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a b s t r a c t 

We propose a thermodynamic approach to modeling unsaturated flow in porous media, where the liquid satura- 
tion is understood as the state variable. The free energy functional is designed as a symmetric expansion of the 
traditional capillary energy density in Richards equation, therefore removing ambiguities on the interpretation of 
the higher-order term in the model equation. The proposed definition renders a formulation that leads naturally 
to an entropy function of the system, and we show that the model describes an entropy-increasing process for an 
isolated system. 

The new formulation reproduces gravity fingering during infiltration in soil. We show that the nonlinear and 
singular structure of the capillary pinning function in the fourth-order term plays a fundamental role in the 
behavior and stability of infiltration fronts, promoting front pinning and the persistence of fingered infiltration 
at relatively large flux ratios. 
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. Introduction 

Fluid dynamics through unsaturated porous media is key in under-
tanding the distribution of soil moisture, which in turn regulates the
nteractions between climate, soil and vegetation. These interactions are
ssential in the description of the hydrological, ecological and meteo-
ological processes ( Rodriguez-Iturbe, 2000 ). Many infiltration models
ave been developed based on a variety of empirical, conceptual and
hysical approaches ( Buckingham, 1907; Richards, 1931; Horton, 1933;
hilip, 1957; 1969 ), but these models generally assume stable wetting
nd drying fronts when the medium is homogeneous. Gravity-driven
isplacement of one fluid by another in porous media, however, is often
ubject to hydrodynamic instability, whereby fluid invasion takes the
orm of preferential flow paths or fingers ( Sahimi, 1993; Frette et al.,
992; Méheust et al., 2002 ); examples include secondary oil migration
n reservoir rocks ( Thomas and Clouse, 1995; Meakin et al., 2000; Luo
t al., 2004 ), and infiltration of rainfall water in dry soil ( Hill and Par-
ange, 1972; Glass et al., 1989d; Ritsema et al., 1998 ). 

Since the 1970s, carefully designed experiments have repeatedly
hown gravity fingering during infiltration in homogeneous sands
 Diment and Watson, 1985; Glass et al., 1989d; 1990; Selker et al.,
992a; 1992b; Lu et al., 1994; Bauters et al., 1998; 2000; Yao and Hen-
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rickx, 2001; Sililo and Tellam, 2000; Flekkøy et al., 2002; Wang et al.,
004; Wei et al., 2014 ). The selected pattern of the phenomenon is a
inner-takes-all process, in which the fastest-growing fingers channel-

ze most of the flow, and the growth of other incipient fingers is thereby
uppressed ( Glass et al., 1989d; Selker et al., 1992b ). 

In addition to the clear evidence of the gravity fingering phe-
omenon in laboratory experiments, several works point to its impor-
ance also in field settings ( Ritsema and Dekker, 1994b; Hendrickx and
lury, 2001 ). Work on water flow and infiltration in textured soils has
emonstrated the potential importance of fingered flow in the field
 Glass et al., 1988; Ommen et al., 1989; Liu et al., 1994; Ritsema and
ekker, 1994b; 1994a; Ritsema et al., 1996; 1998; Wang et al., 2004 ),

ncluding the role of water repellency as a mechanism that exacerbates
t ( Bauters et al., 1998; Ritsema and Dekker, 2000b; 2000a; Wang et al.,
000 ). The formation of fingers can significantly influence the transport
f contaminants to surface and ground waters ( Glass et al., 1989a ) and
educes the water rechargeable area in the root zone of plants. 

The stability of infiltration fronts varies with the properties of the
edium and the infiltrating flux. Experimental work has shown that

he fingering instability is expected to be more vigorous for coarse soils
 Heijs et al., 1996 ), for two reasons: importance of gravity vs. capil-
ary forces, and because the soil retention curve and unsaturated con-
uctivity are often ‘sharper’ (more nonlinear) for sands than for clays.
 2020 
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lthough these behaviors are observed for the soils studied, the condi-
ions of the triggering mechanism of instability to generate preferential
aths of flow are complex because of the subtle interplay between grav-
ty and capillary effects, and the impact of the macroscopic interface at
he wetting front. The other important experimental trends are related
o soil-water conditions, as the initial moisture content plays a critical
ole in the fingering instability. It is well established that fingering is
romoted when the medium is quite dry and that even relatively low
ater saturations lead to a compact, downward-moving wetting front
 Lu et al., 1994; Bauters et al., 2000 ). Stable fronts are also observed in
ry media when the infiltration rate is either very small or approaches
he saturated conductivity ( Hendrickx and Yao, 1996 ). In general, larger
nfiltration rates produce faster, thicker fingers ( Glass et al., 1989d ). 

An important feature of gravity fingering is the presence of sat-
ration overshoot, that is, the pile-up of water at the infiltration
ront —which is understood to be a prerequisite for the fingering insta-
ility in unsaturated flows ( DiCarlo, 2004; Egorov et al., 2003; Nieber
t al., 2005; DiCarlo, 2007; Cueto-Felgueroso and Juanes, 2009a ). The
lassical Richards model of infiltration ( Richards, 1931 ), along with the
tandard (monotonic) pressure-saturation relation, is stable in homoge-
eous porous media under infinitesimal and finite perturbations ( Nieber
t al., 2005; Fürst et al., 2009 ). This model is incompatible with satu-
ation overshoot for infiltration into unsaturated homogeneous media,
eads to monotonic saturation profiles, and cannot reproduce the finger-
ng phenomenon. 

Many extensions to the Richards equation have been proposed in
he past few decades to develop continuum mathematical models that
escribe gravity-driven unsaturated flows through porous media and
ttempt to capture finger formation (see, e.g, Cueto-Felgueroso and
uanes, 2009a; DiCarlo, 2013; Xiong, 2014 for an overview). For ex-
mple, Eliassi and Glass (2002) invoked a hold-back–pile-up (HBPU) ef-
ect to develop an extension of the Richards equation with an additional
igher-order term. They proposed three mathematical representations of
he HBPU effect to include hypodiffusive, hyperbolic, and mixed spatial-
emporal forms. Cueto-Felgueroso and Juanes (2008, 2009a) proposed
 thermodynamic approach to multiphase flows through porous media,
nd developed a phase field model of unsaturated flow. Their model
hen leads to an extension of the Richards equation that includes a
ew term —a fourth-order derivative in space —with a scaling linking
he magnitude of this term to the other terms in the Richards equation.
everal authors have studied the impact of dynamic capillary pressure
n unsaturated flow patterns, concluding that the extended Richards
quation including dynamic capillarity and hysteresis may also lead to
aturation overshoot and flow patterns that are similar to the observed
etting front instability (see, e.g, Rätz and Schweizer, 2014; van Duijn

