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[1] The effect of spatial concentration fluctuations on the reaction of two solutes, A þ B *
C, is considered. In the absence of fluctuations, the concentration of solutes decays as Adet ¼
Bdet � t�1. Contrary to this, experimental and numerical studies suggest that concentrations
decay significantly slower. Existing theory suggests a t�d/4 scaling in the asymptotic regime
(d is the dimensionality of the problem). Here we study the effect of fluctuations using the
classical diffusion-reaction equation with random initial conditions. Initial concentrations
of the reactants are treated as correlated random fields. We use the method of moment
equations to solve the resulting stochastic diffusion-reaction equation and obtain a solution for
the average concentrations that deviates from �t�1 to�t�d/4 behavior at characteristic
transition time t�. We also derive analytical expressions for t� as a function of Damköhler
number and the coefficient of variation of the initial concentration.
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1. Introduction
[2] Incomplete mixing of solutes and spatial fluctuations

in concentration fields have been identified as a major
cause of failure of deterministic effective models, such as
deterministic diffusion-reaction equations, to accurately
simulating mixing-controlled reactions. Spatial fluctuations
in the concentration of the reactive species can be caused
by the thermal fluctuations of molecules [Ovchinnikov and
Zeldovich, 1978; Toussaint and Wilczek, 1983], turbulent
flows [Hill, 1976] or highly nonuniform laminar flows
(e.g., flow in porous media) [Tartakovsky et al., 2008,
2009; Raje and Kapoor, 2000; Luo et al., 2008; Bolster
et al., 2011; Le Borgne et al., 2011].

[3] In the case of porous media, the fluctuations cause
the classical advection-dispersion-reaction (ADR) equa-
tions with constant transport coefficients to overestimate
the extent of the mixing controlled reactions [Battiato and
Tartakovsky, 2011; Battiato et al., 2009; Tartakovsky
et al., 2009; Le Borgne et al., 2010]. Similar problems
occur in a purely diffusive systems where thermal fluctua-
tions of molecules lead to incomplete mixing [Ovchinnikov
and Zeldovich, 1978; Toussaint and Wilczek, 1983]. In
order to tackle the discrepancies with traditional homoge-
nous (ADE) equations, a variety of novel models have
emerged. These include stochastic Langevin approaches
[Tartakovsky et al., 2008; Tartakovsky, 2010], perturbation

models [Luo et al., 2008], and adaptations of a variety of
popular nonlocal models such as continuous time random
walks [Edery et al., 2009, 2010], fractional ADEs [Bolster
et al., 2010], multirate mass transfer [Donado et al., 2009;
Willmann et al., 2010], memory effect models [Dentz et al.,
2011] and models with time-dependent rate coefficients
[Sanchez-Vila et al., 2010]. However, many of these
approaches involve effective parameters, which cannot be
computed a priori from the physical properties of the sys-
tem and have to be found through model calibration with
experimental data.

[4] In this work, we use the moment equation approach
[e.g., D. M. Tartakovsky et al., 2002, 2003; A. M. Tartakovsky
et al., 2003, 2004a, 2004b] to quantify the effect of incom-
plete mixing in diffusion-reaction systems. We focus on a
nonlinear reaction involving diffusion of two species, A
and B, that react with each other kinetically as A þ B! C.
We assume that A and B have the same initial concentra-
tion and are macroscopically well mixed before the onset
of the reaction. In the absence of spatial fluctuations (i.e., a
fully mixed system at all times), a well known analytical
solution exists and the average concentrations decay as
Adet ¼ Bdet � t�1.

[5] Recent numerical studies by Benson and Meer-
schaert [2008] and de Anna et al. [2011] suggest that while
this analytical solution may be valid at early times, at late
times a different slower scaling emerges. These observa-
tions are in line with previous observations from the
physics community [Hill, 1976; Toussaint and Wilczek,
1983; Kang and Redner, 1985] and a variety of theoretical
models [Ovchinnikov and Zeldovich, 1978; Toussaint and
Wilczek, 1983; Kang and Redner, 1985]. The latter are
based on late time asymptotic arguments, and suggest a late
asymptotic decay of the concentrations that is proportional
to t�d=4, where d is the spatial dimensionality of the prob-
lem. These models established that, for sufficiently fast
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reactions, initial fluctuations in the concentrations cause seg-
regation of the reactants into separate islands of A and B,
(i.e., parts of the domain occupied dominantly by species A
or B). In this situation, reactions are limited by how quickly
diffusion of particles can cause mixing of A and B across
the boundaries of the islands. Thus, the mixing of species is
limited and the temporal decay of the concentrations slows
down. This anomalous scaling of diffusion-limited reactions,
related to segregation of reactants into islands, was experi-
mentally observed by Monson and Kopelman [2004].

[6] These past theoretical works have focused primarily
on the establishment of the late asymptotic behavior of the
concentrations. Also, in the previous studies the initial fluc-
tuations of each species were assumed to be uncorrelated
(fluctuations with zero correlation length). The standard
deviation of the fluctuations was implicitly assumed to be
equal to the square root of the initial number of the reactive
particles. In a number of important applications (e.g., tur-
bulent mixing and transport in porous media), the initial
fluctuations in concentrations may have nonzero correlation
lengths. For example, if the reactive solutions are rapidly
brought in contact by nonuniform advection (and allowed
to diffuse and react), then the initial correlation length of
the concentration fluctuations will depend on the statistics
of the velocity field, and can in principle be as large as the
size of the domain. The standard deviation of the concen-
trations in these applications represents the degree of mix-
ing, and can also be arbitrarily large.

[7] To study the effect of fluctuations, we employ a diffu-
sion-reaction equation with random initial conditions. In the
past, diffusion-reaction type equations have been used to study
the effect of random concentration fluctuations on scales rang-
ing from the molecular scale [Ovchinnikov and Zeldovich,
1978] to the field scale [Sanchez-Vila et al., 2008], though
advection is usually also considered in the latter case. Here the
initial concentrations of the reactants are treated as correlated
random fields with spatially constant and equal statistical
means and variances. The random initial conditions render the
diffusion-reaction equation stochastic. We use the moment
equation approach to derive deterministic equations for the
mean and variance of the concentrations. The solution for the
mean concentrations shows that the average concentration
deviates from � t�1 to � t�d=4 behavior at a characteristic
transition time t�, which depends on the Damköhler number,
Da. We obtain analytical expressions for t� as a function of
Da. The solutions are used to study the effect of initial average
concentration, variance, correlation length, cross correlation,
and the size of the domain on the Aþ B * C reaction.

