
1.723 - COMPUTATIONAL METHODS FOR FLOW IN POROUS MEDIA
Spring 2008

FOURIER SPECTRAL METHODS:
MISCIBLE FLOW IN 2D. VISCOUS FINGERING

Luis Cueto-Felgueroso

1. MATHEMATICAL MODEL

1.1. Model equations

Consider the equations of two-dimensional horizontal miscible flow in a homogeneous porous medium.
In non-dimensional form, and assuming an incompressible system, the concentration transport is
modeled by

∂c

∂t
+∇∇∇∇∇∇∇∇∇∇∇∇∇∇ ·

(
cuuuuuuuuuuuuuu− 1

Pe
∇∇∇∇∇∇∇∇∇∇∇∇∇∇c

)
= 0 (1)

where the Darcy velocityuuuuuuuuuuuuuu = (ux, uy) is given in terms of the pressurep and the concentration-
dependent viscosityµ(c), as

uuuuuuuuuuuuuu = − 1
µ(c)

∇∇∇∇∇∇∇∇∇∇∇∇∇∇p (2)

For an incompressible system the continuity equation reduces to the constraint

∇∇∇∇∇∇∇∇∇∇∇∇∇∇ · uuuuuuuuuuuuuu = 0 (3)

Finally, the viscosity is assumed to depend on the concentration of the mixture as

µ = e−R c (4)

where R is the natural logarithm of the viscosity ratio. Following the standard, pressure-based
approach, we could introduce (2) in (3) to arrive at the following elliptic equation for the pressure

∇∇∇∇∇∇∇∇∇∇∇∇∇∇ ·
(
− 1

µ(c)
∇∇∇∇∇∇∇∇∇∇∇∇∇∇p

)
= 0 (5)

In the present case, on the other hand, we will be working with thestream function-vorticity
formulation. Let us define the stream function,Ψ, such that

ux =
∂Ψ
∂y

uy = −∂Ψ
∂x

(6)
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It follows from the above definition that the velocities given by (6) satisfy the incompressibility
constraint, as

∇∇∇∇∇∇∇∇∇∇∇∇∇∇ · uuuuuuuuuuuuuu =
∂

∂x

(
∂Ψ
∂y

)
+

∂

∂y

(
−∂Ψ

∂x

)
= 0 (7)

The flow vorticity is defined as the vectorωωωωωωωωωωωωωω = ∇∇∇∇∇∇∇∇∇∇∇∇∇∇× uuuuuuuuuuuuuu; for 2D flows,ωωωωωωωωωωωωωω = ω kkkkkkkkkkkkkk, where

ω =
∂uy

∂x
− ∂ux

∂y
(8)

and hence we will loosely refer to vorticity as the vectorω kkkkkkkkkkkkkk or the scalarω without distinction
hereafter. The stream function and the vorticity are related by

ω =
∂uy

∂x
− ∂ux

∂y
=

∂

∂x

(
−∂Ψ

∂x

)
− ∂

∂y

(
∂Ψ
∂y

)
= −∆Ψ (9)

On the other hand, starting from the definition of the Darcy velocity we may arrive at the following
expression for the vorticity

ωωωωωωωωωωωωωω = ∇∇∇∇∇∇∇∇∇∇∇∇∇∇× uuuuuuuuuuuuuu = ∇∇∇∇∇∇∇∇∇∇∇∇∇∇×
(
− 1

µ
∇∇∇∇∇∇∇∇∇∇∇∇∇∇p

)
= −∇∇∇∇∇∇∇∇∇∇∇∇∇∇

(
1
µ

)
×∇∇∇∇∇∇∇∇∇∇∇∇∇∇p (10)

which may be rearranged as

ωωωωωωωωωωωωωω = ∇∇∇∇∇∇∇∇∇∇∇∇∇∇
(

1
µ

)
× (µuuuuuuuuuuuuuu) = µ

d

dc

(
1
µ

)
∇∇∇∇∇∇∇∇∇∇∇∇∇∇c× uuuuuuuuuuuuuu (11)

