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Understanding rate effects in injection-induced
earthquakes
Maryam Alghannam1 & Ruben Juanes 1✉

Understanding the physical mechanisms that underpin the link between fluid injection and

seismicity is essential in efforts to mitigate the seismic risk associated with subsurface

technologies. To that end, here we develop a poroelastic model of earthquake nucleation

based on rate-and-state friction in the manner of spring–sliders, and analyze conditions for

the emergence of stick-slip frictional instability—the mechanism for earthquakes—by car-

rying out a linear stability analysis and nonlinear simulations. We find that the likelihood of

triggering earthquakes depends largely on the rate of increase in pore pressure rather than its

magnitude. Consequently, fluid injection at constant rate acts in the direction of triggering

seismic rupture at early times followed by aseismic creep at late times. Our model implies

that, for the same cumulative volume of injected fluid, an abrupt high-rate injection protocol

is likely to increase the seismic risk whereas a gradual step-up protocol is likely to decrease it.
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Subsurface fluid-injection operations have been recognized to
carry a risk of inducing earthquakes since the 1960s1. While
most of the injection-induced earthquakes are micro-tremors,

they can occasionally be of large magnitude, such as the PragueMw

5.7 earthquake in 20112, the Pawnee Mw 5.8 earthquake in 20163,
and the Pohang Mw 5.5 earthquake in 20174, among others. The
occurrence of induced earthquakes of large magnitude has moti-
vated development of different operational strategies for seismic
hazard mitigation. In particular, an early attempt to control seis-
micity at the Rangely oil field suggested maintaining the magnitude
of fluid pressure below a critical threshold5, based on a Coulomb
failure model that links the magnitude of fluid pressure to the
occurrence of induced earthquakes6. This model, however, does not
address the evolution of the rupture and whether a fault slips
seismically or aseismically. It was also insufficient to explain seis-
micity at Cogdell oil field, for instance, where earthquakes were
observed in regions of low rather than high fluid pressure7. A dif-
ferent strategy to control seismicity involved maintaining the
cumulative volume of injected fluid below a critical threshold8,
based on empirical observations and modeling linking the cumu-
lative volume of injected fluid to the maximum magnitude of
induced earthquakes9. This model, however, is at odds with the
2017 Pohang earthquake, as its magnitude exceeded the size esti-
mated from the injected volume by 500 times10.

A growing number of field observations suggests that mana-
ging fluid injection rates may be a promising tool to mitigate the
occurrence of induced earthquakes. It is observed that low-rate
wells, for instance, are much less likely to be associated with
earthquakes than high-rate wells, and that the critical rate above
which earthquakes are induced is likely dependent on reservoir
properties11,12. It is also observed that temporal variation in
injection rates is generally correlated with the frequency of
earthquakes1,13–15, and that abrupt increases in injection rates
tend to shortly precede the occurrence of earthquakes16–18. While
attempts have been made to explain some of these observations
with seismicity-rate models19–21 and 2D numerical simulations of
coupled flow-geomechanics22,23, the physical mechanisms behind
the link between the rate of fluid injection and the occurrence of
induced earthquakes remain poorly understood.

Seismicity-rate models based on the triggering-front concept
consider the large-scale spatiotemporal effects of nonlinear diffu-
sion on the probability of a given magnitude earthquake using
Gutenberg–Richter statistics24, but do not address the dynamics of
the rupture and, in particular, whether a fault slips seismically or
aseismically. Characterizing fault slip mode is essential to mitigate
the seismic risk associated with subsurface operations, as it has
been observed that an increase in pore pressure magnitude leads
to seismic slip in some sites1–5,25 and aseismic slip in others7,26–30.
Here we develop a poroelastic model of induced earthquake
nucleation in the manner of spring–sliders31–35 based on rate-
and-state friction32,36, and we study the effect of injection rate on
stick-slip frictional behavior—the mechanism for seismic slip37.

Our model shows that the likelihood of triggering earthquakes
depends critically on the rate of increase in pore pressure. We find
that fluid injection at constant rate acts in the direction of trig-
gering seismic rupture at early times followed by aseismic creep at
late times. This finding is qualitatively consistent with laboratory
observations of sliding between saturated rocks at both transient
and steady-state pore pressure conditions38–40, and may explain
field observations of triggered and induced seismicity from sub-
surface operations in different geologic settings1,11–14,16–18.

Results and discussion
Poroelastic spring–slider model. When fluid is injected into a
faulted reservoir, the pore pressure change induces effective stress

variations in the reservoir and surrounding rock (Fig. 1a). To
model the effects of variations in effective normal stress on a
creeping fault segment, we develop a poroelastic spring–slider
model of frictional slip (Fig. 1b). Our model consists of a slider of
unit base area that is pulled by a spring whose end is constrained
to move at a steady slip rate. The spring stiffness accounts for the
elastic interaction of the sliding surface with the surrounding
rock. The slider represents the injection-driven deformation
process, where a piston is loaded vertically and compresses a
spring inside a fluid-filled space. The vertical spring is analogous
to the rock skeleton, while the fluid inside the slider represents
fluid in the rock pores subject to increase from fluid injection and
decrease from pressure diffusion. Our model accounts for the
poroelastic coupling between the shear and effective normal
stresses along the fault.

Frictional evolution is modeled by the rate-and-state constitu-
tive laws32,36, which are capable of reproducing a wide range of
observed seismic and aseismic fault behaviors ranging from
preseismic slip and earthquake nucleation to coseismic rupture
and earthquake afterslip41. These laws propose that the frictional
shear stress is a function of the effective normal stress and a
coefficient of friction that is dependent on slip rate and the state
of the sliding surface. Since the effective normal stress varies as a
result of fluid injection, we adopt Linker and Dieterich’s42

formulation for the coefficient of friction and couple it with a
poroelastic model of pore pressure and rock deformation. We
derive the poroelastic model from the principles of mass and
momentum conservation, and find that pore pressure satisfies a
diffusion equation that leads to transient behavior at early times
and steady-state behavior at late times.