t al., 2018; Zhuang et al., 2019b ). 
In this study, we adopt what we consider to be a minimum-

ngredients model of unsaturated flow that is compatible with the ob-
ervations of hydrodynamic instability and fingering patterns during in-
ltration into dry coarse soil. We do not include capillary hysteresis in
ur model. This is because the proposed fourth-order model can lead to
ngering instabilities and finger persistence without hysteresis. While
ysteresis alone (without a mechanism that leads to saturation over-
hoot) cannot explain the formation of gravity fingers during water in-
ltration in soil ( Eliassi and Glass, 2001; van Duijn et al., 2004; Nieber
t al., 2005; Fürst et al., 2009 ), including hysteresis in the capillary
ressure is essential to reproduce important experimental observations
f unsaturated flow. Among them is the long-term stability of the fin-
er cores as preferential flow paths ( Glass et al., 1989a; Rezanezhad
t al., 2006 ): without hysteresis, finger widths slowly continue to in-
rease due to lateral capillary diffusion. The other phenomenon is the
nconventional water flow during horizontal redistribution due to capil-
ary hysteresis, which may lead to persistent discontinuities across sharp
aturation gradients and to flow from regions of smaller saturation to-
ards others with larger one ( Philip, 1991; Raats and van Duijn, 1995;
einen and Raats, 1999; Pop et al., 2009; van Duijn and Mitra, 2018 ),
hich may also be attributed to multistability of the capillary energy
 Cueto-Felgueroso and Juanes, 2016 ).The higher-order term in the pro-
osed model and in the model based on the phase field methodology
 Cueto-Felgueroso and Juanes, 2009a ) is responsible for triggering the
nstability of the flow, the formation of saturation overshoot and gravity
ngers in unsaturated flows without resorting to hysteresis. We note that
ysteresis is a very real phenomenon with an important macroscopic
onsequences ( Liu et al., 1994; Bauters et al., 1998; Spiteri and Juanes,
006; Juanes et al., 2006 ) which can be incorporated in the capillary-
ressure function to further improve the results. While dynamic cap-
llary pressure is sufficient to generate a saturation overshoot in 1D,
ieber et al. (2005) ; DiCarlo et al. (2008) ; Zhuang et al. (2019a) , the
ombined effect of dynamic capillary pressure and hysteresis is needed
o produce reasonable-looking overshoot and fingering patterns ( Rätz
nd Schweizer, 2014; Zhang and Zegeling, 2017; Zhuang et al., 2019b ).

The role of nonzero contact angle on unstable flow formation in
orous media has been studied experimentally ( Wallach et al., 2013 ),
nd a moving-boundary approach was proposed ( Brindt and Wal-
ach, 2017 ), which attributes the hold-back–pile-up effect to the nonzero
ontact angle where water is initially prevented from invading the dry
ores at the wetting front. When sufficient water piles up (saturation
vershoot), the pressure increases and becomes enough to overcome the
mpeding pressure barrier (water-entry capillary pressure). This leads to
he invasion of pores and the propagation of a sharp wetting front with
 nonmonotonic saturation profile. 

Here we adopt a thermodynamic approach to unsaturated flow,
here the liquid saturation is understood as the state variable. We de-

ign a free energy functional as a symmetric expansion of the traditional
apillary energy density ( Leverett, 1941; Morrow, 1970; Aavatsmark,
989a; 1989b; Sciarra et al., 2007; Sciarra, 2016 ), therefore removing
mbiguities on the interpretation of the nonlocal term. Our approach is
ased on the phase-field methodology ( Cahn and Hilliard, 1958; Cueto-
elgueroso and Juanes, 2009a ) where in the formulation of the cap-
llary energy, in addition to the terms related to Richards’ equation
bulk energy), we include the energy associated with the effect of the
acroscopic interface (the wetting front). This energy approach leads
aturally to a nonlinear higher-order term involving a special function,
hich we term capillary pinning function , multiplying the square-gradient

erm. The structure of this function plays a fundamental role in the
ehavior of continuum models of multiphase flow in a capillary tube
 Cueto-Felgueroso and Juanes, 2012; Strait et al., 2015 ), Hele-Shaw cell
 Cueto-Felgueroso and Juanes, 2014 ), or thin-film flow over a substrate
 Pahlavan et al., 2015 ). 

By construction, the capillary pinning function in the model pro-
osed here is proportional to the capillary energy density. We show
hat this definition renders a formulation that leads naturally to an en-
ropy function of the system, and we prove that the model leads to an
ntropy-increasing process for an isolated system. We also show that
he proposed model reproduces the saturation overshoot at the wetting
ront, the formation of gravity fingers, and the pinning behavior at the
ase of the infiltration front. 

In Section 2 , we present the derivation of the proposed model and the
onstruction of the capillary pinning function introduced. Section 3 is
evoted to the construction of the entropy function of the proposed
odel and the analysis of the entropy of an isolated system. Numeri-

al simulations are performed in Section 4 to evaluate the effect of the
onlinear capillary pinning function on saturation overshoot and on the
inning behavior at the base during fingered infiltration. Finally, we
rovide some concluding remarks in Section 5 . 

. Mathematical model 

.1. Local model: Richards equation 

It is useful to first describe the thermodynamic approach as it ap-
lies to the traditional unsaturated flow equation: Richards’ equation
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 Richards, 1931 ). We start by imposing mass conservation in terms of
ater saturation S : 

𝜕( 𝜌𝜙𝑆) 
𝜕𝑡 

+ ∇ ⋅ 𝐅 = 0 , (1)

nd mass flux driven by a potential Π: 

 = − 𝜌𝜆𝑤 ( 𝑆)∇Π, (2)

here 𝜌 is the water density, 𝜙 is the medium porosity, g is the grav-
tational acceleration (all assumed constant), and 𝜆𝑤 ( 𝑆) is the water
obility, 

𝑤 ( 𝑆 ) = 

𝑘 

𝜇
𝑘 𝑟 ( 𝑆 ) , (3)

here k is the medium permeability, 𝜇 is the fluid dynamic viscosity,
nd k r ( S ) is the water relative permeability, which accounts for the effect
f partial saturation ( Richards, 1931; Muskat and Meres, 1936; Muskat,
949; Bear, 1972 ). It proves convenient to introduce the saturated hy-
raulic conductivity, 

 sat = 

𝜌𝑔𝑘 

𝜇
. (4)

The potential is derived from the energy function  : 