2. Problem Formulation
[8] Our goal is to study the effect of random fluctuations

in concentration fields on chemical reactions. Specifically,
we study an irreversible reaction between two species, A
and B, that is described by a diffusion-reaction equation:

@Iðx; tÞ
@t

¼ D�Iðx; tÞ � kAðx; tÞBðx; tÞ; x 2 � I ¼ A;B;

(1)

where A and B are the concentrations of species A and B, D
is the diffusion coefficient, k is the rate coefficient of the

irreversible reaction, and � ¼ r2 is the Laplace operator.
We consider two special cases: (1) diffusion in an infinite
d-dimensional domain � (d ¼ 1; 2; 3) and (2) diffusion in a
finite one-dimensional domain � ¼ ð0; LÞ subject to peri-
odic boundary conditions.

[9] We treat the concentrations as random variables :

Aðx; tÞ ¼ Aðx; tÞ þ A0ðx; tÞ Bðx; tÞ ¼ Bðx; tÞ þ B0ðx; tÞ; (2)

where the overbar designates an ensemble average and the
prime denotes zero-mean fluctuations about the average.
We assume equal initial ensemble averaged concentrations
of A and B:

Aðx; 0Þ ¼ Bðx; 0Þ ¼ C0: (3)

Unlike previous work [Ovchinnikov and Zeldovich, 1978;
Toussaint and Wilczek, 1983], we assume the initial fluctu-
ations, A0ðx; 0Þ and B0ðx; 0Þ, to be spatially correlated fields.
This allows us to study the effect of spatial correlation of
the concentrations on the chemical reaction. In the follow-
ing we study this system for several initial autocovariance
functions. Specifically, we consider initial exponential and
delta autocovariance functions. The exponential autocovar-
iance function has a form:

A0ðx; 0ÞA0ðy; 0Þ ¼ B0ðx; 0ÞB0ðy; 0Þ ¼ �2e�
jx�yj

l ; (4)

where �2 is the initial variance of the concentrations (� is the
initial standard deviation of fluctuations) and l is the initial
correlation length. Assuming that the initial fluctuations of A
and B are caused by the same physical processes, we pre-
scribe the same variances and correlation for both reactants.

[10] When the correlation length is small relative to the
size of the domain, one can replace the exponential autoco-
variance function with the delta autocovariance function:

A0ðx; 0ÞA0ðy; 0Þ ¼ B0ðx; 0ÞB0ðy; 0Þ ¼ �2ld�ðx� yÞ: (5)

[11] In a well-mixed purely diffusive system (in the ab-
sence of reactions), the fluctuations in the concentrations
are caused by thermal fluctuations of particles. In this case,
the fluctuations have a correlation length, l, of the order of
the particle diameter, and under most circumstances the
delta autocovariance function will provide an accurate rep-
resentation of the spatial correlation of the fluctuations. In
other nonreactive, but hydrologically related stochastic
model studies the delta correlation has been shown to give
asymptotically similar results as short-range correlation
functions such as exponential and Gaussian [e.g., Neu-
weiler et al., 2003]. We show in section 4.2.2 that the delta
function approximation can be used only to predict the
mean and variance of the concentrations for times larger
than tD=8�, where tD is the diffusion time:

tD ¼
l2

D
: (6)

In the absence of reaction, tD is the time it takes for a
region of size l to become well mixed by diffusion. For
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smaller times, the delta function approximation leads to
unphysical behavior of the ensemble average and/or var-
iance of the concentrations.

[12] Initial large-scale concentration fluctuations can be
caused by poor mechanical mixing of two solutes due to
fluctuations in advective velocities that brought two solutes
in contact. In this case, the correlation length depends on
the degree of mixing and can be of the same order (or
smaller) as the domain size. Under such conditions, we
chose the exponential autocovariance function (4) to
describe initial correlation of the fluctuations of A and B,
but one could also consider other correlation functions.

[13] To complete the problem formulation, we specify a
cross-covariance function A0ðx; 0ÞB0ðy; 0Þ at time t ¼ 0. We
consider two types of cross correlations: anticorrelation
and no cross correlation. The initial anticorrelation assumes
that in a volume with a large concentration of one reactant
(relative to the average value of the concentration) the con-
centration of another reactant is small. The anticorrelation
is described by a cross-covariance function:

A0ðx; 0ÞB0ðy; 0Þ ¼ ��2e�
jx�yj

l (7)

if both concentrations, A and B, have the initial exponential
correlation and

A0ðx; 0ÞB0ðy; 0Þ ¼ ��2ld�ðx� yÞ (8)

if A and B are initially � correlated.
[14] For completeness, we also consider a case where the

initial cross covariance is zero,

A0ðx; 0ÞB0ðy; 0Þ ¼ 0: (9)

[15] Kang and Redner [1985] previously justified the emerg-
ing scaling law t�

d
4 with the formation of islands of segregated

solutes. The initial anticorrelation is a necessary but not a suffi-
cient condition for the existence of the islands and the initial
condition (7) or (8) does not imply presence of islands at t¼ 0.
Furthermore, the following analysis shows that after the onset
of the reaction, the scaling changes from t�1 to t�

d
4 regardless

of the initial cross correlation, but the transition time from one
scaling law to another depends on variance, correlation length
and the form of cross-covariance function.

[16] The random initial concentrations render the diffu-
sion-reaction equation (1) stochastic. The full solution of
this equation is the probability density functions for distri-
bution of A and B. In this work, we are mainly interested in
the average behavior of the concentrations and we focus on
the leading moments of the distributions namely the mean
(ensemble averaged) concentrations and the concentration
variances (a measure of uncertainty). The differential equa-
tions for the leading moments are obtained using the
method of moment equations [D. M. Tartakovsky et al.,
2003]. The details of the derivation of the moment equa-
tions are given in Appendix A.

[17] The average concentrations A and B satisfy an ordi-
nary differential equation:

@I

@t
¼ �kA B� kA0B0 ; I ¼ A;B; (10)

where A0ðx; tÞB0ðx; tÞ ¼ B0ðx; tÞA0ðx; tÞ. In equation (10), A
and B satisfy the same initial condition (equation (3)), and
hence,

AðtÞ ¼ BðtÞ: (11)

[18] Now let us define f ðx; y; tÞ ¼ A0ðx; tÞB0ðy; tÞ �
A0ðx; tÞA0ðy; tÞ and gðx; y; tÞ ¼ A0ðx; tÞB0ðy; tÞ þ A0ðx; tÞ
A0ðy; tÞ. The governing equations for these functions are
(Appendix A)

@f ðx; y; tÞ
@t

¼ 2D�f ðx; y; tÞ (12)

@gðx; y; tÞ
@t

¼ 2D�gðx; y; tÞ � 4kAðx; tÞgðx; y; tÞ; (13)

where y 2 �.
[19] It is important to note that in the derivations of (13)

we disregard the third moment. Once we have solved for f
and g, the autocovariance and cross covariance can be cal-
culated as 2A0ðx; tÞA0ðy; tÞ ¼ gðx; y; tÞ � f ðx; y; tÞ and

2A0ðx; tÞB0ðy; tÞ ¼ gðx; y; tÞ þ f ðx; y; tÞ.
[20] The autocovariances A0ðx; tÞA0ðy; tÞ and B0ðx; tÞ

B0ðy; tÞ (A0ðx; tÞA0ðy; tÞ ¼ B0ðx; tÞB0ðy; tÞ) satisfy either ini-
tial conditions (4) or (5) and the cross covariance
A0ðx; tÞB0ðy; tÞ satisfies initial conditions (7), (8) or (9)
depending on the type of initial autocorrelation and cross
correlation of the fluctuations. These initial conditions
define initial conditions for f and g.