The dimensional equations describing the dynamic motion of
the poroelastic spring–slider system with an evolving pore
pressure take the form (see Supplementary Note 1 for the
derivation of the equations):

_U ¼ V0 � V ; ð1Þ

_V ¼ 1

T=2πð Þ2 U � 1
ks

μ� þ â ln
V
V�

þ Θ

� �
ðΣ� PÞ

� �
; ð2Þ

_Θ ¼ � V
dc

Θþ b̂ ln
V
V�

� �
þ α̂

_P
ðΣ� PÞ ; ð3Þ

_P ¼ keffn k
ηL

ðP0 � PÞ þ keffn Q: ð4Þ

where U is the relative displacement between the load point and
the slider, _ðÞ denotes time derivative, V0 is the loading velocity, V

a b

w

p0

p

q

0

Fig. 1 Conceptual picture of induced seismicity including poroelastic
effects. a Fluid injection induces effective stress changes in the reservoir
surrounding the fault, increasing the likelihood of fault slip and earthquake
triggering. b Our spring–poroslider model of a fault segment in contact with
the reservoir. Here, v0 is the loading velocity, v is the velocity of the block, τ is
the frictional shear force, w is the elongation of the piston, q is the injection
rate, p0 is the ambient pressure, and p is the pressure inside the slider.
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is slip rate, T is the vibration period, ks is the shear stiffness, V* is
a normalizing slip rate, μ* is a constant appropriate for steady-
state at slip rate V*, â and b̂ are experimentally derived
parameters relating friction to changes in slip rate and state,
respectively, Θ is a state variable describing the sliding surface, Σ
is the total stress, P is the pressure inside the slider (pore
pressure), dc is the characteristic slip distance, α̂ is a scaling factor
ranging from 0 to μ42,43, keffn is the effective normal stiffness
(related to the uniaxial bulk modulus or the reciprocal of the
uniaxial specific storage per diffusion length in a continuum), k is
the permeability, η is fluid dynamic viscosity, L is the pressure
diffusion length, P0 is the ambient pressure, and Q is the
volumetric injection rate per unit area.

Choosing the following characteristic quantities: uc= dc, vc=
V*, μc= μ*, pc= P0, τc= μ*(Σ− P0), θc= μ*, and tc= dc/V*, the
equations describing the dynamic motion of the system, in
dimensionless form, become (see Supplementary Note 2):

_u ¼ v0 � v; ð5Þ

_v ¼ 1
ϵ2

u� 1
κ
ð1þ a ln v þ θÞðσ � pÞ

� �
; ð6Þ

_θ ¼ �vðθ þ b ln vÞ þ α
_p

ðσ � pÞ ; ð7Þ

_p ¼ cðp0 � pÞ þ rq; ð8Þ
where κ= (ksdc)/τc, a ¼ â=μc, b ¼ b̂=μc, α ¼ α̂=μc, ϵ= (T/2π)/tc,
c ¼ tc=ðηL=keffn =kÞ, r ¼ tck

eff
n , and q=Q/pc. The parameter κ is

the normalized shear stiffness, and a, b, α are normalized
frictional parameters. The parameter ϵ is the normalized
oscillation period or ratio of inertial to state-evolution timescales,
which may range from 10−8 to 10−6 depending on rupture
diameter and shear wave speed. The parameter c is the
normalized diffusivity or ratio of the pore pressure to the state-
evolution timescales, which may range from 10−4 to 101

depending on reservoir permeability, uniaxial bulk modulus,
and well-fault distance. The parameter rq is the normalized
injection rate, which may range from 10−5 to 10−1 depending on
injection rate and reservoir size.

Stability analysis. The stability of steady frictional sliding to
small perturbations in velocity, which determines whether motion
is by slow steady-sliding or violent stick-slip, depends on the
evolution of the frictional resistance. Stick-slip occurs whenever a
change of frictional resistance with sliding occurs at a rate greater
than the loading system is capable of following31. At a constant
pore pressure, linear stability analysis of the system about steady-
state leads to the stability condition by Ruina32. Pore pressure,
however, is not constant in time and its evolution depends on the
injection rate and on the poroelastic and hydraulic parameters of
the rupture. To quantify this, we carry out a linear stability
analysis of the system about a quasi steady-state where sliding is
steady but pore pressure is evolving as a result of fluid injection.
We find that motion is by stick-slip when the dimensionless shear
stiffness of the loading system is lower than a critical value (κ <
κcrit) given by

κcrit ¼ ðb� aÞðσ � pÞ þ α

v0
_p; ð9Þ

and is by steady-sliding otherwise (κ > κcrit). Variables p and _p are
dimensionless pore pressure magnitude and pore pressure rate,
respectively, at any point in time. Accordingly, frictional
instability for the spring–poroslider system with an evolving pore
pressure depends not only on the magnitude of pore pressure, but
also on the rate of change of pore pressure (Supplementary
Notes 3, 4, 5, and 6 for the analysis of QSSA, derivation of Eq. (9),
and validation against nonlinear simulations).

As pore pressure evolves from initial to steady-state conditions
in response to fluid injection, we find that the competing effects
of p and _p exhibit a transition in their dominance over frictional
instability (Fig. 2a). The destabilizing effect of _p dominates when
pore pressure grows rapidly at early times, resulting in an increase
in critical stiffness (dashed curve in Fig. 2a). It then decreases as
pore pressure diffuses and approaches steady state, giving rise to
the stabilizing effect of p, which explains the decrease in critical
stiffness at late times (dotted curve in Fig. 2a). This result is
generally consistent with a linear stability analysis of slow slip
with mildly rate-strengthening friction in a poroelastic con-
tinuum44, in which undrained slip-induced poroelastic pressure
has a destabilizing effect and a sufficiently fast equilibration
process has a stabilizing effect. In our analysis, the early-time
destabilizing effect of _p is likely attributed to a short-term effect
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Fig. 2 Dimensionless critical stiffness and critical injection rate. a Critical stiffness−below which stick-slip instability is triggered (κ < κcrit) and above
which stick-slip instability is inhibited (κ > κcrit)−in response to fluid injection at constant rate in velocity-weakening material (c= 3 × 10−2, rq= 5 × 10−3).
The combined effect is illustrated by the solid curve, which shows a transition in the effect of fluid injection from de-stabilizing at early times to stabilizing
at late times. The effect of the magnitude of pore pressure is illustrated by the dotted curve. The effect of the rate of change in pore pressure is illustrated
by the dashed curve. b Critical injection rate−above which stick-slip instability is triggered−as a function of the normalized diffusivity of the system. The
diffusivity is varied by varying permeability (beige curve in b).
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on contact interlocking, where a decrease in effective normal
stress results in fault opening and loss of asperity contacts45. The
late-time stabilizing effect of p, in contrast, is likely attributed to a
long-term effect on interface locking. A low effective normal
stress tends to reduce the degree of interface locking, and thus
limit the magnitude of stress drops46–48.