= 

𝑑 
𝑑𝑆 

. (5)

he energy  comprises gravitational and capillary energy components,
 =  grav +  cap . The gravitational component is simply 

 grav = − 𝜌𝑔𝑧𝑆, (6)

here z is depth (in the direction of gravity). The capillary component
s given by 

 cap =  0 + Ψ( 𝑆) (7)

here  0 is a reference energy (dependent on the elevation datum and
n the surface energy of the medium when filled with water) and Ψ( S ) is
he capillary energy function, from which the capillary pressure P c ( S ) is
erived: 

 𝑐 ( 𝑆) = − 

𝑑Ψ
𝑑𝑆 

, (8)

hich can be expressed in head units as the water suction head 𝜓( S ): 

 𝑐 ( 𝑆) = 𝜌𝑔𝜓( 𝑆) . (9)

e will further express the water suction head 𝜓 using the Leverett
caling ( Leverett, 1941 ) 

( 𝑆) = ℎ cap 𝐽 ( 𝑆) , ℎ cap ∼
𝛾 cos 𝜃
𝜌𝑔 

√
𝑘 ∕ 𝜙

, (10)

here ℎ cap is the characteristic capillary rise, 𝛾 is the surface tension be-
ween the fluids, 𝜃 is the contact angle, and J ( S ) is the Leverett J-function
 Leverett, 1941 ), which is a dimensionless version of the capillary pres-
ure function. 

Using Eqs. (8) –(10) , we can write Eq. (7) as 

 cap =  0 − 𝜌𝑔ℎ cap 𝐼 ( 𝑆) , 𝐼 ( 𝑆) = ∫
𝑆 

0 
𝐽 ( 𝑠 ) 𝑑𝑠. (11)

e refer to I ( S ) as the dimensionless capillary energy density ( Leverett,
941; Morrow, 1970; Aavatsmark, 1989a; 1989b ). The flow potential
ased on this energy is given by: 

= 

𝑑 
𝑑𝑆 

= 𝜌𝑔 [ − 𝑧 − 𝜓( 𝑆) ] . (12)

inally, inserting Eq. (12) into the flux Eq. (2) and the mass conservation
q. (1) , and assuming constant fluid density, yields the classical Richards
quation: 

𝜕𝑆 + ∇ ⋅
[
𝐾 𝑘 ( 𝑆)∇ ( 𝑧 + 𝜓( 𝑆) ) 

]
= 0 . (13)
𝜕𝑡 sat 𝑟 s
.2. Nonlocal model 

To develop a model capable of unstable infiltration, we propose a
econd gradient theory ( Sciarra et al., 2007; Sciarra, 2016 ) of the capil-
ary energy, written as a second-order expansion of the classical (local)
ne: 

 

∇ 
cap =  0 + 𝜌𝑔ℎ cap 𝐼( 𝑆) 

(
−1 + 

1 
2 
𝛿2 |∇ 𝑆|2 ), (14)

here 𝛿 is the characteristic length scale of the diffuse interface. Written
n the form of a nonlinear Cahn–Hilliard free energy ( Cahn and Hilliard,
958; Cahn, 1961; Bray, 1994; Anderson et al., 1998; Boettinger et al.,
002; Emmerich, 2008 ), the capillary energy includes a bulk and an
nterfacial contribution, which accounts for the structure of the diffuse-
nterface of wetting fronts: 

 

∇ 
cap =  0 − 𝜌𝑔ℎ cap 𝐼( 𝑆) 

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
 cap,bulk 

+ 

1 
2 
𝜌𝑔𝜅( 𝑆 ) |∇ 𝑆 |2 

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
 cap,interf 

, (15)

here we identify 𝜅 as being the capillary pinning function 

( 𝑆) ≡ ℎ cap 𝛿
2 𝐼( 𝑆) = ℎ cap 𝛿

2 ∫
𝑆 

0 
𝐽 ( 𝑠 ) 𝑑𝑠. (16)

he modified gradient-theory energy functional is  ∇ =  grav +  ∇ cap . The
ow potential is obtained by taking the variational derivative of the en-
rgy functional with respect to saturation, rather than the total deriva-
ive ( Witelski, 1998 ): 

∇ = 

𝛿 ∇ 
𝛿𝑆 

= 

𝜕 ∇ 
𝜕𝑆 

− ∇ ⋅
( 

𝜕 ∇ 
𝜕∇ 𝑆 

) 

= 𝜌𝑔 
[
− 𝑧 − 𝜓( 𝑆) − 

√
𝜅( 𝑆) ∇ ⋅

(√
𝜅( 𝑆) ∇ 𝑆 

)]
,

(17) 

o that conservation of mass yields the new model: 

𝜕𝑆 

𝜕𝑡 
+ ∇ ⋅

[
𝐾 sat 𝑘 𝑟 ( 𝑆)∇ 

(
𝑧 + 𝜓( 𝑆) + 

√
𝜅( 𝑆) ∇ ⋅

(√
𝜅( 𝑆) ∇ 𝑆 

))]
= 0 . 

(18) 

.3. Capillary pressure and relative permeability functions 

The capillary pressure function is typically a decreasing function
f saturation ( Richards, 1931; Leverett, 1941; Bear, 1972 ). Based on
tandard constitutive-relation modeling ( Brooks and Corey, 1966; van
enuchten, 1980 ), we adopt functional forms that lead to a stable state

energy minimum) for S < 1 ( Cueto-Felgueroso and Juanes, 2009a ). We
odel the Leverett J-function, J ( S ) ( Leverett, 1941 ), as ( Fig. 1 b): 

( 𝑆) = 𝑆 −1∕ 𝜆
[
1 − exp 

(
𝛽
(
𝑆 − 𝑣 𝑒 

))(
1 + 𝛽

𝜆

𝜆 − 1 
𝑆 
)]

, (19)

here 𝜆 is a parameter in the Brooks and Corey model ( Brooks and
orey, 1966 ), and 𝛽 > 0 and 𝑣 𝑒 max 

> 𝑣 𝑒 ≥ 1 are parameters controlling

he position of the energy minimum with 𝑣 𝑒 max 
= 1 + 

1 
𝛽
ln (1 + 

𝛽𝜆

𝜆−1 ) is the

aximum tolerable value of 𝑣 𝑒 to have an energy minimum for S < 1. 
The bulk capillary energy and gradient-energy coefficient are deter-

ined by the integral of the J-function, I ( S ), which is given by: 

