest-growing fingers channel-
ize most of the flow, and the growth of other incipient fingers is thereby
suppressed (Glass et al., 1989d; Selker et al., 1992b).

In addition to the clear evidence of the gravity fingering phe-
nomenon in laboratory experiments, several works point to its impor-
tance also in field settings (Ritsema and Dekker, 1994b; Hendrickx and
Flury, 2001). Work on water flow and infiltration in textured soils has
demonstrated the potential importance of fingered flow in the field
(Glass et al., 1988; Ommen et al., 1989; Liu et al., 1994; Ritsema and
Dekker, 1994b; 1994a; Ritsema et al., 1996; 1998; Wang et al., 2004),
including the role of water repellency as a mechanism that exacerbates
it (Bauters et al., 1998; Ritsema and Dekker, 2000b; 2000a; Wang et al.,
2000). The formation of fingers can significantly influence the transport
of contaminants to surface and ground waters (Glass et al., 1989a) and
reduces the water rechargeable area in the root zone of plants.

The stability of infiltration fronts varies with the properties of the
medium and the infiltrating flux. Experimental work has shown that
the fingering instability is expected to be more vigorous for coarse soils
(Heijs et al., 1996), for two reasons: importance of gravity vs. capil-
lary forces, and because the soil retention curve and unsaturated con-
ductivity are often ‘sharper’ (more nonlinear) for sands than for clays.
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Although these behaviors are observed for the soils studied, the condi-
tions of the triggering mechanism of instability to generate preferential
paths of flow are complex because of the subtle interplay between grav-
ity and capillary effects, and the impact of the macroscopic interface at
the wetting front. The other important experimental trends are related
to soil-water conditions, as the initial moisture content plays a critical
role in the fingering instability. It is well established that fingering is
promoted when the medium is quite dry and that even relatively low
water saturations lead to a compact, downward-moving wetting front
(Lu et al., 1994; Bauters et al., 2000). Stable fronts are also observed in
dry media when the infiltration rate is either very small or approaches
the saturated conductivity (Hendrickx and Yao, 1996). In general, larger
infiltration rates produce faster, thicker fingers (Glass et al., 1989d).

An important feature of gravity fingering is the presence of sat-
uration overshoot, that is, the pile-up of water at the infiltration
front—which is understood to be a prerequisite for the fingering insta-
bility in unsaturated flows (DiCarlo, 2004; Egorov et al., 2003; Nieber
et al., 2005; DiCarlo, 2007; Cueto-Felgueroso and Juanes, 2009a). The
classical Richards model of infiltration (Richards, 1931), along with the
standard (monotonic) pressure-saturation relation, is stable in homoge-
neous porous media under infinitesimal and finite perturbations (Nieber
et al., 2005; Fiirst et al., 2009). This model is incompatible with satu-
ration overshoot for infiltration into unsaturated homogeneous media,
leads to monotonic saturation profiles, and cannot reproduce the finger-
ing phenomenon.

Many extensions to the Richards equation have been proposed in
the past few decades to develop continuum mathematical models that
describe gravity-driven unsaturated flows through porous media and
attempt to capture finger formation (see, e.g, Cueto-Felgueroso and
Juanes, 2009a; DiCarlo, 2013; Xiong, 2014 for an overview). For ex-
ample, Eliassi and Glass (2002) invoked a hold-back-pile-up (HBPU) ef-
fect to develop an extension of the Richards equation with an additional
higher-order term. They proposed three mathematical representations of
the HBPU effect to include hypodiffusive, hyperbolic, and mixed spatial-
temporal forms. Cueto-Felgueroso and Juanes (2008, 2009a) proposed
a thermodynamic approach to multiphase flows through porous media,
and developed a phase field model of unsaturated flow. Their model
then leads to an extension of the Richards equation that includes a
new term—a fourth-order derivative in space—with a scaling linking
the magnitude of this term to the other terms in the Richards equation.
Several authors have studied the impact of dynamic capillary pressure
on unsaturated flow patterns, concluding that the extended Richards
equation including dynamic capillarity and hysteresis may also lead to
saturation overshoot and flow patterns that are similar to the observed
wetting front instability (see, e.g, Ritz and Schweizer, 2014; van Duijn
et al., 2018; Zhuang et al., 2019b).