This behavior is also qualitatively consistent with laboratory
observations of sliding between saturated rocks at both transient
and steady-state pore pressure conditions. The early-time
destabilizing effect agrees with experimental studies showing that
a gradual increase in pore pressure results in unstable slip during
the transient-state, and that the degree of instability measured by
the total slip, slip rate, and shear stress drop correlates with the
rate of pore pressure increase38,39. The late-time stabilizing effect
also agrees with another experimental study, showing that sliding
between two rock surfaces is much more stable at high than at
low steady-state pore pressure40. Sliding is observed to be by slow,
steady-type motion at high pore pressure, and by stick-slip at low
pore pressure. This behavior, however, is different from the
observations of shearing granular fault gouge materials49,50,
where the frictional parameter a−b is observed to decrease in
magnitude with increasing steady-state pore pressure, an effect
related to shear-induced dilatancy strengthening and pore
compaction creep.

Application to the Denver earthquakes. Our findings, if they are
applicable to natural faults, hold interesting and important
implications for induced seismicity. The poroelastic spring–slider
may be viewed as a simple model of a fault segment in contact
with a reservoir, steady-sliding as an analog of aseismic creep, and
stick-slip as a seismic wave-producing rupture cycle33,37. The
spring stiffness scales inversely with the size of the fault seg-
ment51. Within this view, our findings may be generalized to
indicate that a slowly creeping fault segment is destabilized and
nucleates an earthquake if its size exceeds a critical value known
as the nucleation length, which is inversely proportional to the
critical stiffness in Eq. (9).

To bridge the gap between the analysis of the idealized
poroelastic spring–slider model and the real world, we extend
our instability criterion from dimensionless to dimensional
form, and identify values of dimensionless parameters c and rq
that correspond to a real-world setting. The 1960s Denver
earthquakes is a good example of a real-world setting, where it
is well-documented that injection of wastewater into the
fractured Precambrian granite gneiss underneath the Rocky
Mountain Arsenal triggered the earthquakes and where
injection rate is directly related to the frequency of
earthquakes52,53. We find that reasonable estimates of c and
rq for this setting are in the order of 10−2 to 10−1 and 10−3 to
10−1, respectively. We then assess the effect of fluid pressur-
ization by evaluating its contribution to the critical stiffness in
Eq. (9). We find that a reasonable estimate for the increase in
critical stiffness at early times is ~300%, which indicates that
the weakening effect from fluid pressurization is likely
significant in this setting (see Supplementary Note 7 for more
details on the application to the Denver earthquakes).

When earthquakes nucleate on a fault with velocity-weakening
friction, in general, aseismic creep may begin in sections of
favorable stress conditions. The aseismically creeping segment
then slowly grows in size until it reaches the nucleation length,
and then it breaks out rapidly into a seismic wave-producing
rupture54. A significant increase in critical stiffness, or equiva-
lently decrease in nucleation length, from fluid pressurization
may further facilitate or exacerbate this breakout—potentially
increasing the likelihood of triggering earthquakes.

Influence of reservoir properties on injection-induced seismi-
city. To study the influence of reservoir properties on the critical
injection rate, above which earthquakes are induced, we model
the occurrence of earthquakes as a function of dimensionless
injection rate rq ¼ dck

eff
n Q=ðpcV�Þ and normalized diffusivity c ¼

dck
eff
n k=ðηLV�Þ for velocity-weakening conditions, b− a > 0. We

find that the dimensionless critical injection rate is directly pro-
portional to the diffusivity c in the high-diffusivity limit, and
independent of it in the low-diffusivity limit (Fig. 2b). These
findings suggest that reservoir regions with low hydraulic diffu-
sivity are more prone to induced seismicity than regions with
high hydraulic diffusivity—a result that qualitatively agrees with
the triggering-front concept24 (see Supplementary Note 8 for
more details on the phase diagram of injection-induced
seismicity).

Influence of injection strategy on induced seismicity. The
earthquake likelihood is strongly dependent on the duration of
injection. For a fixed total injected volume, a shorter injection
duration (or, equivalently, a higher injection rate) results in a
higher likelihood of earthquake triggering (Supplementary
Note 9).

To further understand how injection rate may be used to
minimize or mitigate the seismic hazard, we simulate three
different injection scenarios, and examine the stability of each.
Figure 3 demonstrates how injecting the same volume of fluid can
have very different seismic potential depending on the injection
profile. We observe that injecting at constant rate in scenario (A)
causes the critical stiffness to increase at early times, potentially
triggering earthquakes, and decrease at late times, potentially
resulting in the cessation of earthquakes. In addition, we observe
a dramatic drop in critical stiffness upon stopping injection
followed by recovery to the value prior to injection. Scenario (B)
shows that a higher injection rate yields higher critical stiffness,
implying an increased risk of seismicity for this higher injection
rate. Scenario (C), where the injection rate ramps up in stages,
seems to be most stable because the maximum critical stiffness is
lower than its value in both (A) and (B). If the duration of each
stage is not sufficiently long for pressure to stabilize at the fault,
the ramp-up injection strategy does not counteract the destabiliz-
ing effect of the rate of pore pressure increase at each injection
rate increment. In the Basel enhanced geothermal site, for
example, the duration of injection stages was 1 day55, while the
time for pressure to stabilize at the fault is longer than 1 month—
a conservative estimate based on the distance to the nearest fault
segment to the injection well and the permeability of the fractured
rock25,55. This suggests that a gradual increase in injection rate,
where pore pressure is allowed to stabilize between injection
stages, may be the safest injection strategy.

Summary and outlook. In summary, our model points to the
underlying mechanism by which the rate of fluid pressurization,
and hence the rate of effective normal stress unloading, may explain
several injection-induced seismicity observations1,11–14,16–18. An
abrupt or large increase in injection rate tends to intensify the early-
time destabilizing effect of the rate of change in pore pressure on
frictional sliding, whereas a gradual or small increase in injection
rate tends to lessen it. Our findings, as a whole, suggest injection
strategies to mitigate the seismic risk associated with a wide range of
subsurface operations, from wastewater injection to geologic CO2

sequestration. Of course, a complex interplay of different
mechanisms such as heterogeneous fault stresses, stress changes
from aseismic slip, spatial growth of pore pressure diffusion, and
static and dynamic stress transfer often play a role in the occurrence
and, in particular, the timing of an earthquake4. This emphasizes
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the need to continue to develop and test new models for the forecast
and control of induced seismicity10.