( 𝑆) = 

𝜆

𝜆 − 1 
𝑆 

𝜆−1 
𝜆
[
1 − exp 

(
𝛽
(
𝑆 − 𝑣 𝑒 

))]
. (20)

he above relationship leads to convex capillary energies and nonnega-
ive gradient-energy coefficients 𝜅, which satisfy 𝜅( 𝑆 = 0) = 0 ( Fig. 1 a).
he use of this type of capillary bulk energy function is motivated by
he physics of infiltration: when the medium approaches full satura-
ion ( S ≈1), the two assumptions of infinite mobility and infinity com-
ressibility of air cease to be valid; therefore, the energy of the system
ust include an extra term due to the water pressure behind the front

 Bauters et al., 1998 ). From a modeling perspective, the additional term
ntroduces a steep increase in the bulk energy as S →1, preventing the
aturation from taking values above 1 ( Fig. 1 b). 
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Fig. 1. (a) Bulk free energy I and (b) its derivative with 
respect to water saturation, 𝐽 = 𝑑 𝐼∕ 𝑑 𝑆. The capillary free 
energy is constructed from a classical Brooks–Corey capil- 
lary pressure function, for different values of the parame- 
ter 𝑣 𝑒 . (c) Saturation profiles for one-dimensional infiltration 
with flux ratio 𝑅 𝑠 = 0 . 01 , capillary height ℎ cap = 0 . 02 m, 𝛿 = 
0 . 01 m, 𝐾 sat = 40 cm/min, initial saturation is 0.01, and 𝑣 𝑒 = 
1 . 095 , 1 . 05 and 1. The latter values guarantee saturations lower 
than 1, while the former leads to unphysical saturations larger 
than 1. 
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In our construction of the proposed model, the use of a convex bulk
apillary energy function leads to monotonic capillary pressure, which
s compatible with the initial Richards equation. As will be explained
n the next section, we discover that the use of a convex bulk capillary
nergy function and the expansion (14) for the capillary energy using the
econd gradient theory leads to a thermodynamically consistent model
f unsaturated flow. 

The only requirement that we impose on the relative permeability
unction k r ( S ) is that it be smooth and convex. Typical functional forms
nclude those of Brooks and Corey (1966) and van Genuchten (1980) .
ere, we use a simple power-law relation: 

 𝑟 ( 𝑆) = 𝑆 𝛼, (21)

ith 𝛼 > 1. 
A simple power law in saturation 𝑘 𝑟 ( 𝑆) = 𝑆 𝛼 is often used as a

arsimonious approach to modeling the relative permeability function
 Corey, 1954; Brooks and Corey, 1966 ). The exponent 𝛼 can have dif-
erent values for lower and higher water saturation and depending on
he type of soils. Such different behaviors for the relative permeabil-
ty are observed experimentally ( DiCarlo, 2007; 2004 ). High values of
he parameter 𝛼 can be obtained, as shown in Cueto-Felgueroso and
uanes (2009a) to fit the experimental results in DiCarlo (2004) where
he parameter 𝛼 is between 2 and 11 for the types of soil considered
n the study ( Cueto-Felgueroso and Juanes, 2009a ). This power-law be-
avior (with relatively large exponent) can also be seen as a smoother
ersion of relative permeabilities with lower exponent where there is a
ut-off water saturation (an irreducible water saturation). 

. Entropy function 

The existence of an entropy function for a conservation law is a con-
tructive proof that the model is well posed and thermodynamically
onsistent ( Dafermos, 2000; LeFloch, 2002 ). Generally, in the process
f solving systems of conservation laws one has to deal with weak so-
utions where uniqueness is lost. Further criteria are required, where a
ompanion balance law should be introduced using a convex function
mathematical entropy) of the variable of the initial system to character-
ze the admissible (unique) solution of this system for any arbitrary ini-
ial and boundary conditions. In continuum physics, the companion bal-
nce law is intimately related with the second law of thermodynamics
 Dafermos, 2000 ), where the variable is the physical entropy with asso-
iated entropy flux. Although some systems such as diffusion models are
ndowed with a rich collection of entropies, only one of them enjoys a
hysical interpretation. In multiphase flow, a thermodynamic approach
an be used to express the Helmholtz free energy per unit pore volume
 Aavatsmark, 1989a; 1989b ) and determine the “natural ” entropy that
as a physical interpretation. To verify that this entropy function can
haracterize admissible solutions, the resulting differential equation us-
ng this entropy function should be integrated over an isolated system
o demonstrate that the system describes an entropy-increasing process.
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ere we construct the entropy function for our mathematical model of
nsaturated flow, and show that it leads to an entropy-increasing evo-
ution (positive dissipation) for an isolated system. 

We start by writing the model system in 1D as follows: 

 𝑡 + ( 𝑓 ( 𝑆)) 𝑧 − ( 𝑓 ( 𝑆)Φ∇ 
cap ,𝑧 ) 𝑧 = 0 , (22)

here subscripts indicate partial derivatives, the flux function is defined
s 

( 𝑆 ) ∶= 

𝐾 sat 

𝜙
𝑘 𝑟 ( 𝑆 ) , (23)

nd Φ∇ 
cap is the gradient-theory capillary potential: 

∇ 
cap ≡

Π∇ 
cap 

𝜌𝑔 
= − 𝜓( 𝑆) − 

√
𝜅( 𝑆) ∇ ⋅

(√
𝜅( 𝑆) ∇ 𝑆 

)
. (24)

or notational convenience, hereafter we write Φ ∶= Φ∇ 
cap . 

In the absence of the nonlocal term, Eq. (22) has a similar form to the
uckley–Leverett equation ( Buckley and Leverett, 1942 ), but with a con-
ex flux function. Aavatsmark (1989a,b) studied the Buckley–Leverett
quation and showed that the capillary energy density I ( S ) is the phys-
cal entropy of the problem. For the Buckley–Leverett equation and for
he Richards equation, any convex function is actually a valid entropy
unction due to monotonicity of the capillary pressure. This is not the
ase, however, for models with higher-order terms, where the definition
f the entropy function usually relies on a delicate balance between dif-
usive and dispersive (or higher-order) terms ( LeFloch, 2002 ). 

