
1.723 - COMPUTATIONAL METHODS FOR FLOW IN POROUS MEDIA
Spring 2009

FINITE VOLUME METHODS FOR ONE-DIMENSIONAL
SCALAR CONSERVATION LAWS

Luis Cueto-Felgueroso

1. BACKGROUND

1.1. Problem statement

Consider the 1D scalar conservation law

∂u

∂t
+

∂f(u)
∂x

= 0 x ∈ Ω = [0, L] t > 0 (1)

with suitable initial and boundary conditions. Thefluxf(u) is, in general, a nonlinear function ofu(x).
We will assume that the above PDE ishyperbolic(loosely speaking, the fluxf(u) does not include
spatial derivatives ofu). The incorporation of diffusive-like terms can be accomplished as an extension
of the the finite difference framework that we studied in the previous homework, and will be considered
directly in section 2 for a practical application.

1.2. Integral form and basic finite volume formulation

For problems with a predominantly hyperbolic character, it is convenient to start with theintegral form
of the conservation law (1). Considering an arbitrarycontrol volumeI = [xL, xR], the solutionu(x)
satisfies

∂

∂t

∫

I
u(x, t)dx + f(uR)− f(uL) = 0 (2)

Finite volume methods attempt to compute approximations toweaksolutions of (1) by enforcing (2)
on a series ofcellsor control volumes. Thus, consider a partition of the problem domainΩ into a set
of N non-overlapping cells{Ωi = [xi− 1

2
, xi+ 1

2
], i = 1, . . . , N}, such that

Ω =
N⋃

i=1

Ωi (3)

We will assume uniform grid spacing, which implies that the spatial coordinates of the cell centers are
given by

2 FINITE VOLUME METHODS

xi =
(

1
2

+ (i− 1)
)

∆x (4)

whereas the interfaces are located at

xi+1/2 = i∆x (5)

The basic finite volume formulation assumes apiecewise constantspatial representation of the solution.
In particular, first-order finite volume methods study the evolution of the average value ofu(x) over
each control volume. We therefore define thegrid function{ui, i = 1, . . . , N}, whereui is associated
to the center point of celli, and

ui(t) ≈
∫

I
u(x, t)dx (6)

Conservation on each cell thus reads

dui

dt
+ f(ui+1/2)− f(ui−1/2) = 0 i = 1, . . . , N (7)

In addition to the idea of working with cell-averaged valuesui, a particular finite volume method
is characterized by the specific definition (approximation) of the interface fluxes,f(ui+1/2) and
f(ui−1/2). In general, we may define anumerical flux functionH(u−, u+), which isconsistentwith
the fluxf(u), in the sense that

H(u, u) = f(u) (8)

In terms of this numerical flux function, equation (7) reads

dui

dt
+H(u−i+1/2, u

+
i+1/2)−H(u−i−1/2, u

+
i−1/2) = 0 i = 1, . . . , N (9)

What does (9) mean? Recall that the numerical solution is piecewise constant, and hence discontinuous
across interfaces. This implies that the fluxesf(ui−1/2) andf(ui+1/2) are not uniquely determined
with the information at hand and, therefore, we need to construct suitable approximations to their
values. The key feature of finite volume methods is that these approximations and defined exploiting
some known properties of nonlinear conservation laws like (1). In particular, the fact that they usually
describenonlinear advectionprocesses (thus with a distinctive directionality), and tend to develop
discontinuities (shocks). And here is where the numerical fluxes enter: given the valuesu−i+1/2 and

u+
i+1/2 on each side of the interfacei+1/2, the numerical flux functionH(u−, u+) returns anupstream

approximation to the actual fluxf(xi+1/2). The “canonical form” of the numerical flux may be written
as

H(u−, u+) =
1
2

(
f(u+) + f(u−)

)− 1
2
|ã| (u+ − u−

)
(10)

Furthermore, let us define theadvection speedat the interface,̃a, as

ã(u−, u+) =

f(u+)− f(u−)
u+ − u−

u+ 6= u−

f ′(u−) u+ = u−
(11)

1.723 - Computational methods for flow in porous media

LCF 3

wheref ′(u) =
df(u)
du

.