Methods
Methods described in the Supplementary Information. All methods and data
are described in the Supplementary Information, including: (1) Derivation of the
poroelastic spring–slider equations; (2) Governing equations in dimensionless
form; (3) Linear stability analysis; (4) Nonlinear simulations; (5) Analytical vs.
numerical estimates of critical stiffness; (6) Detailed discussion on the quasi-steady-
state approximation; (7) Application to the Denver earthquakes; (8) Phase diagram
of injection-induced seismicity; and (9) Earthquake likelihood vs. injection
duration.

Data availability
All relevant data are available upon reasonable request from the authors.

Code availability
The simulation code is available upon reasonable request from the authors.
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Supplementary Note 1

Derivation of the poroelastic spring–slider equations

Frictional evolution

Frictional evolution is modeled by the rate-and-state constitutive laws, which are capable

of reproducing a wide range of observed seismic and aseismic fault behaviors ranging from

preseismic slip and earthquake nucleation to coseismic rupture and earthquake after slip

[1, 2, 3, 4]. These laws propose that frictional shear stress τ can be described as

τ = µ(V,Θ)Σ′, (1)

where Σ′ is the effective normal stress (the difference between total normal stress and

pore pressure), µ is the coefficient of friction, V is the slider’s velocity or slip rate, and Θ

is a state variable with the physical interpretation of the fractional contact area that is

associated with time dependent creep [5]. It is also related to the age of asperity contacts.

We adopt Ruina’s [3] slip law for the coefficient of friction because it fits experimental

data at variable normal stress better than Dieterich’s [1] aging law [6],

µ(V,Θ) = µ∗ + â ln
V

V∗
+ Θ, (2)

where â is an experimentally derived parameter, V∗ is a normalizing velocity, and µ∗ is a

constant appropriate for steady-state at velocity V∗. Laboratory experiments on dry rocks

show that a step change in normal stress results in a sudden change in the coefficient of

friction followed by a displacement-dependent decay back toward the initial steady-state

value [7, 5, 8, 9]. Linker and Dieterich [5] interpret this as due to a normal stress effect on

the state variable and propose to model the magnitude of the sudden change as α̂Σ̇/Σ.

Although the model is based on step test experiments, it captures, at least qualitatively,

the pressurization-weakening effect on the coefficient of friction observed from ramping
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experiments by Olsson [7]. He performed laboratory tests in which the normal stress was

increased at constant rate while the load point speed was held constant. He found that

shear stress is a function of the normal stress rate. When the normal stress rate was

increased by 10 during steady sliding, the rate of increase of shear stress with normal

stress (coefficient of friction) decreased by a factor of two—a significant effect.

Here, we combine the proposed state evolution model with the effective stress principle

to get

Θ̇ = −V
dc

(Θ + b̂ ln
V

V∗
)− α̂ Σ̇′

Σ′
, (3)

where dc is the characteristic sliding distance required to replace the old contact population

with a new one, b̂ is a constitutive parameter, and α̂ is a scaling factor. Theoretical and

laboratory studies for a sudden change in normal stress show that α̂ ranges from 0 to µ

[5, 10, 11], but more studies are needed to determine the value of α̂ for a gradual change

in normal stress. From momentum balance of forces acting on the slider, the equations

of motion of the system evolution at variable effective normal stress become

U̇ = V0 − V, (4)

V̇ =
1

(T/2π)2

[
U − 1

ks

µ(V,Θ)Σ′
]
, (5)

where T = 2π
√
m/ks is the vibration period of the analogous freely slipping system [12].

Poroelastic coupling

To obtain a physical evolution of effective stress on the frictional surface, we couple

it with a poroelastic model of pore pressure and rock deformation. Starting with the

principle of mass conservation, we specify the change of mass from fluid diffusion to be

∆mdiff , mass accumulation due to rock expansion or fluid compressibility ∂
∂t

(ρVf)∆t, and

injection source term to be Q̃∆t. We assume that both the fluid and rock matrix are
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compressible [13], and so mass balance leads to

∆mdiff =
∂(ρVf)

∂t
∆t− Q̃∆t, (6)

where the change in fluid mass due to pressure diffusion can be written using Darcy’s law

as

∆mdiff = −ρkA(P − P0)

ηL
∆t, (7)

where η is fluid dynamic viscosity, k is permeability, and L is the pressure diffusion length.

The mass accumulation term can be expressed as

∂

∂t
ρVf∆t =

∂

∂t
ρ(P )HA∆t =

∂

∂t
(ρ0(1 + cf(P − P0))(H0 +W )A∆t, (8)

where H is the current height of the slider, ρ0 is the initial fluid density, cf is fluid

compressiblity, H0 is the initial height of the slider, and W is the position of the piston.

When fluid is injected into a rock that is free to deform in the direction orthogonal to

sliding, the addition of mass induces an increase of volume equivalent to

Vf − Vf,0 = AW, (9)

where Vf,0 is the initial fluid volume. We then derive an expression for rock deformation

W from force balance, while using the convention of compression positive,

W =
A

kn

(Σ′0 − Σ + P ), (10)

where kn is the normal spring stiffness and Σ′0 is the initial effective stress. We further

approximate the mass accumulation term to

ρ
∂

∂t
[AH]∆t+ AH

∂P

∂t
∆t = ρ

A

kn

∂P

∂t
∆t+H

ρ0

ρ
cf
∂P

∂t
∆t ≈ ρ

A

kn

∂P

∂t
∆t+H0cf

∂P

∂t
∆t. (11)

Note that we consider that the total stress Σ is analogous to overburden stress in the

earth, and is therefore constant in time. By substituting Eqs. (7)-(10) into Eq. (6), we
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find that pore pressure satisfies a diffusion equation that leads to transient behavior at

early times and steady-state behavior at late times

Ṗ =
keff

n k

ηLA
(P0 − P ) +

keff
n

A
Q, (12)

where η is fluid dynamic viscosity (η = νρ), Q is the volumetric injection rate per unit area