We start by multiplying Eq. (22) by the derivative U ′ of a convex
unction of saturation U ( S ). Assuming smooth solutions S ( z , t ), we write:

 𝑡 + ( 𝐹 ( 𝑆 )) 𝑧 = 𝑈 

′( 𝑓 ( 𝑆 )Φ𝑧 ) 𝑧 , (25)

here the entropy flux due to gravity is defined as 

 ( 𝑆) = ∫
𝑆 

0 
𝑈 

′( 𝑠 ) 𝑓 ′( 𝑠 ) 𝑑𝑠. (26)

To understand the influence of the right-hand-side term of Eq. (25) ,
hich includes the local effects of capillary pressure and the nonlocal

ffects due to saturation gradients, we analyze an isolated system in the
nterval a ≤ z ≤ b . This means that the mass flux and entropy flux ( f and F ,
espectively) are zero at both ends of the domain. Integrating Eq. (25) in
he interval [ a , b ], 

𝑑 

𝑑𝑡 ∫
𝑏 

𝑎 

𝑈 𝑑𝑧 + 𝐹 ( 𝑆) |||𝑧 = 𝑏 𝑧 = 𝑎 
= ∫

𝑏 

𝑎 

𝑈 

′( 𝑓Φ𝑧 ) 𝑧 𝑑𝑧. (27)

he second term of the left-hand side is zero because the system is iso-
ated. We use the product rule of differentiation to write the right-hand
ide as: 

HS = ∫
𝑏 

𝑎 

(
𝑈 

′( 𝑓Φ𝑧 ) 
)
𝑧 
𝑑𝑧 

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=0 for isolated system 

− ∫
𝑏 

𝑎 

( 𝑈 

′) 𝑧 𝑓Φ𝑧 𝑑𝑧 = − ∫
𝑏 

𝑎 

𝑈 

′′𝑆 𝑧 𝑓Φ𝑧 𝑑𝑧 (28)

We define the (positive) function of saturation 

 ( 𝑆 ) ∶= 

𝑈 

′′( 𝑆 ) 𝑓 ( 𝑆 ) √
𝜅( 𝑆 ) 

, (29)

nd the spatial function Σ = 

√
𝜅𝑆 𝑧 . With these definitions, we have Φ =

 𝜓 − 

√
𝜅Σ𝑧 and, substituting in Eq. (28) , 

HS = − ∫
𝑏 

𝑎 

𝑉 ΣΦ𝑧 𝑑𝑧 

= ∫
𝑏 

𝑎 

𝑉 Σ𝜓 𝑧 𝑑𝑧 + ∫
𝑏 

𝑎 

𝑉 Σ( 
√
𝜅Σ𝑧 ) 𝑧 𝑑𝑧 

= ∫
𝑏 

𝑎 

𝑉 Σ𝜓 

′𝑆 𝑧 𝑑𝑧 + ∫
𝑏 

𝑎 

[
( 𝑉 Σ

√
𝜅Σ𝑧 ) 𝑧 − ( 𝑉 Σ) 𝑧 

√
𝜅Σ𝑧 

]
𝑑𝑧 

= ∫
𝑏 

𝑎 

𝑉 
Σ2 √
𝜅
𝜓 

′ 𝑑𝑧 + ∫
𝑏 

𝑎 

( 𝑉 Σ
√
𝜅Σ𝑧 ) 𝑧 𝑑𝑧 
− ∫
𝑏 

𝑎 

𝑉 (Σ𝑧 ) 2 
√
𝜅 𝑑𝑧 − ∫

𝑏 

𝑎 

𝑉 ′ΣΣ𝑧 

√
𝜅𝑆 𝑧 𝑑𝑧. (30) 

The first term in Eq. (30) is negative by virtue of 𝜓( 𝑆) = ℎ cap 𝐽 ( 𝑆)
eing a monotonically decreasing function. The second term is conser-
ative, and therefore equal to zero for an isolated system. The third
erm is negative because all factors in the integrand are nonnegative.
he signed of the fourth term in Eq. (30) is in principle undetermined,
ut can be made equal to zero by imposing that the function V be con-
tant. Thus, we choose V ≡V c > 0, which implies from Eq. (29) that 

 

′′ = 𝑉 𝑐 

√
𝜅( 𝑆) 
𝑓 ( 𝑆) 

. (31)

With this definition, we have that the entropy function U of the iso-
ated system evolves according to 

𝑑 

𝑑𝑡 ∫
𝑏 

𝑎 

𝑈 𝑑𝑧 = − ∫
𝑏 

𝑎 

𝑉 𝑐 

[ 

Σ2 

( 

− 𝜓 

′√
𝜅

) 

+ (Σ𝑧 ) 2 
√
𝜅

] 

𝑑𝑧 ≤ 0 . (32)

his derivation demonstrates that the proposed model is provably dis-
ipative, and is endowed with an entropy function. 

We note that if a nonconvex double-well bulk capillary energy
 Cueto-Felgueroso and Juanes, 2012 ) is used with the second-order ex-
ansion for the capillary energy, the first term in Eq. (30) can be non-
egative, and there is no guarantee that the overall expression necessar-
ly takes a negative value. Finally, we conclude that a convex capillary
nergy leading to monotonic capillary pressure function, as already pro-
osed for Richards equation, is more suitable to our construction of the
roposed model based on the second gradient theory and the proposed
apillary pinning function. 

. Numerical simulations 

.1. Finite element implementation 

For computational convenience, we write the model Eq. (18) as a
ystem of two second-order PDEs: 

𝜕𝑆 

𝜕𝑡 
+ 

𝜕𝐾 sat 𝑘 𝑟 ( 𝑆) 
𝜕𝑧 

+ ∇ ⋅
(
𝐾 sat 𝑘 𝑟 ( 𝑆)∇Ξ

)
= 0 , (33) 

= 𝜓( 𝑆) + 

√
𝜅∇ ⋅

(√
𝜅∇ 𝑆 

)
. (34) 

he above mixed formulation can be compactly written in vector form
s: 
 

𝜙 0 
0 0 

) 

𝜕𝐮 
𝜕𝑡 

+ ( ∇ ⋅ 𝚪) 𝑇 = 

( 

0 
Ξ− 𝜓 √

𝜅

) 

(35) 

here the vectors of dependent variables, u , and fluxes, 𝚪, are given by:

 = 

( 

𝑆 

Ξ

) 

, 𝚪 = 

( 

𝐾 sat 𝑘 𝑟 ( 𝑆) 
𝜕Ξ
𝜕𝑥 

√
𝜅
𝜕𝑆 

𝜕𝑥 

𝐾 sat 𝑘 𝑟 ( 𝑆) 
(
1 + 

𝜕Ξ
𝜕𝑧 

) √
𝜅
𝜕𝑆 

𝜕𝑧 

) 

(36)

he coupled Eqs. (33)–(34) are discretized in space using a standard
alerkin finite element formulation, and advanced in time using an im-
licit scheme (BDF2). 

For constant flow-rate infiltration we impose the water infiltration
ux at the top boundary: 

 ∶= 𝐾 sat 𝑘 𝑟 ( 𝑆)∇ 

[
𝑧 + 𝜓( 𝑆) + 

√
𝜅( 𝑆) ∇ ⋅

(√
𝜅( 𝑆) ∇ 𝑆 

)]
⋅ 𝐧 |||𝑧 =0 = − 𝑅 𝑠 𝐾 sat , 

(37) 

here R s is the flux ratio (dimensionless), which takes a value between
 and 1 (the minus sign indicating that it is a flux into the domain). 