First order schemes retain the basic piecewise-constant structure, and therefore

u−i+1/2 = ui

u+
i+1/2 = ui+1

u−i−1/2 = ui−1

u+
i−1/2 = ui (12)

which results in a semi-discretization of the form

dui

dt
+H(ui, ui+1)−H(ui−1, ui) = 0 i = 1, . . . , N (13)

with the numerical fluxes defined as in (10)–(11). The above expression is a system of ordinary
differential equations of the form

duuuuuuuuuuuuuu

dt
= RRRRRRRRRRRRRR (14)

whereuuuuuuuuuuuuuu = uuuuuuuuuuuuuu(t), and we have the initial conditionuuuuuuuuuuuuuu(0) = uuuuuuuuuuuuuu0. The system (14) can be integrated in
time using standard ODE solvers, like the ones we studied during the lectures (Runge-Kutta etc.).

1.3. Higher order extensions: ENO3

Following the ideas presented in the previous section, we may develop high-order finite volume
methods through the use of high-orderextrapolatedvaluesu− and u+ at each interface, rather
than the piecewise constant cell-averages. In the next section we will see a practical example of the
implementation of the essentially non-oscillatory scheme explained in the lectures (ENO3). The basic
idea is to substitute thepiecewise constantrepresentation of the solution by apiecewise polynomial
reconstruction, but choosing the neighbor cells that contribute to the reconstruction (stencil, in such a
way that the resulting reconstruction issmoothin an suitable sense. Once the extrapolated valuesu−

andu+ at each interface have been computed, we may evaluate the numerical fluxes as in the previous
section.

2. AN EXAMPLE IN MATLAB: THE BUCKLEY-LEVERETT PROBLEM

2.1. Mathematical model

Consider the following model of immiscible flow (water and oil) in 1D,

∂Sw

∂t
+

∂

∂x

(
f(Sw)uT + ε kro(Sw)f(Sw)J ′(Sw)

∂Sw

∂x

)
= 0, x ∈ [0, L] (15)

In the above equation,Sw is the water saturation,uT is the total velocity, andf(Sw) is thefractional
flow function,

f(Sw) =
Mkrw

Mkrw + kro
M =

µo

µw
(16)

1.723 - Computational methods for flow in porous media

4 FINITE VOLUME METHODS

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
w

k r

k
rw

k
ro

Figure 1. Relative permeability functions, corresponding toα = 4 andβ = 1 in (17).

whereM is the mobility (viscosity) ratio, andkrw (resp.kro) is the is the relative permeability of
the wetting (resp. non-wetting) phase. The functionJ(Sw) denotes a generic functional expression

for the capillary pressure, andJ ′(Sw) =
dJ

dSw
. In order to fix ideas, consider the following prototype

constitutive relations

krw(Sw) = Sα
w

kro(Sw) = (1− Sw)β (17)

and

J(Sw) = S−1/γ
w γ > 2 (18)

Typical values of the parameters areα = 4, β = 1 andγ = 3. In the following sections, we will solve
the problem (1) in[0, 1], assuming unit, constant total velocityuT = 1, and the initial condition

u(x, 0) =

{
1− δ x < 0.2
δ x ≥ 0.2

(19)

where δ ¿ 1 is a small number, introduced to avoid singularities for certain capillary pressure
functionals atSw = 0 or Sw = 1. We will impose thenumericalboundary conditionsu(0, t) =
uLB = 1− δ andu(1, t) = uRB = δ.

2.2. Low-order finite volume discretization

The codeBL11.m computes approximate solutions to (15) using a finite volume method. The
hyperbolic term is discretized using first-order upwind, whereas the capillary (diffusive) term is

1.723 - Computational methods for flow in porous media

LCF 5

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
w

f

M= 2

M= 10

M= 50

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

S
w

J

Figure 2. Fractional flow (left) and capillary pressure function (right), corresponding toα = 4 andβ = 1 in (17),
andγ = 3 in (18).

aprroximated using second order centered differences. The time integration is carried out using forward
Euler (FE).