(Q = Q̃/ρA), and keff
n = (1/kn + cfH0/A)−1 is an effective stiffness somewhat equivalent

to the uniaxial bulk modulus or the reciprocal of the uniaxial specific storage per diffusion

length in a continuum [13]. Since the slider has a unit base area (A = 1), the evolution

of the pore pressure as a result of fluid injection follows

Ṗ =
keff

n k

ηL
(P0 − P ) + keff

n Q. (13)
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Supplementary Note 2

Governing equations in dimensionless form

The equations describing the dynamic motion of the spring-poroslider system (Figure. 1B)

with an evolving pore pressure, in dimensional form, are

U̇ = V0 − V, (14)

V̇ =
1

(T/2π)2

[
U − 1

ks

(µ∗ + â ln
V

V∗
+ Θ)(Σ− P )

]
, (15)

Θ̇ = −V
dc

(Θ + b̂ ln
V

V∗
) + α̂

Ṗ

(Σ− P )
, (16)

Ṗ =
keff

n k

ηL
(P0 − P ) + keff

n Q. (17)

Choosing the following characteristic quantities: uc = dc, vc = V∗, µc = µ∗, pc = P0,

τc = µ∗(Σ − P0), θc = µ∗, and tc = dc/V∗, the equations describing the dynamic motion

of the system, in dimensionless form, become

u̇ = v0 − v, (18)

v̇ =
1

ε2

[
u− 1

κ
(1 + a ln v + θ)(σ − p)

]
, (19)

θ̇ = −v(θ + b ln v) + α
ṗ

(σ − p)
, (20)

ṗ = c(p0 − p) + rq, (21)

where κ = (ksdc)/τc, a = â/µc, b = b̂/µc, α = α̂/µc, ε = (T/2π)/tc, c = tc/(ηL/k
eff
n /k),

r = tck
eff
n , and q = Q/pc. The parameter κ is the normalized shear stiffness, and a, b, α are

normalized frictional parameters. The parameter ε is the normalized oscillation period

or ratio of inertial to state-evolution timescales, which may range from 10−8 to 10−6

depending on rupture diameter and shear wave speed. The parameter c is the normalized

diffusivity or ratio of the pore-pressure to the state-evolution timescales, which may range
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from 10−4 to 101 depending on reservoir permeability, bulk modulus (storativity), and

well-fault distance. The parameter rq is the normalized injection rate, which may range

from 10−5 to 10−1 depending on injection rate and reservoir size.
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Supplementary Note 3

Linear stability analysis

The stability of steady frictional sliding to small perturbations in velocity depends on the

state of pore pressure. For a constant pore pressure, linear stability analysis leads to the

steady-state stability condition by Ruina (1983) [3], which shows that the slider is stable

when the dimensionless spring stiffness of the loading system exceeds a critical value given

by

κcrit = (b− a)(σ − p), (22)

and it is unstable otherwise. Pore pressure, however, is not constant in time, and its

evolution depends on the injection rate and on the poroelastic and hydraulic parameters

of the rupture (Eq. (21)). A common approach to stability analysis with time-varying

state variables is the use of the quasi-steady-state approximation [14, 15, 16, 17]. Using

this approach, we freeze time in the pore pressure solution and then perform a linear

stability analysis of the spring–poroslider system at a fixed pore pressure.

The equations describing the quasi-static motion of the spring–poroslider system evolv-

ing at variable pore pressure p, in dimensionless form, are

u̇ = v0 − v, (23)

0 = (σ − p)µ(v, θ)− κu, (24)

θ̇ = −v(b ln v + θ) + α
ṗ

(σ − p)
. (25)

The quasi-steady-state values of the variables are vqss = v0 and θqss = αṗ/(σ−p)/v0−

b ln v0. Linearizing Eqs. (23)–(25) about the quasi-steady-state, and then taking the time
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derivative of Eq. (24), yields

∆v̇ =
v0

a

[
b+

α

v0

ṗ

(σ − p)
− κ

(σ − p)

]
∆v +

v2
0

a
∆θ, (26)

∆θ̇ = −
[
b+

α

v0

ṗ

(σ − p)

]
∆v − v0∆θ. (27)

Equations (26)–(27) represent a 2×2 system of autonomous linear ODEs with solutions

of the form ∆v = V eλt, ∆θ = Θeλt, where λ is the growth rate and t is time. Substituting

these forms into the linearized equations (26)–(27) yields the characteristic equation

a(σ − p)λ2 + (−αṗ+ κv0 − (b− a)(σ − p)v0)λ+ κv2
0 = 0. (28)

If the real part of the roots λi are negative for all i, perturbations from the quasi-

steady-state are damped and the system is stable. If the real part of the roots λi are

positive for some i, then perturbations grow exponentially and the system is unstable. At

<(λi) = 0, we find that the dimensionless critical stiffness is

κcrit = (b− a)(σ − p) +
α

v0

ṗ. (29)

If we express the instability condition (Eq. (29)) in terms of a critical dimensionless

injection rate, above which an earthquake is induced, we obtain

rqcrit =
κ− (b− a)(σ − p0)
α
v0
e−ct − b−a

c
(1− e−ct)

. (30)
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Supplementary Note 4

Nonlinear simulations

To validate our analytical instability criterion (Eq. (29)), we simulate the fully dynamic

equations of motion of the spring–poroslider system (Eqs. (18)-(21)) with the following

initial conditions

u(t = 0) = v0(σ − p0)(1 + (a− b) ln v0)/κ, (31)

v(t = 0) = v0, (32)

θ(t = 0) = 0, (33)

p(t = 0) = p0. (34)

These coupled nonlinear ordinary differential equations are solved in MATLAB using

the ode15s solver for stiff systems. Representative results of motion without fluid injection

and motion while fluid is being injected into the poroslider at a constant rate are shown

in Supplementary Figures 1 and 2, respectively.

The simulation without fluid injection is performed using parameter values a = 0.01,

b = 0.02, α = 1, ε = 10−6, c = 3×10−2, and κ = 0.011. The simulation with fluid injection

is performed using the same parameter values along with rq = 5 × 10−3. The poroslider

is initially sliding steadily at a fixed loading velocity v0 = 1 and a zero fluid injection rate

q = 0. It is then made unstable by suddenly increasing the loading velocity to a new fixed

value v0 = 1.5 and injecting fluid at a constant rate q = 10−9. This triggers two stick-slip

events, consisting of a slow build-up followed by a sudden discharge of accumulated stress.