The numerical simulations of 1-D systems for saturation overshoot
nd 2-D systems for gravity fingering are performed, respectively in
ection 4.3 and Section 4.4 using initial conditions with small perturba-
ions near the top boundary of the domain. 
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Fig. 2. Entropy production in horizontal redistribution. (a) Profiles of water sat- 
uration in horizontal redistribution in a closed 1D porous medium. (b) Evolution 
of the physical entropy of the system ( − ∫ 𝐿 

0 𝑈 𝑑𝑥 ), which increases monotoni- 
cally in time. 
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.2. Entropy production in horizontal redistribution 

To test the validity of the entropy function and entropy inequality
erived in Eqs. (31) and (32) , we compute the evolution of the total
ntropy of the system, ∫Udx in a problem of fluid redistribution in a
losed 1D horizontal porous medium of length L = 0.6 m ( Fig. 2 ). The
orous medium has porosity 𝜙 = 0.3, saturated hydraulic conductiv-
ty K sat = 40 cm/min, and capillary heigth h cap = 0.02 m, and 𝛿 = 0.01 m
hile the relative permeability function is k r = S 3 . We define a smooth

nitial saturation profile, and let the saturations redistribute with no-
ow boundary conditions, so that the saturation at long times is uniform
 Fig. 2 a). The mathematical entropy function decreases in time. We plot
he physical entropy ( − ∫ 𝐿 

0 𝑈 𝑑𝑥 ), which increases monotonically with
ime, demonstrating that the system is dissipative ( Fig. 2 b). 

.3. One-dimensional simulations of saturation overshoot 

We simulate one-dimensional constant-flux infiltration into a dry
orous column ( Figs. 1 c–3 – 4 ). The porous medium has porosity 𝜙 = 0.3,
aturated hydraulic conductivity K sat = 40 cm/min, and capillary
eigth h cap = 0.02 m, while the relative permeability function is k r = S 7 .
e impose a water influx at the top boundary that is a fraction of the

aturated conductivity, q 0 , and define the flux ratio as R s = q 0 / K sat . 
We begin by exploring the role of the capillary energy function on

he overshoot characteristics ( Fig. 1 c). In particular, we analyze whether
he infiltration profiles satisfy the physical requirement that S ≤ 1. We
et a flux ratio of R s = 0.01, and simulate the evolution of saturation
rofiles for several forms of the J-function. The bulk capillary energy is
haracterized by 𝜆 = 10, 𝛽 = 40, and three values of 𝑣 𝑒 , 𝑣 𝑒 = 1, 1.05
nd 1.095 in Eq. (19) . While 𝑣 𝑒 = 1 seems to guarantee that water sat-
rations do not exceed 1, larger values lead to unbounded saturations
or sufficiently large flux ratios and particular parameter combinations.
he value of 𝑣 𝑒 has a large influence on the magnitude of the nonlocal
erm. The use of 𝑣 𝑒 = 1 . 095 , which is very close to the maximum toler-
ble value 𝑣 𝑒 max 

≈ 1 . 09541 corresponding to the parameters taken into
ccount in the numerical test, seems to have a significant impact on
he magnitude of the nonlocal term when the maximum saturation is
lose to the value of one. For values of 𝑣 𝑒 which are not large, when the
aturation value is in the vicinity of one, the magnitude of the nonlocal
erm becomes negligible compared to the other terms due to gravity and
apillary pressure. As a consequence, the model equation becomes very
lose to Richards equation, which allows the model to respect that the
omputed values of water saturation remain bounded. 

The most remarkable feature of the saturation profiles obtained with
he proposed form of the capillary pinning function, 𝜅, is that the satu-
ation overshoot remains close to unity across a wide range of flux ratios
 Fig. 3 ). The pile-up effect leads to overshoots whose length increases
ith flux ratio, propagating upstream from the sharp wetting front. This

s consistent with experimental observations, and in contrast with choos-
ng a constant value of 𝜅, which yields a sharp decline of the saturation
vershoot as R s decreases ( Cueto-Felgueroso and Juanes, 2009a ). Be-
ause 𝜅 vanishes at S = 0, wetting fronts are steeper, inducing a more
ronounced pile–up effect. 

The length of the overshoot region is controlled by the capillary pres-
ure function, by the flux ratio ( Fig. 3 ), and by the strength of the gra-
ient energy term. The latter can be characterized through the ratio be-
ween two characteristic lengths: the capillary height h cap , which math-
matically controls the strength of capillary diffusion, and the gradient-
nergy length 𝛿, which controls the size of the energy expansion term
n Eq. (14) . Larger values of 𝛿/ h cap increase the relative strength of the
ourth-order term in the model, increasing the height and width of the
vershoot ( Fig. 4 ). 

Mathematically, the saturation undershoot behind the tip of the ad-
ancing wetting front is due to the presence of the fourth-order term in
he flow equation. Fourth-order diffusion allows for nonmonotonic sat-
rations, which implies the possibility of saturation overshoot, but also
he possible presence of an undershoot right above the tip. While inher-
nt to higher-order models of unsaturated flow, this oscillatory behavior
s quickly damped by the strongly dissipative fourth-order term. In con-
rast, oscillations are very strong in the model of unsaturated flow with
ynamic capillarity (e.g., Nieber et al., 2005; Zhuang et al., 2019b ). Note
hat the undershoot can be removed (as in the model with dynamic cap-
llary pressure) by considering hysteresis in the capillary pressure curve
 Sander et al., 2008; Zhang and Zegeling, 2017 ). 

Rezanezhad et al. (2006) , and Rezanezhad (2007) have studied the
hysical relevance of an undershoot behind the finger tip for the fin-
ered flow through initially dry sand. They measured water content dy-
amics within the finger tip, along the finger core behind the tip, and
ithin the fringe of the finger. The results of their experimental study

evealed a saturation minimum (undershoot) behind the tip of the ad-
ancing finger ( Rezanezhad et al., 2006 ), and the authors concluded
hat behind the tip of the advancing wetting front there is an additional
ateral gradient which leads to a horizontal flow component. We note
hat, as it has already been mentioned ( Sander et al., 2008 ), small os-
illations are observed downstream of the wetting front of fingers by
lass et al. (1989c) , but the authors did not comment on these observa-

ions. 
In general, existing experiments are inconclusive in terms of either

onfirming or ruling out the undershooting phenomenon observed in
igher-order models of unsaturated flow. Some of the profiles of 1D in-
ltration are rather oscillatory near the wetting front ( Zhuang et al.,
019b , Fig. 4), and some 2D experiments actually seem to exhibit a be-
avior similar to the one shown in Figs. 3 and 4 ( Rezanezhad et al., 2006 ,
ig. 9). Further experimental studies are necessary to assess whether
he observed oscillations actually occur and under what conditions, or
hether such behavior is instead just a mathematical property of the
igher–order model, without a direct correlate in the physical system. 