Given the distinctive nature of the advective and diffusive terms, their discretization follows separate
paths. Let us write the conservation law (15) as

∂Sw

∂t
+

∂

∂x
(fadv(Sw) + fdiff (Sw)) = 0 (20)

where the hyperbolic-like (advective) flux is given by

fadv = f(Sw)uT (21)

and the elliptic-like (diffusive) flux is

fdiff = −ε kro(Sw)f(Sw)(−J ′(Sw))
∂Sw

∂x
(22)

or

fdiff = −εD(Sw)
∂Sw

∂x
, D(Sw) = kro(Sw)f(Sw)(−J ′(Sw)) (23)

with the above definitions, and advancing in time with FE, the finite volume scheme reads

∆x

∆t
(un+1

i − un
i) +

(
fn

adv + fn
diff

) ∣∣∣∣
xi+1/2

− (
fn

adv + fn
diff

) ∣∣∣∣
xi−1/2

= 0 (24)

Rearranging the advective and diffusive contributions, we arrive at

∆x

∆t
(un+1

i − un
i) +

(
fn

adv

∣∣
xi+1/2

− fn
adv

∣∣
xi−1/2

)
+

(
fn

diff

∣∣
xi+1/2

− fn
diff

∣∣
xi−1/2

)
= 0 (25)

1.723 - Computational methods for flow in porous media

6 FINITE VOLUME METHODS

The advective fluxes are evaluated using the upwind numerical flux (10)–(11) and the piecewise
constant representation of the saturation field. For the diffusive part, we need to approximate (22) at the
interfaces, which involves 1)interpolatingthe saturationsSw at the interfaces, and 2) approximating
the spatial derivatives of the saturations∂Sw/∂x also at the interfaces. Once we have the interpolated
saturations we can evaluate the “diffusion” coefficientsεD(Sw), given in (23), and multiplying by the
estimated derivative we get the flux at the interface, according to (23).

Let us see how this is done in the code. We start by creating functions to evaluate the fractional flow
and constitutive relations

syms u M alpha beta gamma
krw= uˆalpha;
kro= (1-u)ˆbeta;
f= M*krw/(M*krw+kro);
J= uˆ(-1/gamma);
df= diff(f,1);
dJ= diff(J,1);
D= f*kro*dJ;

Ff = inline(vectorize(simplify(f))); %Syntax f = Ff (M,alpha,beta,u)
Fdf= inline(vectorize(simplify(df))); %Syntax df= Fdf(M,alpha,beta,u)
FD = inline(vectorize(simplify(D))); %Syntax D = FD (M,alpha,beta,gamma,u)

Note that the saturations are denoted byu in the code. The model parameters are defined as

%Model parameters
M= 20;
alpha= 4;
beta = 1;
gamma= 3;
epsilon= 0.01;

The initialization of the code also includes specifications about the grid (number of cellsN), boundary
conditions and initial solution; in particular,

%Grid generation
N = 100;
L= 1;
h= L/N;
x= (h/2:h:L-h/2)’;

%Boundary conditions
uLB= 0.9999;
uRB= 10ˆ-4;

%Initial solution
u= uRB + (uLB-uRB)*(x<=0.2*L);

Note that the grid size is denoted byh instead of∆x. In order to approximate the derivatives of the
saturations at the interfaces, we may construct a differentiation matrix which, given the saturations at
the cell centers and at the boundaries, provides the derivatives at the midpoints through a matrix-vector
product, i.e.

1.723 - Computational methods for flow in porous media

LCF 7

uuuuuuuuuuuuuu′ =

u′1/2

u′3/2

...
u′j+1/2

...
u′N−1/2

u′N+1/2

= DDDDDDDDDDDDDD

uLB

u1

...
uj

...
uN

uRB

(26)

whereuLB anduRB are the prescribed saturations at the boundaries. Note thatDDDDDDDDDDDDDD is an(N+1)×(N+2)
matrix. For interior interfaces,xi+1/2, i = 1, . . . , N−1, we may use second-order centered differences,
as

u′i+1/2 =
ui+1 − ui

∆x
(27)

while at the left and right boundaries we use the first-order formulas

u′1/2 =
u1 − uLB

∆x/2
u′N+1/2 =

uRB − uN

∆x/2
(28)

Using (27) and (28) we can now assemble the differentiation matrix. In the code, this is done with

%Differentiation matrix for the derivatives at the interfaces
%Syntax du_{interfaces}= D1*[uLB;u;uRB]
D1= spalloc(N+1,N+2,2*(N+1));
R= [-1 1 zeros(1,N-2)]/h;
C= [-1 zeros(1,N-2)]/h;
D1(2:N,2:N+1)= toeplitz(sparse(C),sparse(R));
%Boundaries...
D1(1,:)= [-1 1 zeros(1,N)]/(h/2);
D1(end,:)= [zeros(1,N) -1 1]/(h/2);