Finally, it follows from the exponential dependence of the viscosity on the concentration that

d

dc

(
1
µ

)
= − µ′

µ2
=

R

µ
(12)

which reduces (10) to

ωωωωωωωωωωωωωω = R∇∇∇∇∇∇∇∇∇∇∇∇∇∇c× uuuuuuuuuuuuuu (13)

or

ω = R

(
∂c

∂x
uy − ∂c

∂y
ux

)
(14)

Hence, instead of the solving for the pressure with (5), we may solve for the stream function through

∆Ψ = −ω ω = R

(
∂c

∂x
uy − ∂c

∂y
ux

)
(15)
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1.2. Simulation set up: initial and boundary conditions

In summary, we will consider the problem





∂c

∂t
+∇∇∇∇∇∇∇∇∇∇∇∇∇∇ ·

(
cuuuuuuuuuuuuuu− 1

Pe
∇∇∇∇∇∇∇∇∇∇∇∇∇∇c

)
= 0

∆Ψ = −ω
(16)

with

ω = R

(
∂c

∂x
uy − ∂c

∂y
ux

)
(17)

and

ux =
∂Ψ
∂y

uy = −∂Ψ
∂x

(18)

The idealized initial concentration field corresponds to an infinite array of alternate solvent and oil
strips. Assuming that the distances between solvent strips are large enough, we may thus enforce
periodicity in both directions,x andy. This will allow us to study a “fully developed” flow, thus being
able to characterize the dissipation properties of the system under reasonably homogeneous conditions
in the streamwise direction. Initially, oil and solvent are moving with a constant, horizontal velocity
uuuuuuuuuuuuuu0 =

(
u0

x, u0
y

)
, compatible with a certain pressure gradient.

In order to allow for an efficient solution of the Laplacian, it is very convenient to be able to impose
periodicity on the stream function as well. Thus, we will decompose the velocity fielduuuuuuuuuuuuuu into a base,
constant flow (the initial flowuuuuuuuuuuuuuu0), plus a periodic fluctuatioñuuuuuuuuuuuuuu, asuuuuuuuuuuuuuu = uuuuuuuuuuuuuu0+ũuuuuuuuuuuuuu. With this decomposition
in mind, let us decompose the stream function as

Ψ = Ψ0 + Ψ̃ (19)

whereΨ0 generates the constant, base velocity, i.e.Ψ0 = u0
x y − u0

y x, while the periodic part,̃Ψ, is
associated to the fluctuating velocity

ũx =
∂Ψ̃
∂y

ũy = −∂Ψ̃
∂x

(20)

With the above decomposition, we just need to solve for the fluctuating part of the stream function, as

∆Ψ̃ = −ω (21)

where the definition of the vorticity is the same as in (17). Once we have computedΨ̃ from (21), the
total velocity is recovered as

ux =
∂Ψ
∂y

= u0
x +

∂Ψ̃
∂y

uy = −∂Ψ
∂x

= u0
y −

∂Ψ̃
∂x

(22)

1.723 - Computational methods for flow in porous media
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2. NUMERICAL TECHNIQUES

The spatial discretization will be carried out using a Fourier pseudospectral (collocation) method.
Thus, concentrations, velocities, vorticities and stream functions will be assumed to be periodic, and
expanded in Fourier modes in thex andy directions.

Let us start in 1D with a given functionu(x), periodic in [−π, π]. Its Fourier series expansion,
written in compact (complex) form, is

u(x) =
∞∑

k=−∞
ûkeikx (23)

where the expansion coefficients are given by

ûk =
1
2π

∫ π

−π

u(x)e−ikxdx (24)

In practical computations we requiretruncatedversions of the expansion (23), and a discretization of
the transform to Fourier space (24). Thus, let us consider anN -term expansion of the form (23),

u(x) ≈
N/2∑

k=−N/2+1

ûkeikx (25)

which implies a discretization withN modesin Fourier space, and a discretization in physical space
(the interval[−π, π]) usingN grid points and their associated grid function{uj , j = 1, . . . , N} .
The continuous transform (24) may be turned into a discrete transform through the use of the nodes
{xj , j = 1, . . . , N} as quadrature points, as

ûk ≈ ∆x

2π

N∑

j=1

uje
−ikxj (26)