In this study, we adopt what we consider to be a minimum-
ingredients model of unsaturated flow that is compatible with the ob-
servations of hydrodynamic instability and fingering patterns during in-
filtration into dry coarse soil. We do not include capillary hysteresis in
our model. This is because the proposed fourth-order model can lead to
fingering instabilities and finger persistence without hysteresis. While
hysteresis alone (without a mechanism that leads to saturation over-
shoot) cannot explain the formation of gravity fingers during water in-
filtration in soil (Eliassi and Glass, 2001; van Duijn et al., 2004; Nieber
et al., 2005; Fiirst et al., 2009), including hysteresis in the capillary
pressure is essential to reproduce important experimental observations
of unsaturated flow. Among them is the long-term stability of the fin-
ger cores as preferential flow paths (Glass et al., 1989a; Rezanezhad
et al., 2006): without hysteresis, finger widths slowly continue to in-
crease due to lateral capillary diffusion. The other phenomenon is the
unconventional water flow during horizontal redistribution due to capil-
lary hysteresis, which may lead to persistent discontinuities across sharp
saturation gradients and to flow from regions of smaller saturation to-
wards others with larger one (Philip, 1991; Raats and van Duijn, 1995;
Heinen and Raats, 1999; Pop et al., 2009; van Duijn and Mitra, 2018),
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which may also be attributed to multistability of the capillary energy
(Cueto-Felgueroso and Juanes, 2016).The higher-order term in the pro-
posed model and in the model based on the phase field methodology
(Cueto-Felgueroso and Juanes, 2009a) is responsible for triggering the
instability of the flow, the formation of saturation overshoot and gravity
fingers in unsaturated flows without resorting to hysteresis. We note that
hysteresis is a very real phenomenon with an important macroscopic
consequences (Liu et al., 1994; Bauters et al., 1998; Spiteri and Juanes,
2006; Juanes et al., 2006) which can be incorporated in the capillary-
pressure function to further improve the results. While dynamic cap-
illary pressure is sufficient to generate a saturation overshoot in 1D,
Nieber et al. (2005); DiCarlo et al. (2008); Zhuang et al. (2019a), the
combined effect of dynamic capillary pressure and hysteresis is needed
to produce reasonable-looking overshoot and fingering patterns (Réitz
and Schweizer, 2014; Zhang and Zegeling, 2017; Zhuang et al., 2019b).

The role of nonzero contact angle on unstable flow formation in
porous media has been studied experimentally (Wallach et al., 2013),
and a moving-boundary approach was proposed (Brindt and Wal-
lach, 2017), which attributes the hold-back—pile-up effect to the nonzero
contact angle where water is initially prevented from invading the dry
pores at the wetting front. When sufficient water piles up (saturation
overshoot), the pressure increases and becomes enough to overcome the
impeding pressure barrier (water-entry capillary pressure). This leads to
the invasion of pores and the propagation of a sharp wetting front with
a nonmonotonic saturation profile.

Here we adopt a thermodynamic approach to unsaturated flow,
where the liquid saturation is understood as the state variable. We de-
sign a free energy functional as a symmetric expansion of the traditional
capillary energy density (Leverett, 1941; Morrow, 1970; Aavatsmark,
1989a; 1989b; Sciarra et al., 2007; Sciarra, 2016), therefore removing
ambiguities on the interpretation of the nonlocal term. Our approach is
based on the phase-field methodology (Cahn and Hilliard, 1958; Cueto-
Felgueroso and Juanes, 2009a) where in the formulation of the cap-
illary energy, in addition to the terms related to Richards’ equation
(bulk energy), we include the energy associated with the effect of the
macroscopic interface (the wetting front). This energy approach leads
naturally to a nonlinear higher-order term involving a special function,
which we term capillary pinning function, multiplying the square-gradient
term. The structure of this function plays a fundamental role in the
behavior of continuum models of multiphase flow in a capillary tube
(Cueto-Felgueroso and Juanes, 2012; Strait et al., 2015), Hele-Shaw cell
(Cueto-Felgueroso and Juanes, 2014), or thin-film flow over a substrate
(Pahlavan et al., 2015).

By construction, the capillary pinning function in the model pro-
posed here is proportional to the capillary energy density. We show
that this definition renders a formulation that leads naturally to an en-
tropy function of the system, and we prove that the model leads to an
entropy-increasing process for an isolated system. We also show that
the proposed model reproduces the saturation overshoot at the wetting
front, the formation of gravity fingers, and the pinning behavior at the
base of the infiltration front.

In Section 2, we present the derivation of the proposed model and the
construction of the capillary pinning function introduced. Section 3 is
devoted to the construction of the entropy function of the proposed
model and the analysis of the entropy of an isolated system. Numeri-
cal simulations are performed in Section 4 to evaluate the effect of the
nonlinear capillary pinning function on saturation overshoot and on the
pinning behavior at the base during fingered infiltration. Finally, we
provide some concluding remarks in Section 5.

2. Mathematical model
2.1. Local model: Richards equation

It is useful to first describe the thermodynamic approach as it ap-
plies to the traditional unsaturated flow equation: Richards’ equation
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(Richards, 1931). We start by imposing mass conservation in terms of
water saturation S:

9(ppS)
ot

and mass flux driven by a potential IT:

+V-F=0, (1)

F = —pi,(S)VII, 2)

where p is the water density, ¢ is the medium porosity, g is the grav-
itational acceleration (all assumed constant), and 4,(S) is the water
mobility,

Ap(S) = Ek,(S), (3)
u

where k is the medium permeability, y is the fluid dynamic viscosity,
and k,.(S) is the water relative permeability, which accounts for the effect
of partial saturation (Richards, 1931; Muskat and Meres, 1936; Muskat,
1949; Bear, 1972). It proves convenient to introduce the saturated hy-
draulic conductivity,

pgk
K. == 4)
sat u
The potential is derived from the energy function &:
d&é
n=-—. 5
75 (5
The energy £ comprises gravitational and capillary energy components,
€ = Egray + Ecap- The gravitational component is simply
ggrav = —pgzsS, ©)

where z is depth (in the direction of gravity). The capillary component
is given by

gcap =& +¥(©S) (7

where & is a reference energy (dependent on the elevation datum and
on the surface energy of the medium when filled with water) and ¥(S) is
the capillary energy function, from which the capillary pressure P_(S) is
derived:

d¥

P.(S)=——, 8
() S @)
which can be expressed in head units as the water suction head y/(S):