Now we can start advancing in time...

dt= 0.2*L/N;
NSTEP= 200;
for istep= 1:NSTEP;

Note that the choice of time step is purely heuristic. At each time step we will compute the contributions
to RRRRRRRRRRRRRRn in (14) (advective+diffusive), and then just advance the saturations with a forward Euler step as

uuuuuuuuuuuuuun+1 = uuuuuuuuuuuuuun + ∆tRRRRRRRRRRRRRRn (29)

Let us start with the advective terms. For each interface, we need to extrapolate the saturations from
both sides of the interface, and then evaluate the upwind numerical flux. In our first-order scheme, the
extrapolated saturations are just the cell center (cell-average) values

u−i+1/2 = ui

u+
i+1/2 = ui+1

1.723 - Computational methods for flow in porous media

8 FINITE VOLUME METHODS

u−i−1/2 = ui−1

u+
i−1/2 = ui (30)

The above expression is written from the perspective of thecells, i.e. each cell has ani+1/2 interface,
as well as ani − 1/2 interface. But we can actually “recycle” the interface values between neighbor
cells, as thei + 1/2 interface (looking from celli) is of course the same as the(i + 1) − 1/2 one
(looking from celli + 1). Thus, it is more convenient to work from the perspective of theinterfaces,
and say that each interfacei + 1/2 has two associated saturationsu− andu+, coming from either side
of the interface. For a first-order scheme,

u−i+1/2 = ui

u+
i+1/2 = ui+1 (31)

bearing in mind that this interface is theright interface of celli, but also theleft interface of celli + 1.
At the boundaries, we simply say

u−1/2 = uLB u+
N+1/2 = uRB (32)

In the code, theu− andu+ values at each interface are denoted byumandup, and they are simply

%Extrapolate variables to interfaces
um= [uLB;u];
up= [u;uRB];

Now that we have the saturations on each side of each interface, we can evaluate the advective
terms using the upwind numerical flux. Given theu− and u+ saturations at the interfaces, the
function upwflux_BL evaluates the upwind fluxes (10)–(11). Furthermore, the fluxes are returned
by upwflux_BL within the cell perspective; i.e. for each celli, upwflux_BL returns the numerical
fluxes its left and right interfaces, respectivelyfn

Li andfn
Ri, such that the contribution of the advective

term toRi is, for cell i and at time leveltn

Radv = −fn
Ri − fn

Li

∆x
(33)

In the code, this is done as

%Evaluate numerical fluxes
[fR,fL]= upwflux_BL(Ff,Fdf,um,up,M,alpha,beta);
%Inviscid term
Ri= -(1/h)*(fR-fL);

The next step is the computation of the diffusive part of the fluxes. We need again the saturations at
the interfaces, but now a unique value for each interface. There are many possibilities, but for this
first-order scheme we may just take the average ofu− andu+, which we have already computed. With
these saturations, the diffusive fluxes at the interfaces are

%Capillary term
ui= 0.5*(um+up);
D= FD(M,alpha,beta,gamma,ui);
fluxd= epsilon*D.*(D1*[uLB;u;uRB]);

1.723 - Computational methods for flow in porous media

LCF 9

Note that the fluxes are now available within theinterfaceperspective; i.e. we know the flux at each
interface. It is convenient to move back again to thecell perspective, and collect the left and right fluxes
for each cell, as

fluxdR= fluxd(2:N+1);
fluxdL= fluxd(1:N);

Finally, the contribution toRRRRRRRRRRRRRR from the capillary term is

Rd= -(1/h)*(fluxdR-fluxdL);

and we can add the advective and diffusive terms as

%Residual
R= Ri+Rd;

At this point, it just remains to advance the saturations totn+1, as

%Forward Euler step
u= u + dt*R;

If you run BL11, you will get something like figure 3

2.3. High-order finite volume discretization

The codeBL33.m solves the same problem using ENO3 reconstruction for the advective fluxes and a
fourth-order centered discretization for the capillary term. The integration in time is carried out using
a third-order Runge-Kutta method.