The efficiency and potential accuracy of the above Fourier series approximation is critically determined
by how fast the expansion coefficientsûk decay ask increases. The decay of these coefficients is, on
the other hand, closely related to the smoothness ofu(x). Consider for example the function

u(x) =
1− p2

4p

(
1− p2

(1 + p2)− 2p cos(x)
− 1− p

1 + p

)
(27)

with p < 1 andx ∈ [−π, π]. Figure 1 plots a few members of this family of functions and their
N = 1024 first Fourier coefficients, computed using the Fast Fourier Transform (FFT). In Matlab, this
may be done with the following lines of code:

1.723 - Computational methods for flow in porous media
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Figure 1. Sample functions from the family (27) (left) and their computed Fourier coefficients (right).

N = 1024;
h = 2*pi/N;
x= -pi:h:pi;x= x(1:N);
%Wave numbers...
k= [0:(N/2-1) (-N/2):(-1)];

ps= [0.1 0.5 0.8];
for ip= 1:length(ps);

p= ps(ip);
u= (1-pˆ2)./( (1+pˆ2) - 2*p*cos(x) );
a= (1-p)/(1+p);
b= (1-p*p)/(4*p);
u= (u-a)*b;

%Fourier coefficients
uhat= fft(u);

%Plot function
figure(1);plot(x,u,’k’);axis tight;axis square;
xlabel(’x’,’fontsize’,18);ylabel(’u’,’fontsize’,18);
hold on

%Plot Fourier coefficients
figure(2);loglog(abs(k),abs(uhat),’k.’,’markersize’,12);axis square;
xlabel(’|k|’,’fontsize’,18);ylabel(’| û|’,’fontsize’,20);axis tight
hold on

end;

1.723 - Computational methods for flow in porous media
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Figure 2. Decay of Fourier coefficients for functions with different smoothness.

Note the way in which the wave numbersk are defined in the code,k= [0:(N/2-1) (-N/2):(-1)] ,
which is the default wave number arrangement in Matlab’s FFT. The sharper features of the function
asp → 1 have a clear impact on the decay of its expansion coefficients. Forp = 0.1, the function is
very well represented by just a few modes, while forp = 0.8 we require more than a hundred modes
to achieve the same accuracy in the truncated Fourier expansion. Nevertheless, in all cases the Fourier
coefficients exhibit an exponential decay ask →∞, and the resulting approximation will still be very
competitive compared to approximations based on low order polynomials.

Let us now compare the function (27) (p = 0.1), which we will refer to asf1(x), with the functions
f2(x) = | sin(x)|3 and the “sawtooth” function,f3(x) = x (u periodic in [−π, π]). Their Fourier
coefficients may be computed as exposed above, and the first1024 of them are shown in figure 2.
While for sufficiently smooth functions the use of Fourier expansions is an extremely powerful “data
compression” technique, for non-smooth functions the decay of the expansion coefficients may be too
slow for the method to be competitive with lower order methods.

2.1. Spectral differentiation

The m-th derivative ofu(x) can be approximated by them-th derivative of its truncated Fourier
expansion (25). Thus,

u(m)(x) ≈
N/2∑

k=−N/2+1

(ik)mûk eikx (28)

which implies that the expansion coefficients ofu(m)(x), û
(m)
k are approximated by

û
(m)
k ≈ (ik)mûk (29)

1.723 - Computational methods for flow in porous media
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It follows from the above expressions that the accuracy of the spectral differentiation depends, on one
hand, on the rate of decay of the coefficients ofu(x), which determines how well represented isu(x)
by the truncated expansion, and also on the order of differentiation, which decreases the smoothness
of the integrands in the transform integrals, thus increasing the quadrature error.