[21] The boundary conditions for the autocovariance
and cross covariance defined on the infinite d-dimensional
domain � are

gðx; y; tÞ ¼ 0; xi ¼ 61; i ¼ 1; . . . ; d; (14)

f ðx; y; tÞ ¼ 0; xi ¼ 61; i ¼ 1; . . . ; d; (15)

respectively, where x ¼ ðx1; x2; x3ÞT and y ¼ ðy1; y2; y3ÞT .
These boundary conditions specify that the autocovariance
and cross covariance are zero far away from the point y.
Furthermore, without loss of generality, we set yi ¼ 0
(i ¼ 1; . . . ; d).

[22] In the case of the one-dimensional periodic finite
size domain ð0; LÞ, the domain can always be centered
around the point y (i.e., y in the one-dimensional version of
(12) and (13) can be set to y ¼ y� ¼ L=2). For the consid-
ered initial conditions, only homogeneous Neumann
boundary conditions for equations (12) and (13) can satisfy
the periodic conditions. Then the appropriate boundary
conditions for equations (12) and (13) are

@f ðx; y; tÞ
@x

¼ 0; x ¼ 0; L; (16)

@gðx; y; tÞ
@x

¼ 0; x ¼ 0; L; (17)

respectively.
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3. Solution of the Deterministic Diffusion-
Reaction Equation

[23] If the initial fluctuations are absent or very small
and can be disregarded, then the diffusion-reaction equa-
tion reduces to a deterministic equation:

@Idet

@t
¼ �kI2

det; Idet ¼ Adet;Bdet; (18)

where the subscript det stands for the deterministic concen-
trations (with zero initial fluctuations). The solution of
this equation, subject to the initial conditions Adetð0Þ ¼
Bdetð0Þ ¼ A0, is

AdetðtÞ ¼ BdetðtÞ ¼
A0

A0kt þ 1
: (19)

4. Moment Equations for Initially
Anti-Cross-Correlated A and B

[24] For initially anticorrelated A and B, the auto-
covariance and cross-covariance functions satisfy the initial
condition

A0ðx; 0ÞA0ðy; 0Þ ¼ �A0ðx; 0ÞB0ðy; 0Þ ¼ �2�ðx� yÞ; (20)

where �ðx� yÞ is the exponential or delta correlation func-
tion. For this initial condition, we can solve the moment
equations (12) and (13) by recognizing that A0ðx; tÞ
A0ðy; tÞ ¼ �A0ðx; tÞB0ðy; tÞ, f ¼ 2A0ðx; tÞB0ðy; tÞ and g � 0.
Then equation (12) can be reduced to

@A0ðx; tÞB0ðy; tÞ
@t

¼ 2D�A0ðx; tÞB0ðy; tÞ; (21)

subject to initial condition (20). The boundary conditions
for the infinite d-dimensional domain are given by equation
(15). For the one-dimensional domain, equation (21) is sub-
ject to the homogeneous boundary conditions that can be
obtained from equations (16) and (17). Note that equation
(12) for f is exact, and therefore, the system of the moment
equations (10) and (21) is also exact.

4.1. Solution of the Moment Equations for Finite
One-Dimensional Domain

[25] In a one-dimensional domain, the one-dimensional
version of the diffusion equation for the cross covariances
satisfies the homogeneous Neumann boundary conditions
(17) and the initial condition (7). The solution can be
found using the method of separation of variables and is
given by

A0ðx; tÞB0ðy�; tÞ ¼ c0 þ
X1
n¼1

cnðy�Þe�2Dn2�2

L2 tcos
n�x

L

� �
; (22)

where y� ¼ L=2,

c0 ¼ �
2l�2

L
1� e�

L
2l

h i
; (23)

cn ¼ �
2l�2

L
2cos

n�

2

� �
� e�

L
2l � e�

L
2lcos ðn�Þ þ n�l

L
e�

L
2lsin ðn�Þ

� �

� 1þ n2�2l2

L2

� ��1

:

(24)
[26] The variance of the concentrations A and B is

A0A0 ðtÞ ¼ B0B0 ðtÞ ¼ �A0ðy�; tÞB0ðy�; tÞ; (25)

and the mean concentrations AðtÞ and BðtÞ (AðtÞ ¼ BðtÞ)
satisfy the nonlinear ordinary differential equation:

@I

@t
¼ �kI

2 � kA0ðy�; tÞB0ðy�; tÞ; I ¼ A;B: (26)

[27] In general, this equation should be solved numeri-
cally. For very large domains and/or early times
(Dt=L2 � 1), the series in equation (22) converges slowly,
but the solution for this case can be simplified by solving
the diffusion-reaction equation in the infinite domain
(L!1 limit).

4.2. Solution in the L fi ‘ Limit

[28] In a system with observation time much smaller

than L2

D , we can assume that the domain � is infinite. Then
equation (21), subject to boundary condition (15) and initial
cross covariance A0ðx; 0ÞB0ðy�; 0Þ, has a solution [Carslaw
and Jaeger, 1972]:

A0ðx; tÞB0ðy�; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
8�Dt
p

Z
�

exp �ðx� zÞ2

8Dt

" #
A0ðx; 0ÞB0ðy�; 0Þdz:

(27)

4.2.1. Initial Exponential Correlation of Fluctuations
[29] In a one-dimensional domain, the cross covariance

(27), subject to the initial condition (7), is given by

A0ðx;tÞB0ðy�;tÞ¼� �2ffiffiffiffiffiffiffiffiffiffi
8�Dt
p

Z 1
�1

exp �ðx�zÞ2

8Dt

" #
�exp �jz�y�j

l

� �
dz:

(28)

[30] The variance and covariance of the concentrations
can be found by setting x¼y� in equation (28) such that

A0ðy�;tÞA0ðy�;tÞ ¼B0ðy�;tÞB0ðy�;tÞ ¼�A0ðy�;tÞB0ðy�;tÞ

¼�2exp
2Dt

l2

� �
erf

ffiffiffiffiffiffiffiffi
2Dt
p

l

� �
�1

� �
:

(29)

This is a function of time only, and not of space. Expanding
this solution in a Taylor series and gathering low-order
terms yields a simplified form for the cross variance (and
the variances of the concentrations):