P.(S) = pgy(S). ®

We will further express the water suction head y using the Leverett
scaling (Leverett, 1941)

y cos @ 10)

Reap ~ s
N
where Ay, is the characteristic capillary rise, y is the surface tension be-
tween the fluids, 0 is the contact angle, and J(S) is the Leverett J-function
(Leverett, 1941), which is a dimensionless version of the capillary pres-
sure function.
Using Egs. (8)-(10), we can write Eq. (7) as

W(S) = heapJ (S),

S
Eeap = €0 = PEheap[(S),  I(S)= / J(s)ds. (11
0

We refer to I(S) as the dimensionless capillary energy density (Leverett,
1941; Morrow, 1970; Aavatsmark, 1989a; 1989b). The flow potential
based on this energy is given by:

_a8 _
= =5 = pgl-z - w(S)] 12)

Finally, inserting Eq. (12) into the flux Eq. (2) and the mass conservation
Eq. (1), and assuming constant fluid density, yields the classical Richards
equation:

as
d

¢ t

+ V- [Kguek (S)V(z + w(S))] = 0. (13)
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2.2. Nonlocal model

To develop a model capable of unstable infiltration, we propose a
second gradient theory (Sciarra et al., 2007; Sciarra, 2016) of the capil-
lary energy, written as a second-order expansion of the classical (local)
one:

1
gc';p=€0+pghcap1(s)<_l+ 552|VS|2), (14)

where 6 is the characteristic length scale of the diffuse interface. Written
in the form of a nonlinear Cahn-Hilliard free energy (Cahn and Hilliard,
1958; Cahn, 1961; Bray, 1994; Anderson et al., 1998; Boettinger et al.,
2002; Emmerich, 2008), the capillary energy includes a bulk and an
interfacial contribution, which accounts for the structure of the diffuse-
interface of wetting fronts:

1
g;p = &) — pgheap () + Epgx(S)IVSlz, as
Ecap,bulk Ecap,interf

where we identify « as being the capillary pinning function
Ky
K(S) = heapd®1(S) = hegpd” / J(s)ds. (16)
0

The modified gradient-theory energy functionalis £V = &gp,, + &y, The
flow potential is obtained by taking the variational derivative of the en-
ergy functional with respect to saturation, rather than the total deriva-
tive (Witelski, 1998):

HV

_sev _oev o (0"
55 ~ oS

9s ﬁ) = "g[‘z —y(S) = Vr(SV- ( K(S)VS)],
an

so that conservation of mass yields the new model:

D24V - [Kaak (Y (2 +w(S) + VRSV - (ViSIVS ) )| =0.
(18)

2.3. Capillary pressure and relative permeability functions

The capillary pressure function is typically a decreasing function
of saturation (Richards, 1931; Leverett, 1941; Bear, 1972). Based on
standard constitutive-relation modeling (Brooks and Corey, 1966; van
Genuchten, 1980), we adopt functional forms that lead to a stable state
(energy minimum) for S <1 (Cueto-Felgueroso and Juanes, 2009a). We
model the Leverett J-function, J(S) (Leverett, 1941), as (Fig. 1b):

1) =571 = exp (B(5 - v0)) (1452 5)). (19)

where A is a parameter in the Brooks and Corey model (Brooks and
Corey, 1966), and f>0 and v, > v, > 1 are parameters controlling
the position of the energy minimum withov, =1+ % In(1 + %) is the
maximum tolerable value of v, to have an energy minimum for S <1.

The bulk capillary energy and gradient-energy coefficient are deter-
mined by the integral of the J-function, I(S), which is given by:

15) = 2577 [1-exp ((5 - o)) (20)

The above relationship leads to convex capillary energies and nonnega-
tive gradient-energy coefficients x, which satisfy (S = 0) = 0 (Fig. 1a).
The use of this type of capillary bulk energy function is motivated by
the physics of infiltration: when the medium approaches full satura-
tion (S~ 1), the two assumptions of infinite mobility and infinity com-
pressibility of air cease to be valid; therefore, the energy of the system
must include an extra term due to the water pressure behind the front
(Bauters et al., 1998). From a modeling perspective, the additional term
introduces a steep increase in the bulk energy as S — 1, preventing the
saturation from taking values above 1 (Fig. 1b).
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Fig. 1. (a) Bulk free energy I and (b) its derivative with
respect to water saturation, J = dI/dS. The capillary free

energy is constructed from a classical Brooks—Corey capil-
lary pressure function, for different values of the parame-
ter v,. (¢) Saturation profiles for one-dimensional infiltration
with flux ratio R, = 0.01, capillary height k., =0.02 m, § =
0.01 m, K, = 40 cm/min, initial saturation is 0.01, and v, =
1.095, 1.05 and 1. The latter values guarantee saturations lower

than 1, while the former leads to unphysical saturations larger
than 1.
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In our construction of the proposed model, the use of a convex bulk
capillary energy function leads to monotonic capillary pressure, which
is compatible with the initial Richards equation. As will be explained
in the next section, we discover that the use of a convex bulk capillary
energy function and the expansion (14) for the capillary energy using the
second gradient theory leads to a thermodynamically consistent model
of unsaturated flow.