.4. Two-dimensional simulations of gravity fingering 

Numerical simulations are performed using the proposed model
o investigate the behaviors of gravity fingers compared to exper-
mental and theoretical results. Experimental studies are performed
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Fig. 3. Saturation profiles for one-dimensional infiltration at different flux ratios, R s . The capillary height is h cap = 0.02 m, 𝛿 = 0.01 m, K sat = 40 cm/min, and the 
initial saturation is S 0 = 0.01. For the capillary energy we set 𝜆 = 10, 𝛽 = 40, and 𝑣 𝑒 = 1.05. With the proposed form of 𝜅, the overshoot saturation remains close to 
unity across a wide range of flux ratios. As R s increases, the width of the finger tip increases. The profiles are plotted at different times to allow a straightforward 
visual identification. 

Fig. 4. Saturation profiles for one-dimensional infiltration with flux ratios, R s = 0.01, capillary height h cap = 0.02 m, K sat = 40 cm/min, and 𝛿/ h cap = 1.5, 1, 0.5 
and 0.25. For the capillary energy we set 𝜆 = 10, 𝛽 = 40 and 𝑣 𝑒 = 1. 
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 Glass et al., 1989d ) and guided by theoretical analysis ( Glass et al.,
989b ) for wetting front instability in porous media. These studies
ere applied at the finger scale and large chamber scale by imposing a

onstant-rate infiltration at the top boundary for various flux ratios. The
esults show that the number of fingers remains essentially the same as
he flux ratio is increased through moderates values. At relatively large
ux ratios, the number of fingers decreases and the width of fingers in-
reases with increasing the flux ratio and ultimately tends to one large
nger to cover the whole domain. The sensitivity of the model’s behavior

n terms of finger characteristics to the model’s parameters was rather
xhaustively analyzed in Cueto-Felgueroso and Juanes (2009a) for the
riginal infiltration model with constant 𝜅. 

We simulate 2D constant-flux infiltration into a dry porous medium
 Figs. 5–9 ). The medium properties are the same as those of the
D simulations: porosity 𝜙 = 0.3, saturated hydraulic conductiv-
ty K sat = 40 cm/min, capillary heigth h cap = 0.02 m, and relative per-
eability k r = S 7 . The bulk capillary energy is characterized by 𝜆 = 10,
= 40, and 𝑣 𝑒 = 1.05 in Eq. (19) . The computational domain is a

ectangle with dimensions 0.3 ×0.6 m 

2 . We impose the water flux
t the top boundary, and define the flux ratio as in the 1D simula-
ions, R = q / K . 
s 0 sat 
The 2D patterns of water saturation for infiltration in dry soil un-
er different flux ratios reveal a transition from fingered to compact
nfiltration as R s approaches unity ( Figs. 5 and 6 ). This transition is
onsistent with experimental observations of the wetting front insta-
ility ( Glass et al., 1989d ). At relatively large flux ratios, the number
f fingers decreases as the infiltrating flux increases, while the finger
idth increases with flux ratio. Furthermore, the number of fingers re-
ains constant as the flux ratio is increased through moderates values.
ur model predictions are in good agreement with the experimental
bservations ( Glass et al., 1989d ) and analysis ( Glass et al., 1989b; Par-
ange and Hill, 1976 ) performed for gravity-driven fingers. The numer-
cal simulations of the proposed model show that some of the fingers
an advance faster than others, which is compatible with experimental
bservations of gravity-driven fingers in unsaturated media ( Glass et al.,
989c; 1989d; 1989a; 1988 ). 

The ratio of characteristic length scales 𝛿/ h cap , which compares the
trength of the gradient capillary energy with the capillary height, sets
he finger-width scale when the other model parameters are kept con-
tant ( Fig. 7 ). In particular, the ratio 𝛿/ h cap could be used to calibrate
he model, by matching experimental observations of gravity fingering
ith different infiltration rates. The functional relationship developed
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Fig. 5. Maps of water saturation for constant- 
rate infiltration at various flux ratios. We 
set h cap = 0.02 m and 𝛿/ h cap = 0.32. The 
flux ratios in panels (a) –(h) are, respectively, 
R s = 0.0025, 0.005, 0.01, 0.02, 0.04, 0.08, 
0.16, and 0.32. For the capillary energy we set 
𝜆 = 10, 𝛽 = 40 and 𝑣 𝑒 = 1.05. 

Fig. 6. Maps of water saturation for constant- 
rate infiltration at various flux ratios. We 
set h cap = 0.02 m and 𝛿/ h cap = 0.16. The 
flux ratios in panels (a) –(h) are, respectively, 
R s = 0.0025, 0.005, 0.01, 0.02, 0.04, 0.08, 
0.16, and 0.32. For the capillary energy we set 
𝜆 = 10, 𝛽 = 40 and 𝑣 𝑒 = 1.05. 
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Fig. 7. Summary of average finger width as a function of flux ratio 
for 𝛿/ h cap = 0.32 and 𝛿/ h cap = 0.16. The capillary height is h cap = 0.02 m. 
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Fig. 9. Summary of average finger width as a function of 𝛿/ h cap and flux ra- 
tio R s = 0.01. 
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or the finger width ( Glass et al., 1989d; 1989b; Parlange and Hill, 1976 )
ay be fitted to experimental data and used in the calibration process

f the model. 
We plot the 2D saturation patterns ( Fig. 8 ) and finger widths ( Fig. 9 )

or infiltration at a constant infiltration flux and various values of the
ength scale ratio. Smaller values of 𝛿/ h cap lead to thinner fingers for
he same flux ratio ( Figs. 8 and 9 ). Owing to capillary diffusion in the
bsence of capillary-pressure hysteresis, the fingers are also growing
aterally, but this lateral growth is negligible in these simulations: the
ime scale for lateral growth is significantly larger than the time it takes
or the fingers to reach the bottom boundary. 