The buildup occurs at a nearly stationary state v ≈ 0.1 over a time period of 15, whereas

the discharge is significantly faster reaching a peak velocity v ≈ 107, and has a duration of

0.5 (Supplementary Figure 2A). Following the two stick-slip events, the poroslider evolves

toward steady sliding at a relatively low and constant velocity v ≈ 1.5.
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The normalized stress variations with velocity, slip, and time are shown in Supplemen-

tary Figure 2B. Initially, the sudden change in load point velocity and effective normal

stress creates an excess of spring force over the frictional resistance, which in turn ac-

celerates the poroslider. The stress drops to a steady state value corresponding to slip

velocity. The poroslider continues to slip at a high rate until further shortening of the

spring becomes too difficult. It then decelerates to reach a nearly stationary state. During

this stage, the stress builds up to a peak value corresponding to stick velocity, and the

stick-slip cycle repeats. Note that the cycle is not repeated exactly, the stress buildup

after a slip event is dependent on the current effective normal stress. Eventually, the

decrease in effective normal stress terminates the stick-slip cycle and initiates an indef-

inite period of steady-sliding. The stress exhibits decaying oscillations that decrease in

amplitude with time.
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Supplementary Note 5

Analytical vs numerical estimates of critical stiffness

As a whole, Supplementary Figure 2 shows that the analytical critical stiffness (Eq. (29))

is in good qualitative agreement with the numerical simulation results. To validate our

instability criterion quantitatively, we compare our instability criterion against estimates

obtained empirically from the fully dynamic nonlinear simulations (Supplementary Fig-

ure 3). The analytical estimate (blue) works well when the growth rate of perturbations

is large compared to the growth rate of the pore pressure. Initially, when pore pressure

grows rapidly, estimates differ slightly, but they become indistinguishable at late times,

when pore pressure changes relatively slowly. We suspect that the small difference in

estimates at early times is due to, at least partially, the use of the QSSA in our analysis,

which we discuss in detail in Supplementary Note 6.
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Supplementary Note 6

Quasi-steady-state approximation

The quasi-steady-state approximation, in general, is an approach to simplify dynamic

systems of ordinary differential equations with an initial fast transient, after which some

of the dependent variables can be assumed to be in steady-state with regard to the other

slowly evolving dependent variables [16]. In particular, the QSSA is a good approach to

use in our analysis because it allows us to study the stability of steady frictional sliding to

small perturbations in velocity while pore pressure is evolving. The sliding velocity and

the velocity-dependent part of the state variable are in steady state with respect to the

pore pressure. Here, we analyze the QSSA in the context of singular perturbation theory

following the analysis by Segel and Slemrod (1989) [16], identify the small parameter(s)

necessary for the validity of the QSSA, and quantify the error associated with it.

Reduced dimensional equations

As shown in Supplementary Note 1, the dynamics of our poroelastic spring-slider model

is governed by a system of four coupled nonlinear ODEs. Under quasi-static loading,

velocity is the fastest evolving variable of the system and it responds instantaneously

(negligible inertia) to small perturbations. Thus we can focus our analysis on a reduced

system of ODEs at steady-state velocity V = V0,

Θ̇ = −V0

dc

(Θ + b̂ ln
V0

V∗
) + α̂

Ṗ

Σ− P
, (35)

Ṗ =
keff

n k

ηL
(P0 − P ) + keff

n Q, (36)
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with initial conditions

Θ(0) = 0, (37)

P (0) = P0. (38)

Timescales

As a first step in the analysis, we estimate the fast timescale tΘ of the pre-steady-state

period and the slow timescale tP for the evolution of pore pressure. To estimate tΘ we

make the approximation P ≈ P0 in Eq. (35). The solution for the state variable becomes

Θ(t) = Θ̄(e−
V0
dc
t − 1), (39)

where Θ̄ = b̂ lnV0/V∗ − α̂(dc/V0)(Ṗ0/(Σ− P0)). Subsequently, we take

tΘ =
dc

V0

. (40)

Since the pore pressure evolution is independent of the evolution of the state variable

Θ, we estimate tP by solving Eq. (36) with the initial condition P (0) = P0 to obtain

P (t) = P0 +
ηL

k
Q(1− e−

keff
n k

ηL
t). (41)

Similarly, we take

tP =
ηL

keff
n k

. (42)

Scaled dimensionless equations

During the pre-steady-state, it is reasonable to scale time by tΘ, where the dimensionless

time τ is given by

τ =
t

tΘ
. (43)
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Thus, the scaled dimensionless governing equations become

∂θ

∂τ
= −v0(θ + b ln v0) +

α

σ − p
∂p

∂τ
, (44)

∂p

∂τ
=
tΘ
tP

(p0 − p) + tΘq, (45)

with initial conditions

θ(0) = 0, (46)

p(0) = p0, (47)

where we have defined b = b̂/µ0, α = α̂/µ0, and q = Q/p0. After the pre-steady state,

the QSSA is assumed to be valid and tP becomes a reasonable timescale. We introduce a

new dimensionless scaled time t̃ by

t̃ =
t

tP
, (48)

with which the scaled dimensionless governing equations become

tΘ
tP

∂θ

∂t̃
= −v0(θ + b ln v0) +

tΘ
tP

α

σ − p
∂p

∂t̃
, (49)

∂p

∂t̃
= (p0 − p) + tPq. (50)

Singular perturbation

Approximate solutions can now be obtained by methods of singular perturbation theory

[18], for 0 < tΘ/tP � 1. A solution of Eqs. (44)-(45) is obtained of the form

θ(τ) = θ(0)(τ) +
tΘ
tP

θ(1)(τ) + ..., (51)

p(τ) = p(0)(τ) +
tΘ
tP

p(1)(τ) + ..., (52)

where

θ(0)(τ) = θ̄(e−τ − 1), (53)

p(0)(τ) = p0. (54)
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Similarly, the solution of Eqs. (49)-(50) obtained of the form

θ(t̃) = θ0(t̃) +
tΘ
tP

θ1(t̃) + ... , (55)

p(t̃) = p0(t̃) +
tΘ
tP
p1(t̃) + ... , (56)

where

θ0 = −b ln v0 +
α

v0

tΘq

σ − p0

, (57)

∂p0

∂t̃
= tPq. (58)

Note that Eqs. (57)-(58) are associated with initial conditions Eqs. (37)-(38), and rep-

resent the initial state about which we linearized the spring-poroslider system (section 3).