The only requirement that we impose on the relative permeability
function k,(S) is that it be smooth and convex. Typical functional forms
include those of Brooks and Corey (1966) and van Genuchten (1980).
Here, we use a simple power-law relation:

k.(S) = 5%, 2D

with a > 1.

A simple power law in saturation k,.(S)=S* is often used as a
parsimonious approach to modeling the relative permeability function
(Corey, 1954; Brooks and Corey, 1966). The exponent a can have dif-
ferent values for lower and higher water saturation and depending on
the type of soils. Such different behaviors for the relative permeabil-
ity are observed experimentally (DiCarlo, 2007; 2004). High values of
the parameter a can be obtained, as shown in Cueto-Felgueroso and
Juanes (2009a) to fit the experimental results in DiCarlo (2004) where
the parameter « is between 2 and 11 for the types of soil considered
in the study (Cueto-Felgueroso and Juanes, 2009a). This power-law be-
havior (with relatively large exponent) can also be seen as a smoother

version of relative permeabilities with lower exponent where there is a
cut-off water saturation (an irreducible water saturation).

3. Entropy function

The existence of an entropy function for a conservation law is a con-
structive proof that the model is well posed and thermodynamically
consistent (Dafermos, 2000; LeFloch, 2002). Generally, in the process
of solving systems of conservation laws one has to deal with weak so-
lutions where uniqueness is lost. Further criteria are required, where a
companion balance law should be introduced using a convex function
(mathematical entropy) of the variable of the initial system to character-
ize the admissible (unique) solution of this system for any arbitrary ini-
tial and boundary conditions. In continuum physics, the companion bal-
ance law is intimately related with the second law of thermodynamics
(Dafermos, 2000), where the variable is the physical entropy with asso-
ciated entropy flux. Although some systems such as diffusion models are
endowed with a rich collection of entropies, only one of them enjoys a
physical interpretation. In multiphase flow, a thermodynamic approach
can be used to express the Helmholtz free energy per unit pore volume
(Aavatsmark, 1989a; 1989b) and determine the “natural” entropy that
has a physical interpretation. To verify that this entropy function can
characterize admissible solutions, the resulting differential equation us-
ing this entropy function should be integrated over an isolated system
to demonstrate that the system describes an entropy-increasing process.
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Here we construct the entropy function for our mathematical model of
unsaturated flow, and show that it leads to an entropy-increasing evo-
lution (positive dissipation) for an isolated system.

We start by writing the model system in 1D as follows:

S+ (), = (F($)DT,, ). =0, 22)

where subscripts indicate partial derivatives, the flux function is defined
as

K
F(8) 1= —SEh(S), 23)
and CI)CVap is the gradient-theory capillary potential:
l—Izap
Vo= =— - .
Ol = — 2 = w(S) = VxSV (Vrsivs). 4)

For notational convenience, hereafter we write ® := @Cva .

In the absence of the nonlocal term, Eq. (22) has a similar form to the
Buckley-Leverett equation (Buckley and Leverett, 1942), but with a con-
vex flux function. Aavatsmark (1989a,b) studied the Buckley-Leverett
equation and showed that the capillary energy density I(S) is the phys-
ical entropy of the problem. For the Buckley-Leverett equation and for
the Richards equation, any convex function is actually a valid entropy
function due to monotonicity of the capillary pressure. This is not the
case, however, for models with higher-order terms, where the definition
of the entropy function usually relies on a delicate balance between dif-
fusive and dispersive (or higher-order) terms (LeFloch, 2002).

We start by multiplying Eq. (22) by the derivative U’ of a convex
function of saturation U(S). Assuming smooth solutions S(z, t), we write:

U, + (F(S8), = U'(f(5)P.).. (25)

where the entropy flux due to gravity is defined as

N
F(S)=/ U'(s)f'(s)ds. (26)
0

To understand the influence of the right-hand-side term of Eq. (25),
which includes the local effects of capillary pressure and the nonlocal
effects due to saturation gradients, we analyze an isolated system in the
interval a <z <b. This means that the mass flux and entropy flux (fand F,
respectively) are zero at both ends of the domain. Integrating Eq. (25) in
the interval [a, b],

d [t 7=b b
E/ Udz+F(S)‘ - =/ U'(f®,), dz. @7

The second term of the left-hand side is zero because the system is iso-
lated. We use the product rule of differentiation to write the right-hand
side as:

b b b
RHS = / (U’(fibz))zdz—/ U, f®,dz = —/ U"S,f®,dz (28)
=0 for isolated system
We define the (positive) function of saturation
n”n
V(S) = u (S)f(S)’ 29)

VK(S)

and the spatial function ¥ = 1/x.S,. With these definitions, we have ® =
-y — \/;ZZ and, substituting in Eq. (28),

b
—/ VID,dz
a

b b
/VZV/Zdz+/ VEWKE,), dz
a

a

b b
- / VIy'S.dz+ / [(Vz\/EEZ)Z—(Vz)Z\/EZZ] dz
b 22 b
=/ V—y/dz+/ (VEVKE,), dz
a \/E a