The experiments conducted by Yao and Hendrickx (1996) and
endrickx and Yao (1996) demonstrated that at low flow infiltration

ates the wetting fronts tend to become stable, with finger widths that
ncrease with decreasing flux. For the present simulations in homoge-
eous media, decreasing infiltration rates lead to thinner fingers. This
ehavior makes sense from the perspective of a linear stability analysis
f the model ( Cueto-Felgueroso and Juanes, 2008; 2009b; 2009a ). At
ery low rates, lateral redistribution is strong enough to prevent these
hin fingers to develop, so the proposed model also leads to a stable
Fig. 8. Maps of water saturation for 
constant-rate infiltration for a fixed flux 
ratio of R s = 0.005 and several values 
of 𝛿/ h cap , where h cap = 0.02 m. The length 
scale ratios in panels (a) –(h) are, respectively, 
𝛿/ h cap = 0.0866, 0.112, 0.158, 0.224, 0.316, 
0.5, 0.707, and 1. For the capillary energy we 
set 𝜆 = 10, 𝛽 = 40 and 𝑣 𝑒 = 1.05. 
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Fig. 10. Comparison between numerical simulations of fingering during water infiltration and the experiments of Glass et al. (1989d) . (a) –(d) , Maps of water 
saturation for several values of the flux ratio, R s . (e) , Experimental vs. numerical normalized average finger widths, 𝑤 𝑓 ∕ ℎ cap , as a function of the flux ratio. (f) , 
Experimental vs. numerical normalized average finger speed, 𝑣 𝑓 ∕ 𝐾 sat , as a function of the flux ratio. 
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etting front at very low infiltration rates. A possible explanation for
he discrepancy in terms of finger width at very low infiltration rates
s that there is always some degree of heterogeneity in the experimen-
al system, so that some of the very thin fingers would be suppressed,
ocusing the small infiltration flux towards a few ones rather than al-
owing the development of the natural wavelength of the instability for
 homogeneous medium. 

.5. Comparison with the experiments of Glass et al. (1989) 

To validate the proposed model against laboratory experiments
f fingering during water infiltration, we model the experiments of
lass et al. (1989d) , who studied constant-rate infiltration into packed
hite-silica sands. The experiments were conducted in a quasi-2D in-
ltration chamber, characterizing the finger morphology and dynamics
ver a wide range of infiltration rates, corresponding to flux ratios from
 𝑠 = 0 . 01 to 𝑅 𝑠 = 0 . 82 . The sand was initially dry. 

We simulate 2D constant-flux infiltration into a porous medium with
ery low initial saturation, 𝑆 0 = 0 . 01 ( Fig. 10 ). We consider a square
omain of dimensions 0.3 × 0.3 m 

2 , describing the experimental bot-
om layer composed of 14–20 sand ( Glass et al., 1989d ). As model pa-
ameters, we set a porosity 𝜙 = 0.3, a saturated hydraulic conductivity
f K sat = 40 cm/min, a capillary heigth of h cap = 0.046 cm, and rel-
tive permeability k r = S 7 . The bulk capillary energy is characterized
y 𝜆 = 10, 𝛽 = 40, and 𝑣 𝑒 = 1.05 in Eq. (19) . These are the same consti-
utive relationships used in previous sections, which we take as repre-
entative of coarse sand. We impose the water flux at the top boundary,
nd free drainage at the bottom of the domain. The lateral boundaries
re no-flow boundaries. To compare with the various experimental con-
itions, we define the flux ratio as R s = q 0 / K sat . The computational grid
s a Cartesian mesh of 600 × 600 finite elements. 

An important step to capture the finger-width scale is to calibrate the
ssumed proportionality constant between 𝛿 ( Eq. (14) ) and h cap . We fit
he finger width for a small flux ratio, R s = 0.012, and obtain good agree-
ent between experimental and numerical finger width for 𝛿 = 0.01 h cap 

or this coarse sand. We then use this relationship for all other flux ra-
ios. 

We observe good overall agreement between experiments and sim-
lations ( Fig. 10 ). Qualitatively, the trends of normalized finger width
nd finger speed are similar in experiments and in simulations ( Fig. 10 e
nd f). The agreement between observed and simulated fingers breaks
own at large flux ratios: while simulations predict a transition to com-
act infiltration for R s around 0.3 ( Fig. 10 d), experiments show persis-
ent fingered flow up to R s around 0.8. We attribute this discrepancy to
he absence of heterogeneity and hysteresis in the model, which seems
o lead to more stable infiltration patterns. We observe differences in
he flow patterns at very low infiltration rates ( Fig. 10 a): the experi-
ents indicate a decrease in the number of fingers, corresponding to an

ncrease in the separation between fingers. In the simulations, the fin-
er spacing decreases as the finger width decreases, so that more and
ore fingers appear in the domain. This is because the finger spacing,
ictated by the characteristic wavelength of the wetting front instabil-
ty, decreases with infiltration rate ( Cueto-Felgueroso and Juanes, 2008,
009a, 2009b ). We attribute the discrepancy to the absence of hetero-
eneity in our simulations, which could suppress the growth of some
ngers, focusing the small infiltration flux towards a few ones rather
han allowing the development of the natural wavelength of the insta-
ility for a homogeneous medium. 

. Discussion and conclusions 

In this paper, we have proposed a thermodynamic approach to mod-
ling unsaturated flow, where the liquid saturation is understood as the
tate variable. The free energy functional is designed as a symmetric ex-
ansion of the traditional capillary energy density in Richards equation,
herefore removing ambiguities on the interpretation of the higher-order
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erm in the model equation. The proposed definition renders a formu-
ation that leads naturally to an entropy function of the system, and
e show that the model describes an entropy-increasing process for an

solated system. 
The new formulation of the free energy, which includes a nonlinear

radient energy through a capillary pinning function, helps identify the
haracteristic length scale associated with the high-order term as the
nger size. More precisely, the finger width depends linearly on the ra-
io between gradient energy length and capillary height. The structure
f this function plays a fundamental role in the behavior and stability
f infiltration fronts, promoting front pinning and the persistence of fin-
ered infiltration at relatively large flux ratios. 

Comparison between simulations and experiments of fingering at
arious constant infiltration rates helps calibrate the relationship be-
ween the two characteristic length scales (the capillary height and the
ength associated with the second-gradient expansion of the capillary
nergy). We observe good overall agreement between experiments and
imulations, deviating in the limit of nearly-saturated conditions (for
hich the simulations predict earlier transition to compact infiltration)
nd very small infiltration rates, for the experiments predict an increase
f the spacing between fingers. 

Our construction of the capillary pinning function provides a funda-
ental link between the high-order term and the traditional capillary
ressure term of the unsaturated flow equation. By identifying the sepa-
ate role of two characteristic length scales, namely the capillary height
nd the length associated with the energy expansion, the new model al-
ows direct comparison between simulated and observed finger widths
or different medium properties and infiltration fluxes. Finally, the new
efinition will help understand the impact of medium heterogeneity on
etting front instabilities. 
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