According to (28), the derivatives ofu(x) can be approximated by computing its Fourier coefficients,
multiplying them by powers ofik, and then transforming back to physical space. Using the FFT
the number of operations behaves likeO(Nlog(N)). The following function,spdiff1D(m,N)

approximates them-th derivative of the function (27) for severalp’s, using N modes. With the
commandsspdiff1D(1,4:4:256) andspdiff1D(2,4:4:256) we may evaluate the convergence
of the spectral differentiation for the first and second order derivatives, producing the plots in figure 3.
It is apparent that the performance of the spectral differentiation for each particular function resembles
the decay of its expansion coefficients (figure 1).

function spdiff1D(m,N)

syms x p
a= (1-p)/(1+p);
b= (1-p*p)/(4*p);
u= (1-pˆ2)./( (1+pˆ2) - 2*p*cos(x) );
u= (u-a)*b;
du= diff(u,m);

Fu = inline(vectorize(simplify(u )));
Fdu= inline(vectorize(simplify(du)));

i= sqrt(-1);
ps= [0.1 0.5 0.8];
for ip= 1:length(ps);

for iN=1:length(N);
h= 2*pi/N(iN);
x= -pi:h:pi;x= x(1:N(iN))’;
k= [0:N(iN)/2-1 -N(iN)/2:(-1)]’;

u= Fu(ps(ip),x);
duSP= real(ifft((i*k).ˆm.*fft(u)));
duex= Fdu(ps(ip),x);
error(iN)= (1/max(abs(duex)))*sqrt(sum( (duSP-duex).ˆ2 )/N(iN));

end;
figure(1);loglog(N,error,’k’,’marker’,’o’,’markersize’,4);
axis square;hold on;

end;
xlabel(’N’,’fontsize’,18);ylabel(’error’,’fontsize’,18);
set(gca,’fontsize’,14);

1.723 - Computational methods for flow in porous media
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Figure 3. Convergence of the first- (left) and second-order (right) spectral derivatives for various smooth functions.

2.2. Multiple dimensions. One-dimensional spectra

The approximation framework is analogous in multiple dimensions. In 2D the Fourier expansion reads

u(x, y) =
∞∑

kx=−∞

∞∑

ky=−∞
ûkxkyei(kxx+kyy) (30)

with the expansion coefficients

ûkxky =
(

1
2π

)2 ∫ π

−π

∫ π

−π

u(x, y)e−i(kxx+kyy)dxdy (31)

As in the one-dimensional case, we requiretruncated versions of the expansion (30), and a
discretization of the transform to Fourier space (31). Thus, let us consider an(Nx, Ny)-term expansion
of the form (30)

u(x, y) ≈
Nx/2∑

kx=−Nx/2+1

Ny/2∑

ky=−Ny/2+1

ûkxkyei(kxx+kyy) (32)

which implies a discretization withNx ×Ny modesin Fourier space, and a discretization in physical
space usingNx × Ny grid points, and their associated grid function{ulm, l = 1, . . . , Nx,m =
1, . . . , Ny} . The continuous transform (31) may be turned into a discrete transform through the use of
the nodes as quadrature points, as

ûkxky ≈
∆x∆y

4π2

Nx∑

l=1

Ny∑
m=1

ulme−i(kxxlm+kyylm) (33)

Consider the 2D version of the family of functionsf(p, x) (equation (27)) as the tensor-product

1.723 - Computational methods for flow in porous media
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u(p, x, y) = f(p, x)f(p, y) (x, y) ∈ [−π, π]× [−π, π] (34)

The Fourier coefficients of several members of this family of functions are computed using the code
coefs2D . The only difference with respect to the 1D version is that now we have to make use of the
two-dimensional fast Fourier transform (the functionfft2 ). Figure 4 shows the contours associated to
the absolute value of the Fourier coefficients for various values ofp.

A more convenient representation of the spectrum of a multidimensional function is through the
construction of its one-dimensional spectrum. Recall that the wave number is now a vectorkkkkkkkkkkkkkk =
(kx, ky). Given a functionu(x, y), with Fourier coefficientŝukkkkkkkkkkkkkk, the one-dimensional spectrumE(|k|)
is defined as

E(|k|) =
1

N|k|

|k|+ 1
2∑

|k|− 1
2

∣∣ûkkkkkkkkkkkkkk
∣∣ (35)

Simply put, the plane(kx, ky) is divided into “shells” of thickness 1, and the spectrumE(|k) associated
to each of those shells|k| is the mean of the absolute values of the Fourier coefficients lying inside that
shell; i.e. those coefficients associated to modes(kx, ky) such that

|k| − 1
2
≤

√
k2

x + k2
y ≤ |k|+ 1

2
(36)

The codespectra1D.m , which uses the function[ks,sp]= spectrum(u,kmax) , generates the 1D
spectra associated to the functions in figure 4. The outcome is depicted in figure 5.