RHS
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b b
- / V(E,) Vedz - / V'E2,\/kS, dz. (30)
a a

The first term in Eq. (30) is negative by virtue of y(S) = heapd (S)
being a monotonically decreasing function. The second term is conser-
vative, and therefore equal to zero for an isolated system. The third
term is negative because all factors in the integrand are nonnegative.
The signed of the fourth term in Eq. (30) is in principle undetermined,
but can be made equal to zero by imposing that the function V be con-
stant. Thus, we choose V=V, > 0, which implies from Eq. (29) that

U’ =v,- K(S).
C S
With this definition, we have that the entropy function U of the iso-
lated system evolves according to

i/bUdz——/bV ) + (@)% |dz<0 (32)
dt /, Y A NG z -

K
This derivation demonstrates that the proposed model is provably dis-
sipative, and is endowed with an entropy function.

We note that if a nonconvex double-well bulk capillary energy
(Cueto-Felgueroso and Juanes, 2012) is used with the second-order ex-
pansion for the capillary energy, the first term in Eq. (30) can be non-
negative, and there is no guarantee that the overall expression necessar-
ily takes a negative value. Finally, we conclude that a convex capillary
energy leading to monotonic capillary pressure function, as already pro-
posed for Richards equation, is more suitable to our construction of the
proposed model based on the second gradient theory and the proposed
capillary pinning function.

(3D

4. Numerical simulations
4.1. Finite element implementation

For computational convenience, we write the model Eq. (18) as a
system of two second-order PDEs:

OKsaik(S) |

= V- (Kgack, (S)VE) = 0, (33)

a5
¢E +

E=y(S)+ ViV - <\/EVS). (34)

The above mixed formulation can be compactly written in vector form
as:

b 0) ou . <_0 >
— +(V-I)' = 2y (35)
(0 0) ar =

where the vectors of dependent variables, u, and fluxes, T, are given by:
o= a8
Ksathk, (S) 57 Kg) 36)

u= <S> =
=) Ksatk,(S)<1+ ) Ve

The coupled Egs. (33)-(34) are discretized in space using a standard
Galerkin finite element formulation, and advanced in time using an im-
plicit scheme (BDF2).

For constant flow-rate infiltration we impose the water infiltration
flux at the top boundary:

Fi= Ksatk,(S)V[z +y(S) + VSV - ( K(S)VS)] 0| =-RKg
37

where R; is the flux ratio (dimensionless), which takes a value between
0 and 1 (the minus sign indicating that it is a flux into the domain).

The numerical simulations of 1-D systems for saturation overshoot
and 2-D systems for gravity fingering are performed, respectively in
Section 4.3 and Section 4.4 using initial conditions with small perturba-
tions near the top boundary of the domain.
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Fig. 2. Entropy production in horizontal redistribution. (a) Profiles of water sat-
uration in horizontal redistribution in a closed 1D porous medium. (b) Evolution
of the physical entropy of the system (— fOL U dx), which increases monotoni-
cally in time.

4.2. Entropy production in horizontal redistribution

To test the validity of the entropy function and entropy inequality
derived in Egs. (31) and (32), we compute the evolution of the total
entropy of the system, /Udx in a problem of fluid redistribution in a
closed 1D horizontal porous medium of length L = 0.6 m (Fig. 2). The
porous medium has porosity ¢ = 0.3, saturated hydraulic conductiv-
ity K, = 40 cm/min, and capillary heigth h,, = 0.02m, and 6 = 0.01 m
while the relative permeability function is k, = S3. We define a smooth
initial saturation profile, and let the saturations redistribute with no-
flow boundary conditions, so that the saturation at long times is uniform
(Fig. 2a). The mathematical entropy function decreases in time. We plot
the physical entropy (— fOL U dx), which increases monotonically with
time, demonstrating that the system is dissipative (Fig. 2b).

4.3. One-dimensional simulations of saturation overshoot

We simulate one-dimensional constant-flux infiltration into a dry
porous column (Figs. 1¢—-3-4). The porous medium has porosity ¢ = 0.3,
saturated hydraulic conductivity Ky, = 40 cm/min, and capillary
heigth A, = 0.02 m, while the relative permeability function is k, = s7.
We impose a water influx at the top boundary that is a fraction of the
saturated conductivity, gy, and define the flux ratio as Ry = qq/Ky;-

We begin by exploring the role of the capillary energy function on
the overshoot characteristics (Fig. 1¢). In particular, we analyze whether
the infiltration profiles satisfy the physical requirement that S<1. We
set a flux ratio of R, = 0.01, and simulate the evolution of saturation
profiles for several forms of the J-function. The bulk capillary energy is
characterized by 4 = 10, g = 40, and three values of v,, v, = 1, 1.05
and 1.095 in Eq. (19). While v, = 1 seems to guarantee that water sat-
urations do not exceed 1, larger values lead to unbounded saturations
for sufficiently large flux ratios and particular parameter combinations.
The value of v, has a large influence on the magnitude of the nonlocal
term. The use of v, = 1.095, which is very close to the maximum toler-
able value v, ~ 1.09541 corresponding to the parameters taken into
account in the numerical test, seems to have a significant impact on
the magnitude of the nonlocal term when the maximum saturation is
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close to the value of one. For values of v, which are not large, when the
saturation value is in the vicinity of one, the magnitude of the nonlocal
term becomes negligible compared to the other terms due to gravity and
capillary pressure. As a consequence, the model equation becomes very
close to Richards equation, which allows the model to respect that the
computed values of water saturation remain bounded.