A0ðy�;tÞB0ðy�;tÞ ¼A0B0 ðtÞ¼

��2 1� 8D

�l2

� �1

2t

1

2

0
B@

1
CA; t� tD

2

��2 l2

2�D

� �1

2
t
�

1

2; t	 tD
2
:

8>>>>>>>><
>>>>>>>>:

(30)
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4.2.2. Initially Delta-Correlated Fluctuations
[31] For initially delta function correlated A and B, the

cross covariance in the d-dimensional domain takes the
form

A0ðx;tÞB0ðy�;tÞ ¼� �2ld

ð8�DtÞd=2

Z
�

exp �ðx�zÞ �ðx�zÞ
8Dt

� �
�ðz�y�Þdz

¼� �2ld

ð8�DtÞd=2
exp �ðx�y�Þ �ðx�y�Þ

8Dt

� �
:

(31)

Setting x¼y�, we obtain an expression for the variance and
covariance of the concentrations:

A0ðtÞA0ðtÞ ¼�A0ðtÞB0ðtÞ ¼ �2ld

ð8�DtÞd=2
: (32)

[32] The solution for the variance of A, equation (32), is
obtained by approximating the exponential autocorrelation
function with a delta autocorrelation function. This approx-
imation is not valid for small times. For example, at time
t ¼ 0 the variance of the concentration should be equal to
�2, but equation (32) results in an infinite variance. Also,
the averaged concentration, obtained from equations (10)
and (32), increases for times smaller than

t <
tD
8�
; (33)

which is unphysical for the reaction system considered
here. To rectify the situation with equation (32), we neglect
time smaller than t¼ tD=8�, essentially assuming that no,
or negligible, reaction occurs until then. At time t¼ tD=8�
the variance of A, given by equation (32), is equal to the
initial variance, A0A0 ðtDÞ¼�2, and for time t> tD the aver-
age concentration decreases with time, as should be the
case for the irreversible reaction studied here. We shift
time by introducing a new variable, �¼ t� tD=8�, and
rewrite equation (10) as

@~A

@�
¼�k~A

2
þk

�2ld

ð8�DÞd=2
ð�þ tD

8�
Þ�d=2; � >0; (34)

subject to the initial condition

~A ð�¼0Þ¼ A0; (35)

where ~Að�Þ¼Aðtþ tD=8�Þ. The solution of equation (34)
can be found analytically as

~A ð�Þ ¼

�
ffiffiffiffiffiffiffiffiffi
�ak
p

ð� þ tD
8�Þ

1�d
4ðc1Jb1ðwÞ � c1Jb2ðwÞ � 2J�b1 ðwÞÞ � c1Jb3ðwÞ

2kð� þ tD
8�Þðc1Jb3ðwÞ þ J�b3 ðwÞÞ

;

(36)

where c1 is given by the initial condition (35), JaðzÞ is a
Bessel function of the first kind, and

a ¼ �2ld

ð8�DÞ
d
2

; w ¼ 4
ffiffiffiffiffiffiffiffiffi
�ak
p

4� d
� þ tD

8�

� �1�d
4

; b1 ¼
2� d

4� d
;

b2 ¼
6� d

4� d
;

(37)

b3 ¼ �
2

4� d
: (38)

Setting d ¼ 1 in equation (32) recovers the scaling behavior
of the one-dimensional covariance with initial exponential
correlation, equation (30), for t > tD=2. This means that for
times greater than t > tD=2, the average concentration for-
gets the initial correlation of the fluctuations and the initial
� correlated can be taken as a good approximation. For
time smaller than t0, the solution can be obtained using the
covariance function (30).

[33] Defining a new variable, r ¼ jx� yj, we rewrite

equation (31) as A0A0 ðr; tÞ ¼ � �2ld

ð8�DtÞd=2 exp ½� r2

8Dt
: The cor-

relation length of the fluctuations can be defined as

�ð�Þ ¼
Z 1

0

A0A0 ðr; �Þ
A0A0 ð0; �Þ

dr ¼
Z 1

0
exp � r2

8D � þ tD
8�

	 

 !

dr

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�D � þ tD

8�

� �r
:

(39)

[34] The correlation length is a measure of the average size
of a subdomain where one of the two reactants is absent. For

time � 	 tD
8�, � grows as ðD�Þ

1
2. In this regime, the concentra-

tion field is composed of segregated ‘‘islands’’ of A and B
[Kang and Redner, 1985]. Then �ðtÞ becomes a statistical
measure of the size of these islands, and according to equation
(39) the size grows with time as t

1
2. A similar scaling law for

the size of the islands was phenomenologically postulated,
but not explicitly derived, by Kang and Redner [1985].

5. Moment Equations for A and B With Initially
Zero Cross Correlation

[35] Here we consider a case when A and B are initially
uncorrelated, A0ðx; 0ÞB0ðy; 0Þ ¼ 0. We obtain a solution for
the mean and variance of the concentrations in a one-dimen-
sional infinite domain. For conciseness, here we consider a
solution for the delta function correlation. The solution for
the exponential correlation function can be obtained in a
similar way. Using the delta function approximation of the
exponential autocovariance function for A and B, equations
for the mean and variance of the concentration have the
form (Appendix B)

A0B0 ðtÞ ¼ �2l

2
ffiffiffiffiffiffiffiffiffiffi
8�Dt
p e

�4k

Z t

0
Aðt0Þdt0

� 1

2
64

3
75; t > 0; (40)

@A

@t
¼ �kA

2 � k
�2l

2
ffiffiffiffiffiffiffiffiffiffi
8�Dt
p e

�4k

Z t

0
Aðt0Þdt0

� 1

2
64

3
75; t > 0; (41)
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A0A0 ðtÞ ¼ �2l

2
ffiffiffiffiffiffiffiffiffiffi
8�Dt
p e

�4k

Z t

0
Aðt0 Þdt0

þ 1

2
64

3
75; t > 0; (42)

subject to the initial condition Aðt ¼ 0Þ ¼ A0:
[36] As in the case of initially anticorrelated A and B,

using the � correlation approximation of the exponential
correlation function leads to an unphysical behavior such
as infinite variance of the concentrations, A0A0 ðtÞ, at time
zero. To make use of the � correlation approximation, we
assume that the reaction does not occur until t ¼ tD=8� and
equations (40)–(42) can be rewritten using a new variable,
� ¼ t � tD, as

A0B0 ð�Þ ¼ �2l

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�Dð� þ tD=8�Þ

p e
�4k

Z �

0
Að� 0 Þd� 0

� 1

2
64

3
75; � > 0;

(43)

@A

@�
¼�kA

2�k
�2l

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�Dð�þ tD=8�Þ

p e
�4k

Z �

0
Að� 0Þd� 0

�1

2
64

3
75; � >0;

(44)

A0A0 ð�Þ¼ �2l

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�Dð�þ tD=8�Þ

p e
�4k

Z t

0
Að� 0Þd� 0

þ1

2
64

3
75; � >0;

(45)

subject to the initial condition Að�¼0Þ¼A0.