The structure of the code is, however, almost identical to that of the first-order one. The idea is again
to discretize in space and then arrive at a system of ODE’s of the form

dSSSSSSSSSSSSSSw

dt
= RRRRRRRRRRRRRR(SSSSSSSSSSSSSSw) (34)

The time integration proceeds then inthree stagesto arrive at thetn+1 saturations, starting from thetn

ones:

SSSSSSSSSSSSSS1
w = SSSSSSSSSSSSSSn

w + ∆tRRRRRRRRRRRRRR(SSSSSSSSSSSSSSn
w)

SSSSSSSSSSSSSS2
w =

3
4
SSSSSSSSSSSSSSn

w +
1
4
SSSSSSSSSSSSSS1

w +
1
4
∆tRRRRRRRRRRRRRR(SSSSSSSSSSSSSS1

w)

SSSSSSSSSSSSSSn+1
w =

1
3
SSSSSSSSSSSSSSn

w +
2
3
SSSSSSSSSSSSSS2

w +
2
3
∆tRRRRRRRRRRRRRR(SSSSSSSSSSSSSS2

w) (35)

Note that the cost of each stage is roughly that of a forward Euler step (the cost of a full step with (35)
is about three times higher than with FE). With this time integration in mind, we just need to be able
to compute the residualRRRRRRRRRRRRRR(SSSSSSSSSSSSSSw) for given cell saturationsSSSSSSSSSSSSSSw, which is precisely whatBL11.m does for
low order.

The only difference in the initialization of the problem is the definition of the differentiation matrix
DDDDDDDDDDDDDD1. In this case, we are interested in fourth-order formulas at the midpoints, given the values of the
saturations at the cell centers. For interior interfaces, this can be done using the functionfdcoefs.m

we used in homework #4, as

1.723 - Computational methods for flow in porous media

10 FINITE VOLUME METHODS

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

S
w

Figure 3. Solution of the Buckley-Leverett problem at various time levels using BL11.

>> [coefs]= fdcoefs(1,3,[0 1 2 3],1.5)

coefs =

0.04166666666667 -1.12500000000000 1.12500000000000 -0.04166666666667

The above command line gives the coefficients of a formula to compute the first derivative ati + 1/2,
given the values of the function ati − 1, i, i + 1 andi + 2. We may see the coefficients as fractions
using the Matlab functionrat ; for example

>> [num,den]= rat(0.041666666667)

num =

1

den =

24

Thus, the finite difference approximation reads

1.723 - Computational methods for flow in porous media

LCF 11

u′i+1/2 =
ui−1 − 27ui + 27ui+1 − ui+2

24∆x
+ O(∆x4) (36)

We cannot use centered formulas near the boundaries. Usingfdcoefs.m again we may derive
difference formulas for interfaces1/2, 3/2, N − 1/2 andN + 1/2, as

u′1/2 =
−184uLB + 225u1 − 50u2 + 9u3

60∆x
+ O(∆x3)

u′3/2 =
8uLB − 75u1 + 70u2 − 3u3

60∆x
+ O(∆x3)

u′N−1/2 =
−8uRB + 75uN−1 − 70uN−2 + 3uN−3

60∆x
+ O(∆x3)

u′N+1/2 =
184uRB − 225uN−1 + 50uN−2 − 9uN−3

60∆x
+ O(∆x3) (37)

With these approximations in mind, the differentiation matrix can be assembled through

%Differentiation matrix for the derivatives at the interfaces
% Syntax du_{interfaces}= D1*[uLB;u;uRB]
D1= spalloc(N+1,N+2,4*(N+1));
R= [1 -27 27 -1 zeros(1,N-4)]/(24*h);
C= [1 zeros(1,N-4)]/(24*h);
D1(3:N-1,2:N+1)= toeplitz(sparse(C),sparse(R));
%Boundaries...
D1(2,:)= [8 -75 70 -3 zeros(1,N-2)]/(60*h);
D1(end-1,:)= [zeros(1,N-2) 3 -70 75 -8]/(60*h);

D1(1,:)= [-184 225 -50 9 zeros(1,N-2)]/(60*h);
D1(end,:)= [zeros(1,N-2) -9 50 -225 184]/(60*h);

Apart from the differentiation matrix, another difference between the high-order and the low-order
codes is the way the saturations are extrapolated to the interfaces in order to evaluate the inviscid
fluxes; i.e. the wayuuuuuuuuuuuuuu− anduuuuuuuuuuuuuu+ are computed. Instead of using the cell-average value, we use the ENO3
reconstruction. In he code this is specified by

[um,up]= ENO3rec(u,uLB,uRB);