The most remarkable feature of the saturation profiles obtained with
the proposed form of the capillary pinning function, «, is that the satu-
ration overshoot remains close to unity across a wide range of flux ratios
(Fig. 3). The pile-up effect leads to overshoots whose length increases
with flux ratio, propagating upstream from the sharp wetting front. This
is consistent with experimental observations, and in contrast with choos-
ing a constant value of x, which yields a sharp decline of the saturation
overshoot as R, decreases (Cueto-Felgueroso and Juanes, 2009a). Be-
cause k vanishes at S = 0, wetting fronts are steeper, inducing a more
pronounced pile-up effect.

The length of the overshoot region is controlled by the capillary pres-
sure function, by the flux ratio (Fig. 3), and by the strength of the gra-
dient energy term. The latter can be characterized through the ratio be-
tween two characteristic lengths: the capillary height h,,, which math-
ematically controls the strength of capillary diffusion, and the gradient-
energy length 5, which controls the size of the energy expansion term
in Eq. (14). Larger values of 6/h,, increase the relative strength of the
fourth-order term in the model, increasing the height and width of the
overshoot (Fig. 4).

Mathematically, the saturation undershoot behind the tip of the ad-
vancing wetting front is due to the presence of the fourth-order term in
the flow equation. Fourth-order diffusion allows for nonmonotonic sat-
urations, which implies the possibility of saturation overshoot, but also
the possible presence of an undershoot right above the tip. While inher-
ent to higher-order models of unsaturated flow, this oscillatory behavior
is quickly damped by the strongly dissipative fourth-order term. In con-
trast, oscillations are very strong in the model of unsaturated flow with
dynamic capillarity (e.g., Nieber et al., 2005; Zhuang et al., 2019b). Note
that the undershoot can be removed (as in the model with dynamic cap-
illary pressure) by considering hysteresis in the capillary pressure curve
(Sander et al., 2008; Zhang and Zegeling, 2017).

Rezanezhad et al. (2006), and Rezanezhad (2007) have studied the
physical relevance of an undershoot behind the finger tip for the fin-
gered flow through initially dry sand. They measured water content dy-
namics within the finger tip, along the finger core behind the tip, and
within the fringe of the finger. The results of their experimental study
revealed a saturation minimum (undershoot) behind the tip of the ad-
vancing finger (Rezanezhad et al., 2006), and the authors concluded
that behind the tip of the advancing wetting front there is an additional
lateral gradient which leads to a horizontal flow component. We note
that, as it has already been mentioned (Sander et al., 2008), small os-
cillations are observed downstream of the wetting front of fingers by
Glass et al. (1989c), but the authors did not comment on these observa-
tions.

In general, existing experiments are inconclusive in terms of either
confirming or ruling out the undershooting phenomenon observed in
higher-order models of unsaturated flow. Some of the profiles of 1D in-
filtration are rather oscillatory near the wetting front (Zhuang et al.,
2019b, Fig. 4), and some 2D experiments actually seem to exhibit a be-
havior similar to the one shown in Figs. 3 and 4 (Rezanezhad et al., 2006,
Fig. 9). Further experimental studies are necessary to assess whether
the observed oscillations actually occur and under what conditions, or
whether such behavior is instead just a mathematical property of the
higher—order model, without a direct correlate in the physical system.

4.4. Two-dimensional simulations of gravity fingering
Numerical simulations are performed using the proposed model

to investigate the behaviors of gravity fingers compared to exper-
imental and theoretical results. Experimental studies are performed
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Fig. 3. Saturation profiles for one-dimensional infiltration at different flux ratios, R;. The capillary height is h,, = 0.02 m, 6 = 0.01 m, K, = 40 cm/min, and the
initial saturation is S;=0.01. For the capillary energy we set A = 10, § = 40, and v, = 1.05. With the proposed form of «, the overshoot saturation remains close to
unity across a wide range of flux ratios. As R, increases, the width of the finger tip increases. The profiles are plotted at different times to allow a straightforward

visual identification.
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Fig. 4. Saturation profiles for one-dimensional infiltration with flux ratios, R, = 0.01, capillary height h,

and 0.25. For the capillary energy we set A =10, # =40 and v, = 1.

(Glass et al., 1989d) and guided by theoretical analysis (Glass et al.,
1989b) for wetting front instability in porous media. These studies
were applied at the finger scale and large chamber scale by imposing a
constant-rate infiltration at the top boundary for various flux ratios. The
results show that the number of fingers remains essentially the same as
the flux ratio is increased through moderates values. At relatively large
flux ratios, the number of fingers decreases and the width of fingers in-
creases with increasing the flux ratio and ultimately tends to one large
finger to cover the whole domain. The sensitivity of the model’s behavior
in terms of finger characteristics to the model’s parameters was rather
exhaustively analyzed in Cueto-Felgueroso and Juanes (2009a) for the
original infiltration model with constant .