[37] The covariance of A is given by equation (B16).
The correlation length is given by

�ð�Þ ¼
Z 1

0

A0A0 ðr; �Þ
A0A0 ð0; �Þ

dr ¼
Z 1

0
exp ð� r2

8Dð� þ tD=8�ÞÞdr

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�Dð� þ tD=8�Þ

p
;

(46)

which at late times scales as �
1
2. This is the same scaling

behavior as we saw earlier for the correlation length for
fluctuations with initial anticorrelation (equation (39)). The
comparison of equations (39) and (46) shows that the corre-
lation length of A (and B) for initially anticorrelated A and
B grows with the same rate as the correlation length for ini-
tially uncorrelated A and B.

6. Results: Impact of Concentration Fluctuations
on Effective Kinetics
6.1. Infinite Domain

[38] For the anticorrelated case, Figures 1 and 2 show
the averaged concentration and the standard deviation of
the concentration for two different Damköhler numbers,

Da ¼ tD
tk
¼ A0kl2

2D , defined as the ratio between the character-

istic diffusion and reaction times, tD ¼ l2

2D and tk ¼ 1
A0k. In

Figure 3 we compare the anticorrelated case with the zero
cross-correlated case. In Figures 1–3, at early times when
variance and covariance of the concentrations are relatively
small, A and B follow the deterministic solution (19). At

later times, when A and B become comparable to
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�A0B0
p

,

Figure 1. Average concentration (red dotted line) versus time in a one-dimensional infinite domain.
The blue dot is the concentration at the diffusion time tD ¼ l2

2D, and the black dot is the concentration at
the transition time given by equation (50). The black dashed line is

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�A0B0
p

, the magenta dashed line
shows t�1 scaling, and the green line shows t�1=4 scaling. The parameters are l ¼ 0:1, D ¼ 10�6,
�2 ¼ 10�5, and k ¼ 10, which correspond to Da > C�0.
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the average concentration deviates from the deterministic
solution. Note that the term A0B0 is negative for all the ini-
tial conditions considered (equations (29), (32) and (43)).
Therefore, �A0B0 is a source term while �A2 is a sink term
for equation (10), and the system dynamically balances at

I �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�A0B0
p

(I ¼ A;B). Since A0B0 � t�d=2 (equations
(30), (32) and (43)), the average concentration switches its
behavior from t�1 to t�d=4. The coefficient of variation,

CvðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A0A0 ðtÞ

q
AðtÞ

; (47)

increases with time and asymptotically approaches unity.

For the early times, A
2 	 A0A0 ¼ �A0B0 and the term

kA0B0 in equation (26) can be ignored. Thus, A behaves like

the deterministic concentration, Adet ¼ A0

A0 ktþ1
. As time

increases, so does the covariance term �kA0B0 relative to

the reaction term kA
2
, and this slows the decay of A.

[39] Figure 3 compares the mean and the standard devia-
tion of the concentrations for different initial cross correla-
tions of fluctuations of A and B. The solutions are obtained
for one-dimensional infinite domains for initially anticorre-
lated (equation (8)) and uncorrelated (equation (9)) fluctua-
tions. In both cases, the initial autocovariance function (5)
is assumed. Figure 3 shows that the variance of the concen-
tration A (and B) is larger for initially anti-cross-correlated
fluctuations than for initially uncorrelated fluctuations for

all times greater than zero. The same is true for the average
concentrations. Also, average concentrations for initially
anti-cross-correlated fluctuations transition earlier to the
t�1=4 behavior than the average concentrations with ini-
tially uncorrelated fluctuations.

6.2. Finite Domain

[40] Figures 4–6 show the average one-dimensional con-
centration AðtÞ versus time for various parameters obtained
from the numerical integration of equation (26). Figure 4
depicts A versus t for various domain sizes L. The azure
line shows the deterministic solution (19) without the fluc-
tuations. This solution decreases to zero as t�1 after
t > ðA0kÞ�1. As for the infinite domain, the average con-
centration first follows the deterministic solution (scales as
t�1), but later the scaling of the average concentration
changes to t�1=4 and finally asymptotically approaches c0.
Thus, the fluctuations slow the rate of decrease in the con-
centration. As the domain size L increases, the solution rap-
idly approaches the solution for the infinite domain.

[41] As a result of the reaction, the average concentration
decreases from its initial value to an asymptotic value c0

(equation (23)) that depends on the initial variance of the
concentration, the correlation length, and the size of the do-
main. This means that, on average, not all of A and B react.
This is because owing to initial random fluctuations in con-
centrations A and B, in a domain of finite size in each par-
ticular realization, the initial total mass of A is not exactly
equal to the initial total mass of B. This shows that the ran-
dom concentration field in a finite domain has not attained

Figure 2. Average concentration (red dotted line) versus time in a one-dimensional infinite domain.

The blue dot is the concentration at the diffusion time tD ¼ l2

2D, and the black dot is the concentration at

the transition time given by equation (50). The black dashed line is
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�A0B0
p

, the magenta dashed line
shows t�1 scaling, and the green line shows t�1=4 scaling. The parameters are l ¼ 0:1, D ¼ 10�2,
�2 ¼ 10�5, and k ¼ 10, which correspond to 1 < Da < C�0.
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ergodic conditions and the spatial average of the concentra-
tion in each particular realization is not equal to its ensem-
ble average. Problems associated with ergodicity are
common in the application of stochastic models to water
resources. The system becomes ergodic as the domain size
approaches infinity. The standard deviation of the concen-
trations decreases from its initial value to the constant c0.
The asymptotic value c0 goes to zero with decreasing l/L
and decreasing initial variance of the fluctuations.

[42] Figure 5 displays A versus t for various correlation
lengths l. The solution for the average concentration with
initial correlation length l ¼ 0 is equivalent to the solution
for deterministic concentration (blue line). For l > 0, the
average concentration follows the deterministic solution
(decreases as t�1) at early times, but later the average con-
centration decays as t�1=4 and eventually approaches the
asymptotic value c0.

[43] Figure 6 shows A versus t for different �2. In the
limit �2 ¼ 0, the system is a deterministic homogeneous
mixture and the solution for A is given by Adet (blue line).
For �2 > 0, A follows Adet (decreases as t�1) at the early
time, and later A decays as t�1=4 and eventually approaches
the asymptotic value c0.

[44] It is evident from Figures 4–6 that disregarding fluc-
tuations leads to an overestimation of the extent of the reac-
tion and an underestimation of the averaged concentration.
The error increases with increasing �2 and l and decreasing
L. Such quantitative results play an important role in deter-
mining reaction rates in real systems such as porous media
or turbulent streams where mixing is often incomplete and
segregation of reactants into islands is commonplace. The
analysis in this work is presented to provide an analytical
foundation for extensions to such cases.