Spectral differentiation in multiple dimensions is completely analogous to the 1D case. For example,
them-th derivative ofu(x, y) with respect tox can be approximated by

u(m)(x, y) ≈
Nx/2∑

kx=−Nx/2+1

Ny/2∑

ky=−Ny/2+1

(ikx)mûkxkyei(kxx+kyy) (37)

Very similar expressions can be used for the derivatives with respect toy, as well as for mixed
derivatives. The functionspdiff2D analyzes the convergence of the spectral first and second order
derivatives with respect tox andy. The functions being tested are the same ones as in the previous
examples. The plots in figure 6 were generated using the commandspdiff2D(4:4:256) . The only
basic difference with respect to the 1D case is the use offft2 andifft2

2.3. Solving the Laplacian using FFT’s

The elliptic problem for the stream function will be solved in Fourier space, making use of Fast Fourier
Transforms. Consider for example, the boundary-value problem

∆u(x, y) = S(x, y) (38)

with periodic boundary conditions in[−π, π] andS(x, y) periodic in [−π, π]. In Fourier space, the
above equation reduces to

−(k2
x + k2

y)û = Ŝ (39)

1.723 - Computational methods for flow in porous media
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Figure 4. Contours of the absolute value of the Fourier coefficients of various 2D functions. Top,p = 0.1 (left)
andp = 0.2 (right); bottom,p = 0.6 (left) andp = 0.8 (right).

and therefore the Fourier transform ofu(x, y), û(kx, ky), is given in terms of the transform of the
source term, as

û = − Ŝ

k2
x + k2

y

(40)

Note that, when transforming back to physical space,u(x, y) is determined up to its mean value, a fact
that may be expected from the singularity of the right hand side of (40) forkx = ky = 0.

In terms of numerical discretization, the procedure goes as follows:

• Compute the Fourier coefficients of the source term, a periodic grid function{Slm}, usingfft2 .
• Divide these coefficients by−(k2

x + k2
y), removing the singularity at the origin.

1.723 - Computational methods for flow in porous media
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Figure 5. 1D spectra of various two-dimensional functions.

• Transform back to physical space, usingifft2 .
• Add a constant tou(x, y) in order to obtain the correct mean value.

The codePoissonFFT2D is an example of the implementation of these steps. A typical result with
N = 64 modes is shown in figure 7

3. APPLICATION TO MISCIBLE FLOW THROUGH POROUS MEDIA

The code misc2D solves the problem (16) in a doubly periodic domain, using the Fourier
approximations described in the previous sections. A typical concentration field is shown in figure
9. In addition to plotting the concentration or velocity fields, there are other interesting quantities that
may be used to characterize the flow (you will have to add them to the supplied code). In particular, we
will analyze thescalar dissipation rate, εc, defined as

εc =
1

Pe
∇∇∇∇∇∇∇∇∇∇∇∇∇∇c · ∇∇∇∇∇∇∇∇∇∇∇∇∇∇c (41)

As defined above,εc is a function of space, but we will concentrate on its mean value over the domain.
You will have to compute 1D spectra, rms values and probability density functions (pdf’s, which can
be generated in Matlab using histograms withhist ).

1.723 - Computational methods for flow in porous media
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Figure 6. Convergence of the first- (top) and second-order (bottom) spectral derivatives for several two-
dimensional smooth functions.

x= -pi:h:pi;x= x(1:N)’;
[xx,yy]= meshgrid(x,x);
k= [0:N/2-1 -N/2:(-1)]’;
[kx,ky]= meshgrid(k,k);
k2i= -(kx.ˆ2 + ky.ˆ2);k2i(1,1)= 1;k2i= k2i.ˆ-1;

Shat= fft2(S);
u= real(ifft2(k2i.*Shat));
u= u-u(1,1);
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Figure 8. Sample concentration field computed withmisc2D.
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