We simulate 2D constant-flux infiltration into a dry porous medium
(Figs. 5-9). The medium properties are the same as those of the
1D simulations: porosity ¢ = 0.3, saturated hydraulic conductiv-
ity Ky = 40 cm/min, capillary heigth h,, = 0.02 m, and relative per-
meability k, = §7. The bulk capillary energy is characterized by 4 = 10,
p = 40, and v, = 1.05 in Eq. (19). The computational domain is a
rectangle with dimensions 0.3x0.6 m2. We impose the water flux
at the top boundary, and define the flux ratio as in the 1D simula-
tions, Ry = qo/Kgy-

z (m)

=0.02m, K =40 cm/min, and 6/h, = 1.5, 1, 0.5

cap cap

The 2D patterns of water saturation for infiltration in dry soil un-
der different flux ratios reveal a transition from fingered to compact
infiltration as Ry approaches unity (Figs. 5 and 6). This transition is
consistent with experimental observations of the wetting front insta-
bility (Glass et al., 1989d). At relatively large flux ratios, the number
of fingers decreases as the infiltrating flux increases, while the finger
width increases with flux ratio. Furthermore, the number of fingers re-
mains constant as the flux ratio is increased through moderates values.
Our model predictions are in good agreement with the experimental
observations (Glass et al., 1989d) and analysis (Glass et al., 1989b; Par-
lange and Hill, 1976) performed for gravity-driven fingers. The numer-
ical simulations of the proposed model show that some of the fingers
can advance faster than others, which is compatible with experimental
observations of gravity-driven fingers in unsaturated media (Glass et al.,
1989c; 1989d; 1989a; 1988).

The ratio of characteristic length scales 5/h,p,, which compares the
strength of the gradient capillary energy with the capillary height, sets
the finger-width scale when the other model parameters are kept con-
stant (Fig. 7). In particular, the ratio 6/hc,, could be used to calibrate
the model, by matching experimental observations of gravity fingering
with different infiltration rates. The functional relationship developed
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Fig. 5. Maps of water saturation for constant-
rate infiltration at various flux ratios. We
set he, = 0.02 m and 6/he,, = 0.32. The
flux ratios in panels (a)-(h) are, respectively,
R, = 0.0025, 0.005, 0.01, 0.02, 0.04, 0.08,
0.16, and 0.32. For the capillary energy we set
A=10, p =40and v, = 1.05.

Fig. 6. Maps of water saturation for constant-
rate infiltration at various flux ratios. We
set h,, = 0.02 m and 6/h,, = 0.16. The
flux ratios in panels (a)-(h) are, respectively,
R, = 0.0025, 0.005, 0.01, 0.02, 0.04, 0.08,
0.16, and 0.32. For the capillary energy we set

4 =10, f =40 and v, = 1.05.
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Fig. 7. Summary of average finger width as a function of flux ratio
for 6/he,, = 0.32 and 6/h,, = 0.16. The capillary height is h.,, = 0.02 m.

for the finger width (Glass et al., 1989d; 1989b; Parlange and Hill, 1976)
may be fitted to experimental data and used in the calibration process
of the model.

We plot the 2D saturation patterns (Fig. 8) and finger widths (Fig. 9)
for infiltration at a constant infiltration flux and various values of the
length scale ratio. Smaller values of 6/h.,, lead to thinner fingers for
the same flux ratio (Figs. 8 and 9). Owing to capillary diffusion in the
absence of capillary-pressure hysteresis, the fingers are also growing
laterally, but this lateral growth is negligible in these simulations: the
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time scale for lateral growth is significantly larger than the time it takes
for the fingers to reach the bottom boundary.

The experiments conducted by Yao and Hendrickx (1996) and
Hendrickx and Yao (1996) demonstrated that at low flow infiltration
rates the wetting fronts tend to become stable, with finger widths that
increase with decreasing flux. For the present simulations in homoge-
neous media, decreasing infiltration rates lead to thinner fingers. This
behavior makes sense from the perspective of a linear stability analysis
of the model (Cueto-Felgueroso and Juanes, 2008; 2009b; 2009a). At
very low rates, lateral redistribution is strong enough to prevent these
thin fingers to develop, so the proposed model also leads to a stable

Fig. 8. Maps of water saturation for
constant-rate infiltration for a fixed flux
ratio of R; = 0.005 and several values
of 6/hc,,, where h,, = 0.02 m. The length
scale ratios in panels (a)-(h) are, respectively,
8/heyp = 0.0866, 0.112, 0.158, 0.224, 0.316,
0o 0.5,0.707, and 1. For the capillary energy we
set A =10, # =40 and v, = 1.05.
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Fig. 10. Comparison between numerical simulations of fingering during water infiltration and the experiments of Glass et al. (1989d). (a)-(d), Maps of water

saturation for several values of the flux ratio, R;. (e), Experimental vs. numerical normalized average finger widths, w,/h

cap> @S @ function of the flux ratio. (f),

Experimental vs. numerical normalized average finger speed, v, /K, as a function of the flux ratio.

wetting front at very low infiltration rates. A possible explanation for
the discrepancy in terms of finger width at very low infiltration rates
is that there is always some degree of heterogeneity in the experimen-
tal system, so that some of the very thin fingers would be suppressed,
focusing the small infiltration flux towards a few ones rather than al-
lowing the development of the natural wavelength of the instability for
a homogeneous medium.