7. Characteristic Transition Time t*

[45] In a purely diffusive system, the variance of the
fluctuations, �2, is usually small, regardless of the origin of
the fluctuations. Therefore, the initial coefficient of varia-
tion, Cv0, should be a small number:

0 < Cv0 ¼
�

A0
< 1: (48)

[46] We demonstrated above that in the diffusion-reac-
tion system, equation (1), for any nonzero Cv0 ¼ Cvð0Þ at
late times CvðtÞ approaches unity. The asymptotic increase
of the coefficient of variation from an arbitrarily small
value to unity is the primary cause of different early and
late time scalings of the average concentrations.

[47] Here we derive estimates for the characteristic tran-
sition time t� after which the scaling behavior of the aver-
age concentrations change to t�d=4. We obtain the estimates
of t� for diffusion and reaction in infinite d-dimensional
domains for fluctuations with different initial autocorrela-
tion and cross correlation.

7.1. Infinite One-Dimensional Domain: Initially
Anticorrelated Fluctuations With Exponential
Autocovariance Function

[48] For early times, Cv � 1; therefore, the average con-
centrations are well described by the solution for the deter-
ministic concentration Adet. The solution will deviate from
Adet at time t�, when the term A0B0 is comparable to �A2.

[49] The characteristic time t� can be found as the solu-
tion of an algebraic equation:

Adetðt�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�A0B0 ðt�Þ

q
: (49)

The solution of this equation depends on the Damköhler

number, Da ¼ A0kl2

D . For times greater than the characteris-
tic chemical time tk ¼ 1

A0k, the deterministic solution

decreases as Adet � ðktÞ�1.
[50] We consider t� for different Damköhler numbers :

(1) Da > C�1
v0 , fast reaction and tk < tD (Figure 1); (2)

1 < Da < C�1
v0 , medium reaction and tk < tD (Figure 2);

and (3) Da < 1, slow reaction and tk > tD.

7.1.1. Case 1: Da > C�1
v0

[51] The curves for AdetðtÞ and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�A0B0 ðtÞ

q
intersect at

time t� such that: tk � t� � tD. Within this interval,

AdetðtÞ � 1
kt and

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�A0B0
p

� �, and the solution of equation
(49) is

t� ¼ 1

k�
¼ tkC�1

v0 : (50)

Figure 3. Average concentration and the standard devia-
tion of the concentration for initial fluctuations with zero
cross correlation and anti–cross correlation in an infinite
one-dimensional domain. Red open triangles depict the av-
erage concentration for initially uncorrelated fluctuations.
Open green circles denote the average concentration for
initially anticorrelated fluctuations. The red line isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�A0B0 ðtÞ

q
for initially uncorrelated fluctuations. Red solid

triangles depict
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A0A0 ðtÞ

q
for initially uncorrelated fluctua-

tions. The green line is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�A0B0 ðtÞ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A0A0 ðtÞ

q
for initially

anticorrelated fluctuations. The black line is Adet. The val-
ues of the parameters are l ¼ 0:00015, D ¼ 0:1, �2 ¼ 0:5,
k ¼ 107, and Da ¼ 2:25.
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Figure 4. Average concentration in the finite one-dimensional domain versus time as a function of the
domain of size L : red line, L ¼ 0:5; green line, L ¼ 1; yellow line, L ¼ 2; magenta line, L ¼ 4. For all
curves, l ¼ 0:001, D ¼ 0:01, �2 ¼ 0:5, and k ¼ 1000. The azure line is the Adet solution. The black line
represents the law t�

1
4.

Figure 5. Average concentration in the finite one-dimensional domain versus time as a function of the
correlation length l : red line, l ¼ 10�3 ; green line, l ¼ 10�4 ; yellow line, l ¼ 10�5 ; magenta line,
l ¼ 10�6 ; azure line, l ¼ 10�7 ; blue line, l ¼ 0. For all curves, L ¼ 1, D ¼ 0:01, �2 ¼ 0:5, and
k ¼ 1000. The black line represents the law t�

1
4.

W02526 TARTAKOVSKY ET AL.: SPATIAL CONCENTRATION FLUCTUATIONS W02526

9 of 14



7.1.2. Case 2: C�1
v0 > Da > 1

[52] The two curves, Adet and
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�A0B0
p

, cross at time

t� > tD. For t > tD, AdetðtÞ � 1
kt and

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�A0B0
p

� �ð l2

2�DÞ
1
4t�

1
4,

and the solution of equation (49) is

t� ¼ tk
�

DaC4
v0

 !1
3

: (51)

[53] Figures 1 and 2 show the exact solutions for
Da > C�1

v0 and C�1
v0 > Da > 1, respectively. Figures 1 and

2 demonstrate that t�, calculated from equations (50) or
(51) (depending on the magnitude of Da), accurately pre-
dicts deviation of the average concentration from
AdetðtÞ � t�1 to � t�1=4 behavior.

7.1.3. Case 3: D < 1
[54] In this case, tk > tD. To estimate t�, we can use the

same approximations for Adet and
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�A0B0
p

as in case 2.
Then t� is given by equation (51). The characteristic transi-
tion time increases with decreasing Damköhler number
(and the reaction rate k). Consequently, for very small Da
the average concentrations will not be affected by the spa-
tial fluctuations and will be well described by the solution
AdetðtÞ.

7.2. Infinite d-Dimensional Domain: Initially
Anticorrelated Fluctuations With d Autocovariance
Function

[55] Next we consider an approximate solution for an
infinite n-dimensional domain with initial delta-autocorre-
lated and anti-cross-correlated fluctuations. The two curves,

Adet and
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�A0B0
p

, cross at time t� > tk . For t > tk ,

AdetðtÞ � 1
kt and

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�A0B0
p

¼ � l2

8�D

h id
4
t�

d
4, and the solution of

equation (49) is

t� ¼ t
4

4�d
k t

d
d�4
D C

4
d�4
v0 ð4�Þ

d
4�d : (52)

[56] For time t > t�, the average concentrations are given
by

AðtÞ ¼ BðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�A0ðtÞB0ðtÞ

q
¼ A0Cv0

ð8�Þd=4
t

d
4
Dt�

d
4: (53)

[57] This asymptotic scaling of the average concentra-
tions with time, t�d=4 agrees with the asymptotic scaling
results of Toussaint and Wilczek [1983], Kang and Redner
[1985], and Benson and Meerschaert [2008].