The results of this analysis remain valid for general initial conditions Θ(0) = Θi and

P (0) = Pi [16], where Θi ranges from 0 to Θss and Pi ranges from P0 to Pss. Linearizing

the spring-poroslider system about the true steady-state, where

θ0 = −b ln v0, (59)

∂p0

∂t̃
= 0, (60)

thus yields the Ruina (1983) stability condition [3].

QSSA validity conditions

A necessary aspect of the QSSA is that the duration of the pre-steady-state period is

much shorter than the characterstic time for the pore pressure evolution. An essential

condition for the QSSA to be valid after the pre-steady state is therefore tΘ � tP,

0 < c =

(
dc

V0

)/(
ηL

keff
n k

)
� 1. (61)

Note that the initial condition P (0) = P0 is reasonable for the QSSA only if there

is a negligible relative change |∆P/P0| in pore pressure during the pre-steady state. We
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estimate |∆P/P0| by ∣∣∣∣∆PP0

∣∣∣∣ ≈ 1

P0

∣∣∣∣∂P∂t
∣∣∣∣
max

tΘ. (62)

An additional condition for the validity of the QSSA is therefore

0 < rq =
dck

eff
n

V0

Q

P0

� 1. (63)

Recall that parameter c is the normalized diffusivity or ratio of the pore pressure to

the state evolution timescales and parameter rq is the normalized injection rate, where

r = tΘk
eff
n and q = Q/P0.

Error estimates

This analysis shows that using the QSSA to study the stability of steady frictional sliding

to small perturbations in velocity with an evolving pore pressure is justified when con-

ditions Eqs. (61) and (63) are met. In other words, if in a timescale tΘ sliding reaches

steady state with a constant pore pressure, then assuming that sliding is in a quasi-steady

state with a changing pore pressure is valid when the pore pressure change occurs on a

time scale tP that is long compared to tΘ and ∆P |tΘ is small compared to P0.

Therefore, we expect that the accuracy of our instability criterion depends on di-

mensionless parameters c and rq. Here we evaluate the error in the analytical esti-

mate of the critical stiffness required to trigger the first slip event (Supplementary Fig-

ure 4). We indeed find that the error decreases as c or rq decrease. It becomes small

(< 15%) when the normalized diffusivity and normalized injection rate reach small values

(c ≤ 5× 10−2, rq ≤ 5× 10−3). It is also interesting to note that the QSSA validity may

be extended to instances where c is of order one provided that rq is significantly smaller

than one (green curve).
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Supplementary Note 7

Application to the Denver earthquakes

To bridge the gap between the analysis of the idealized spring-poroslider model and the

real world, we express our instability criterion in dimensional form, and identify values of

dimensionless parameters c and rq that correspond to real-world settings.

In dimensional form, the critical stiffness from the linear stability analysis is

ks,crit =
(b̂− â)

dc

(Σ− P ) +
α̂

V0

Ṗ , (64)

or, equivalently,

ks,crit =

[
(b̂− â) + α̂

dc

V0

Ṗ

(Σ− P )

]
(Σ− P )

dc

, (65)

where the term b̂−â represents the original velocity weakening effect and the dimensionless

term α̂(dc/V0)Ṗ /(Σ− P ) represents an additional weakening effect from fluid pressuriza-

tion. Note that this pressurization term is maximum at early times and is approximately

equal to rq.

The 1960s Denver earthquakes is a good example of a real-world setting, where it

is well-documented that injection of wastewater into the fractured Precambrian granite

gneiss underneath the Rocky Mountain Arsenal triggered the earthquakes and where

injection rate is directly related to the frequency of earthquakes [19, 20]. The reservoir

spans a depth interval from 3.7 to 7 km below the surface. Experimental data on granite

at this depth shows velocity weakening behavior (b̂−â in the range 0.002 to 0.005, µ0 = 0.7

to 0.75) [21].

To identify values of dimensionless parameter c that correspond to this setting, we

estimate the state evolution timescale tΘ and the pore pressure evolution timescale tp:

c =
tΘ
tP
. (66)
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The state evolution timescale tΘ is

tΘ =
dc
V0

. (67)

We find that tΘ ranges from 10 days to 4 months based on field data of the characteristic

slip distance and loading rate (dc = 10−3 to 10−2 m, V0 = 10−9 m s−1) [22, 4].

The pore pressure evolution time scale tP can be transferred from the poroslider model

to field settings,

tP =
ηL

keff
n k︸ ︷︷ ︸

poroslider

=
L

k/η

[
1

kn

+H0cf

]
=

L2

k/η

[
1

Kv

+ φ
1

Kf

]
=

L2

k/η

Ss

ρg
=
L2S

T︸︷︷︸
field

. (68)

We find that tP is approximately 2 years based on a reservoir analysis of the Denver

earthquakes, with transmissivity T = 10−5 m2 s−1, storativity S = 10−5, and characteristic

length scale L = 8× 103 m [23].

In a similar manner, we identify values of dimensionless parameter rq. We translate

this quantity from the poroslider model to field settings:

rq =
dc

V0

keff
n

Q

P0︸ ︷︷ ︸
poroslider

=
dc

V0

keff
n

Qw

P0WB
=
dc

V0

[
1
Kv

+ φ 1
Kf

]−1

L

Qw

P0WB
=
dc

V0

ρg

LS

Qw

P0W︸ ︷︷ ︸
field

, (69)

and evaluate values based on the reservoir analysis and injection data, with reservoir

pressure P0 = 30 MPa, reservoir width W = 3 × 103 m, and field injection rate Qw = 2

to 9 million gal mo−1 [19, 23].

Therefore, reasonable estimates of c and rq for this setting would be in the order of

10−2 to 10−1 and 10−3 to 10−1, respectively. Note that both estimates are much smaller

than one, and thus meet the QSSA validity conditions (Supplementary Figure 5).