4.5. Comparison with the experiments of Glass et al. (1989)

To validate the proposed model against laboratory experiments
of fingering during water infiltration, we model the experiments of
Glass et al. (1989d), who studied constant-rate infiltration into packed
white-silica sands. The experiments were conducted in a quasi-2D in-
filtration chamber, characterizing the finger morphology and dynamics
over a wide range of infiltration rates, corresponding to flux ratios from
R, =0.01 to R, = 0.82. The sand was initially dry.

We simulate 2D constant-flux infiltration into a porous medium with
very low initial saturation, S, = 0.01 (Fig. 10). We consider a square
domain of dimensions 0.3 x 0.3 m?, describing the experimental bot-
tom layer composed of 14-20 sand (Glass et al., 1989d). As model pa-
rameters, we set a porosity ¢ = 0.3, a saturated hydraulic conductivity
of K, = 40 cm/min, a capillary heigth of h,, = 0.046 cm, and rel-
ative permeability k, = S7. The bulk capillary energy is characterized
by 4 =10, g =40, and v, = 1.05 in Eq. (19). These are the same consti-
tutive relationships used in previous sections, which we take as repre-
sentative of coarse sand. We impose the water flux at the top boundary,
and free drainage at the bottom of the domain. The lateral boundaries
are no-flow boundaries. To compare with the various experimental con-
ditions, we define the flux ratio as R; = qy/Kj,;- The computational grid
is a Cartesian mesh of 600 x 600 finite elements.

An important step to capture the finger-width scale is to calibrate the
assumed proportionality constant between 6 (Eq. (14)) and hcap. We fit

the finger width for a small flux ratio, R; = 0.012, and obtain good agree-
ment between experimental and numerical finger width for § = 0.01h,,
for this coarse sand. We then use this relationship for all other flux ra-
tios.

We observe good overall agreement between experiments and sim-
ulations (Fig. 10). Qualitatively, the trends of normalized finger width
and finger speed are similar in experiments and in simulations (Fig. 10e
and f). The agreement between observed and simulated fingers breaks
down at large flux ratios: while simulations predict a transition to com-
pact infiltration for R; around 0.3 (Fig. 10d), experiments show persis-
tent fingered flow up to R, around 0.8. We attribute this discrepancy to
the absence of heterogeneity and hysteresis in the model, which seems
to lead to more stable infiltration patterns. We observe differences in
the flow patterns at very low infiltration rates (Fig. 10a): the experi-
ments indicate a decrease in the number of fingers, corresponding to an
increase in the separation between fingers. In the simulations, the fin-
ger spacing decreases as the finger width decreases, so that more and
more fingers appear in the domain. This is because the finger spacing,
dictated by the characteristic wavelength of the wetting front instabil-
ity, decreases with infiltration rate (Cueto-Felgueroso and Juanes, 2008,
2009a, 2009b). We attribute the discrepancy to the absence of hetero-
geneity in our simulations, which could suppress the growth of some
fingers, focusing the small infiltration flux towards a few ones rather
than allowing the development of the natural wavelength of the insta-
bility for a homogeneous medium.

5. Discussion and conclusions

In this paper, we have proposed a thermodynamic approach to mod-
eling unsaturated flow, where the liquid saturation is understood as the
state variable. The free energy functional is designed as a symmetric ex-
pansion of the traditional capillary energy density in Richards equation,
therefore removing ambiguities on the interpretation of the higher-order
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term in the model equation. The proposed definition renders a formu-
lation that leads naturally to an entropy function of the system, and
we show that the model describes an entropy-increasing process for an
isolated system.

The new formulation of the free energy, which includes a nonlinear
gradient energy through a capillary pinning function, helps identify the
characteristic length scale associated with the high-order term as the
finger size. More precisely, the finger width depends linearly on the ra-
tio between gradient energy length and capillary height. The structure
of this function plays a fundamental role in the behavior and stability
of infiltration fronts, promoting front pinning and the persistence of fin-
gered infiltration at relatively large flux ratios.

Comparison between simulations and experiments of fingering at
various constant infiltration rates helps calibrate the relationship be-
tween the two characteristic length scales (the capillary height and the
length associated with the second-gradient expansion of the capillary
energy). We observe good overall agreement between experiments and
simulations, deviating in the limit of nearly-saturated conditions (for
which the simulations predict earlier transition to compact infiltration)
and very small infiltration rates, for the experiments predict an increase
of the spacing between fingers.

Our construction of the capillary pinning function provides a funda-
mental link between the high-order term and the traditional capillary
pressure term of the unsaturated flow equation. By identifying the sepa-
rate role of two characteristic length scales, namely the capillary height
and the length associated with the energy expansion, the new model al-
lows direct comparison between simulated and observed finger widths
for different medium properties and infiltration fluxes. Finally, the new
definition will help understand the impact of medium heterogeneity on
wetting front instabilities.
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