7.3. Infinite One-Dimensional Domain With Zero
Cross Correlation

[58] Finally, to study the effect of the initial cross corre-
lation between fluctuations of A and B we consider an ap-
proximate solution for an infinite one-dimensional domain
with delta-autocorrelated and zero-cross-correlation fluctu-

ations. The two curves, Adet and
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�A0B0
p

, cross at time

t� > tk . For t > tk , AdetðtÞ � 1
kt and

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�A0B0
p

�ffiffiffiffiffiffiffi
0:5
p

� l2

8�D

h i1
4
t�

1
4, and the solution of equation (49) is

t� ¼ t
4
3

k t
�1

3
D C

�4
3

v0 ð8�Þ
1
3: (54)

[59] Comparing equation (54) and the one-dimensional
version of equation (52) shows that the characteristic

Figure 6. Average concentration versus time in the finite domain of size L : red line, �2 ¼ 5� 10�2 ;
green line, �2 ¼ 5� 10�3 ; yellow line, �2 ¼ 5� 10�4 ; magenta line, �2 ¼ 5� 10�5 ; azure line,
�2 ¼ 5� 10�6. For all curves, L ¼ 1, D ¼ 5� 10�6, l ¼ 0:001, and k ¼ 1000. The blue curve is the Adet

solution, and the black line represents the scaling t�
1
4.
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transition time t� for initially uncorrelated fluctuations is
21=3 times greater than the transition time for the initially
anti-cross-correlated concentrations.

8. Conclusions
[60] In the absence of fluctuations, the concentration of

solutes during chemical reaction Aþ B� > C decays as
Adet ¼ Bdet � t�1. Contrary to this, experimental and nu-
merical studies suggest that concentrations decay signifi-
cantly slower. Existing theory suggests a t�d=4 scaling in
the asymptotic regime (d is the dimensionality of the prob-
lem). We have studied the effect of spatial concentration
fluctuations in this nonlinear irreversible reaction using the
classical diffusion-reaction equation with random initial
conditions, where the initial concentrations of the reactants
were treated as correlated random fields. We used the
moment equation approach to derive equations for the
mean and variance of the concentrations and for the charac-
teristic transition time t�, a time when scaling of the con-
centration with time changes to t�d=4. The moment
equations were used to study the effect of the initial auto-
correlation and cross correlation of the concentrations on
the leading moments of the concentrations. When fluctua-
tions are driven by thermal noise, the initial statistics of the
concentration fluctuations can be found from statistical
mechanics [Ovchinnikov and Zeldovich, 1978]. If fluctua-
tions are caused by the fluctuations in the advective veloc-
ities that mixed two solutes (our analysis is for the case
when the flow ceased after fluids were mixed), then the ini-
tial statistics of the fluctuations can be found from the
moment equation method or polynomial chaos solution of
the stochastic advection-dispersion equations [Morales-
Casique et al., 2006; Jarman and Tartakovsky, 2011; Lin
and Tartakovsky, 2009, 2010; Lin et al., 2010].

[61] We first considered a case of initially anticorrelated
A and B. For d-dimensional (d ¼ 1, 2, 3) infinite domain
and delta-autocorrelated initial concentrations, we obtained
analytical solutions for the mean and variance of the con-
centrations. At late times, the average concentrations scale
as t�d=4, which agrees with the classical results of Toussaint
and Wilczek [1983] and numerical observations [Benson
and Meerschaert, 2008; de Anna et al., 2011]. For infinite
domains, we obtained analytical expressions for t� as func-
tion of Da. The characteristic transition time t� increases
with increasing reaction time, tk ¼ 1

kA0
and decreasing diffu-

sion time and the initial coefficient of variation, Cv0.
[62] For equations defined on a one-dimensional finite do-

main, we obtain an analytical solution for the variance of
concentrations. The variance decreases asymptotically from
the prescribed value to c2

0, where the constant c0 is propor-
tional to initial variance of the concentrations �2 and the ra-
tio of the initial correlation length of the concentration l to
the size of the domain L. We also obtain a one-dimensional
solution for the average concentrations via numerical inte-
gration of the corresponding ordinary differential equation.
This solution shows that the scaling behavior of the average
concentrations changes from � t�1 to � t�1=4 at t� that
increases with increasing L and decreasing l and �2.

[63] Our analytical results support earlier explanations
of the change in the scaling behavior of the average

concentrations from Adet ¼ Bdet � t�1, that attributed it to
the presence of islands of segregated A and B. Our solu-
tions for various parameters indicate that the transition in
the scaling behavior occurs at t� when (1) A and B are anti-
correlated and (2) the cross covariance A0B0 is equal to the

square mean concentration A
2

(or B
2
). Hence, we conclude

that these are the conditions describing the formation of the
islands of A and B (i.e., parts of the domain occupied domi-
nantly by species A or B).

[64] The comparison of different initial cross correla-
tions of A and B shows that, for initially uncorrelated fluc-
tuations, t� is 21=3 times greater than the transition time for
the initially anti-cross-correlated concentrations. On the
other hand, the correlation length of the concentrations

growth as ðDtÞ
1
2 regardless of the initial cross correlation.

The increasing autocorrelation of the concentrations A and
B and negative (anti) cross correlation between A and B
indicate that A and B segregate into separate islands. The
size of the islands is statistically related to the correlation
length of the concentrations and our solution suggests that

the islands grow as ðDtÞ
1
2. A similar scaling law for the size

of the islands was phenomenologically postulated in [Kang
and Redner, 1985].

[65] For very small Da, our results show that the chemi-
cal reaction is slow and that diffusion has enough time to
mix the system, destroying all the islands of segregated A
and B.

[66] We illustrate that fluctuations in concentration have
an important role on reactive transport and disregarding the
fluctuations can lead to erroneous results. Even though our
solutions are derived for the diffusion-reaction equation,
they can also be applied to the advection-dispersion-reac-
tion (ADR) equations (@I=@t þ u � rI ¼ Dr2I � kAB, I ¼
AB) with a uniform advection velocity field (u ¼ const)
and a constant dispersion coefficient D. This is because the
ADR equation can be reduced to a diffusion-reaction equa-
tion with an anisotropic diffusion coefficient via the Gali-
lean transformation [e.g., Farlow, 1982]. We should note
that while there are convincing experimental and numerical
findings that our analysis accurately describes the behavior
of purely diffusive-reactive systems, we are not aware of
any experimental results or direct pore-scale simulations
that confirm transition to t�d=4 scaling for advection-disper-
sion-reaction systems. Furthermore, the ADR equation
accounts only for the first and second moments of a pore-
scale velocity distribution (the first moment gives the
Darcy scale advective velocity, and the second moment
contributes to the dispersion coefficient). Hence, the ADR
equation may not be a good model for a multicomponent
reactive transport in porous media, because pore-scale ve-
locity affects mixing-controlled reactions in many different
ways. For example, variations in pore-scale velocity may
prevent or delay segregation of reactants. On the other
hand, there is much evidence showing that the determinis-
tic advection-diffusion-reaction equation, which disregards
the effect of the concentration fluctuations, overestimates
the effective rate of mixing controlled reactions. Further
investigations are needed to understand the effect of con-
centration and pore-scale velocity fluctuations on multi-
component reactive transport in porous media.
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Appendix A: Moment Equations
[67] Substituting equation (2) into the diffusion equation

yields

@ðI þ I 0Þ
@t

¼ D�ðI þ I 0Þ � kðAþ A0ÞðBþ B0Þ; I ¼ A;B:

(A1)

[68] Taking ensemble average yields

@I

@t
¼ D�I � kA B� kA0B0 ; I ¼ A;B; (A2)

where all the variables are functions of x and t
[69] Subtracting equation (A2) from equation (A1) gives

a diffusion-reaction equation for fluctuations:

@I 0

@t
¼ D�I 0 � kAB0 � kBA0 � kA0B0 þ kA0B0 ; I ¼ A;B:

(A3)

[70] To obtain the equations for the variance
A0ðx; tÞA0ðx; tÞ and covariance A0ðx; tÞB0ðx; tÞ, we write
equations for A0 � B0 and A0 þ B0 :

@ðA0 � B0Þ
@t

¼ D�ðA0 � B0Þ; (A4)

and

@ðA0 þ B0Þ
@t

¼ D�ðA0 þ B0Þ � 2kAB0 � 2kBA0 � 2kA0B0 þ 2kA0B0 :

(A5)

[71] We first obtain an equation for f ðx; y; tÞ ¼
A0ðx; tÞB0ðy; tÞ � A0ðx; tÞA0ðy; tÞ. To do so, we multiply
equation (A4) with A0ðy; tÞ :

A0ðy; tÞ@ðA
0ðx; tÞ�B0ðx; tÞÞ

@t
¼D�ðA0ðx; tÞA0ðy; tÞ�B0ðx; tÞA0ðy; tÞÞ:

(A6)

[72] Next, we multiply equation (A4) with B0ðy; tÞ :

B0ðy; tÞ@ðA
0ðx; tÞ�B0ðx; tÞÞ

@t
¼D�ðA0ðx; tÞB0ðy; tÞ�B0ðx; tÞB0ðy; tÞÞ:

(A7)

[73] Summing the last two equations, taking ensemble aver-
age, and recognizing that for considered boundary conditions,

AðtÞ¼BðtÞ (A8)

A0ðx; tÞA0ðy; tÞ ¼B0ðx; tÞB0ðy; tÞ; (A9)

we obtain the equation for f :

@f ðx;y; tÞ
@t

¼ 2D�f ðx;y; tÞ: (A10)

[74] In a similar manner, we obtain an equation for

gðx;y; tÞ¼A0ðx; tÞB0ðy; tÞ þ A0ðx; tÞA0ðy; tÞ :

@gðx;y; tÞ
@t

¼ 2D�gðx;y; tÞ�4kAðx; tÞgðx;y; tÞ: (A11)

[75] It is important to notice that in the derivations of
equation (A11) we disregarded the third moment A0B0B0 .
This approximation is only valid for �=A0 < 1.

Appendix B: Moment Equations for
Uncorrelated A and B

[76] Here we solve the moment equations in one-dimen-
sional infinite domain for A and B with zero cross correla-
tion. Fluctuations of A and B satisfy the initial conditions
(5) and (9). We first solve for

f ðx; y; tÞ ¼ A0ðx; tÞB0ðy; tÞ � A0ðx; tÞA0ðy; tÞ; (B1)

which satisfies

@f ðx; y; tÞ
@t

¼ 2D�xf ðx; y; tÞ; x; y 2 ð0; LÞ: (B2)

[77] This equation is subject to the initial condition

f ðx; y; 0Þ ¼ ��2l�ðx� yÞ (B3)

and the homogeneous Dirichlet boundary condition at
x ¼ 61. The solution of this equation is [Carslaw and
Jaeger, 1972]

f ðx; y�; tÞ ¼ � �2l

ð8�DtÞ1=2
exp �ðx� y�Þ2

8Dt

" #
(B4)

f ðtÞ ¼ �2l

ð8�DtÞ1=2
: (B5)

[78] Next, we solve for g ¼ A0ðx; tÞA0ðy; tÞ þ
A0ðx; tÞB0ðy; tÞ that satisfies

@gðx; y�; tÞ
@t

¼ 2D�xðx; y�; tÞ � 4kAðtÞgðx; y�; tÞ: (B6)

[79] The Fourier transform of g is

ĝð Þ ¼
Z þ1
�1

gðxÞe�2�ix dx: (B7)

[80] Multiplying both parts of the equation with e�2�ix 

and integrating over x yields

@ĝð ; y�; tÞ
@t

¼ �2D 2ĝð ; y�; tÞ � 4kAðtÞĝð ; y�; tÞ; (B8)

subject to the initial condition

ĝð ; y�; 0Þ ¼ �2le�2�iy� : (B9)
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[81] The solution of this equation is

ĝð ; y�; tÞ ¼ �2le�2�iy� e
�2D 2 t�4k

Z t

0
Aðt0 Þdt0 (B10)

[82] The inverse Fourier transform is

gðx; y�; tÞ ¼ �2l

Z þ1
�1

e�2�iy� e
�2D 2t�4k

Z t

0
Aðt0Þdt0

e2�ix d ;

(B11)

or

gðx; y�; tÞ ¼ �2lffiffiffiffiffiffiffiffiffiffi
8�Dt
p exp �ðx� y�Þ2

8Dt
� 4k

Z t

0
Aðt0Þdt0

" #
; (B12)

gðy�; y�; tÞ ¼ �2lffiffiffiffiffiffiffiffiffiffi
8�Dt
p e

�4k

Z t

0
Aðt0Þdt0

:
(B13)

[83] The covariance is found as

A0B0 ðtÞ¼1

2
ðf ðy�;y�;tÞþgðy�;y�;tÞÞ¼ �2l

2
ffiffiffiffiffiffiffiffiffiffi
8�Dt
p e

�4k

Z t

0
Aðt0Þdt0

�1

2
64

3
75:

(B14)

[84] Substituting this into the equation for the average
concentration yields

@A

@t
¼�kA

2�k
�2l

2
ffiffiffiffiffiffiffiffiffiffi
8�Dt
p e

�4k

Z t

0
Aðt0Þdt0

�1

2
64

3
75: (B15)

[85] The autocovariance of A is

A0ðx; tÞA0ðy�; tÞ ¼ 1

2

�2lffiffiffiffiffiffiffiffiffiffi
8�Dt
p exp ð�4k

Z t

0
Aðt0Þdt0Þ þ 1

� �

� exp �ðx� y�Þ2

8Dt

 !
;

(B16)

and the variance of the concentration is equal to

A0A0 ðtÞ¼A0ðy�;tÞA0ðy�;tÞ ¼ �2l

2
ffiffiffiffiffiffiffiffiffiffi
8�Dt
p e

�4k

Z t

0
Aðt0Þdt0

þ1

2
64

3
75:
(B17)
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Université de Rennes 1, F-35042 Rennes, France.

W02526 TARTAKOVSKY ET AL.: SPATIAL CONCENTRATION FLUCTUATIONS W02526

14 of 14