Having determined the validity of the QSSA analysis to this setting, we now assess

whether pressurization rate effects were likely significant during fluid injection leading
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to the Denver earthquakes. In dimensionless form, the critical stiffness κcrit is given by

Eq. (S29). Prior to fluid injection, the pore pressure is constant and the critical stiffness,

κcrit = (b− a)(σ − p0), (70)

is estimated to be 0.005 (b−a = 0.003 to 0.007, σ−p0 = 1). Shortly following the start of

fluid injection, the pore pressure increases rapidly and the dimensionless critical stiffness

takes the form:

κcrit

∣∣∣
t=0

= (b− a)(σ − p0) +
α

v0

ṗ
∣∣∣
t=0

= (b− a)(σ − p0) +
α

v0

rq. (71)

This results in an increase in critical stiffness at early times of around 300% (α = 1,

v0 = 1, b − a = 0.005, rq = 10−2), thus indicating that the additional weakening effect

from fluid pressurization is likely significant in this setting.
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Supplementary Note 8

Phase diagram of injection-induced seismicity

To study the influence of reservoir properties on injection-induced seismicity, we sim-

ulate the occurrence of earthquakes as a function of dimensionless injection rate rq =

dck
eff
n Q/(pcV∗) and normalized diffusivity c = dck

eff
n k/(ηLV∗) for the case a = 0, b = 0.01,

α = 1, and κ = 0.011 (Supplementary Figure 6). Diffusivity is varied by varying per-

meability. Each point on the phase diagram represents the maximum slip velocity of a

different simulation run with a particular injection rate and a particular normalized dif-

fusivity. The red dots indicate the occurrence of one or more earthquakes over a finite

time period, whereas the grey dots indicate the absence of earthquakes over the same

period. We observe two distinct regimes depending on the normalized diffusivity: a high

diffusivity regime for c > 1, and a low diffusivity regime for c < 0.01.

When the normalized diffusivity is higher than one, the dimensionless pressure diffu-

sion time is less than one. Pore pressure reaches steady-state on a very short time scale,

and so the rate of change in pore pressure is negligible. To quantify this, we write

ṗ ≈ 0, (72)

p ≈ p0 +
rq

c
. (73)

It is helpful to express the condition for instability (Eq. (29)) in terms of rqcrit so that

an earthquake is triggered if the injection rate is higher than a critical value given by

rqcrit ≈
[
(σ − p0)− κ

(b− a)

]
c. (74)

We find that the injection rate required to trigger an earthquake is proportional to dif-

fusivity c, which explains the simulation results in Supplementary Figure 6: In the regime

of high diffusivity c > 1, qcrit ∼ c. Accordingly, earthquakes are more easily triggered

21



when fluid is injected into a low permeability reservoir rock than a high permeability, for

a fixed effective stiffness.

Conversely, when the normalized diffusivity is lower than 0.001, the dimensionless

pressure diffusion time is more than 100. Pore pressure stays near the initial transient-

state throughout the simulation period and so the magnitude of change in pore pressure

is negligible. To quantify this, we write

ṗ ≈ rq, (75)

p ≈ p0. (76)

If we express the condition for instability in terms of rqcrit, similar to the high diffusivity

case above, we find that the injection rate required to trigger an earthquake is

rqcrit ≈
v0

α

[
κ− (b− a)(σ − p0)

]
. (77)

This also explains the simulation results in Supplementary Figure 6: In the regime of

low diffusivity c < 0.01, qcrit ∼ const. Accordingly, in this regime, earthquake triggering

is independent of permeability. These results, as a whole, suggest that reservoirs with

high hydraulic diffusivity and low stiffness may be safer sites for fluid injection operations

compared to sites with low hydraulic diffusivity and high stiffness.
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Supplementary Note 9

Earthquake likelihood vs. injection duration

Supplementary Figure 7 shows the likelihood of earthquakes as a function of the duration

of the injection period for a fixed total injected volume. As can be seen, the earthquake

likelihood, inferred from the peak critical stiffness, is strongly dependent on the duration

of injection. A shorter injection duration or, equivalently, a higher injection rate results

in a higher likelihood of earthquake triggering.
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Supplementary Figures
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Supplementary Figure 1: Dynamics of the spring-poroslider system without fluid injection,
for velocity-weakening friction. Top figure (A) shows time evolution of normal effective
stress (σ− p), velocity εv, state variable θ, and magnitude of the inertia term εv̇. Bottom
figure (B) shows plots of normalized stress as a function of velocity, time, and slip. Red
curves represent the slip phase, blue curves represent the stick phase, and green curves
represent steady-sliding.
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Supplementary Figure 2: Dynamics of the spring-poroslider system under constant fluid
injection rate, for velocity-weakening friction. Top figure (A) shows time evolution of
normal effective stress (σ − p), velocity εv, state variable θ, and magnitude of the inertia
term εv̇. Bottom figure (B) shows plots of normalized stress as a function of velocity,
time, and slip. Red curves represent the slip phase, blue curves represent the stick phase,
and green curves represent steady-sliding.
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Supplementary Figure 3: Analytical vs. numerical estimates of critical stiffness κcrit

for a case with normalized diffusivity of c = 3 × 10−2 and normalized injection rate of
rq = 5 × 10−3. Solid line represents the analytical estimate, and open circles represent
numerical ones. Blue represents the combined rate and magnitude effect (setting α = 1),
and green represents the magnitude effect (setting α = 0). The black horizontal line
represents κcrit prior to fluid injection.
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Supplementary Figure 4: Error in the instability criterion as a function of c and rq. The
error is taken as the ratio of the maximum difference between the analytical and numerical
estimates of the critical stiffness required to trigger the first slip event to the numerical
estimate. The dimensionless parameter c is varied by varying permeability k, and rq is
varied by varying injection rate Q.
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Supplementary Figure 5: Analytical vs. numerical estimates of critical stiffness κcrit

for a case with normalized diffusivity of c = 1 × 10−2 and normalized injection rate of
rq = 1 × 10−2. Solid line represents the analytical estimate, and open circles represent
numerical ones. Blue represents the combined rate and magnitude effect (setting α = 1),
and green represents the magnitude effect (setting α = 0). The black horizontal line
represents κcrit prior to fluid injection.
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Supplementary Figure 6: Phase diagram of triggered earthquakes as a function of dimen-
sionless injection rate rq and normalized diffusivity c. Diffusivity is varied by varying
permeability k. The dots show the maximum slip rate in log scale, where red repre-
sents occurrence of one or more earthquakes during a finite simulation period, and grey
represents the absence of earthquakes over the same time period.
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Supplementary Figure 7: Earthquake likelihood vs. injection duration. The earthquake
likelihood is computed as a normalized initial critical stiffness for a given injection duration
(κcrit|T/κcrit|Tmin

). The injection duration is computed as the ratio of a fixed total injection
volume to the injection rate (T = V/q).
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