We will come back later to this function. The important practical consequence is thatENO3rec returns
the saturations at the interfacesu− and u+, which can be used now to evaluate the fluxes. The
remaining of the residual evaluation is identical to that ofBL11. The only difference, now due to
the time integration scheme, is that these residuals are used to advance the solution within a three-stage
time integration, rather than with forward Euler, and hence the lines

if istage==1;
u1= u0 + dt*R;
u= u1;

elseif istage==2;
u2= (3/4)*u0 + (1/4)*u1 + (1/4)*dt*R;
u= u2;

else;
u= (1/3)*u0 + (2/3)*u2 + (2/3)*dt*R;

end;

1.723 - Computational methods for flow in porous media

12 FINITE VOLUME METHODS

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

S
w

Figure 4. Solution of the Buckley-Leverett problem at various time levels using BL33.

If you run BL33, you will get something like figure 4. A comparison between the low and high-order
solutions is plot in figure 5

2.4. The ENO reconstruction

Let us take a look at the functionENO3rec, which performs the ENO reconstruction of the saturations
at the interfaces. The syntax is

>> [um,up]= ENO3rec(u,uLB,uRB,N);

The first step is the computation of the differences

di+1/2 = di+1 − di

di =
di+1/2 + di−1/2

2

Di = di+1/2 − di−1/2 (38)

Higher-order reconstructions are based on substituting thepiecewise constantrepresentation of the
solution by apiecewise polynomialreconstruction inside each cell, of the form

1.723 - Computational methods for flow in porous media

LCF 13

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

S
w

Figure 5. Comparison of ENO3 (solid) and first-order (dashed) solutions at different time levels.

ûi(x) = pi(x) i = 1, . . . , N (39)

for some locally-defined polynomialspi(x). Moreover, we enforce that the reconstruction is
conservative, in the sense that

∫ xi+1/2

xi−1/2

p(x)dx =
∫ xi+1/2

xi−1/2

uidx = ∆xui (40)

Essentially Non-Oscillatory (ENO) methods choose the reconstructing polynomial among a certain
number of candidates, based on the estimated smoothness of the resulting reconstruction. For ENO3,
the reconstruction inside celli uses three possiblestencils: S1 = {i−2, i−1, i}, S2 = {i−1, i, i+1}
andS3 = {i, i + 1, i + 2}. Their associated quadratic polynomials are

p1(x) = ui − Di−1

24
+

x− xi

∆x

[
di−1/2 +

Di−1

2
+

Di−1

2

(
x− xi

∆x

)]

p2(x) = ui − Di

24
+

x− xi

∆x

[
di +

Di

2

(
x− xi

∆x

)]

p3(x) = ui − Di+1

24
+

x− xi

∆x

[
di+1/2 −

Di+1

2
+

Di+1

2

(
x− xi

∆x

)]
(41)

1.723 - Computational methods for flow in porous media

14 FINITE VOLUME METHODS

Focusing on the interfacesxi+1/2 andxi−1/2, the extrapolated values “from celli” are

p1(xi+1/2) = ui − Di−1

24
+

1
2

[
di−1/2 +

Di−1

2
+

Di−1

2

(
1
2

)]

p2(xi+1/2) = ui − Di

24
+

1
2

[
di +

Di

2

(
1
2

)]

p3(xi+1/2) = ui − Di+1

24
+

1
2

[
di+1/2 −

Di+1

2
+

Di+1

2

(
1
2

)]
(42)

and

p1(xi−1/2) = ui − Di−1

24
− 1

2

[
di−1/2 +

Di−1

2
− Di−1

2

(
1
2

)]

p2(xi−1/2) = ui − Di

24
− 1

2

[
di − Di

2

(
1
2

)]

p3(xi−1/2) = ui − Di+1

24
− 1

2

[
di+1/2 −

Di+1

2
− Di+1

2

(
1
2

)]
(43)

Assume that we have selected one of the three candidates,pi(x). Then the above expressions yield the
interface values

u−i+1/2 = pi(xi+1/2)

u+
i−1/2 = pi(xi−1/2)

(44)

Following the same procedure with the all the cells we would end up with all the interface
extrapolations,u−i+1/2 andu+

i+1/2.
In the functionENO3rec, the candidate values at the interfaces are computed through

%Candidates for u+1/2
up1= u - Dim1/24 + 0.5*(dim12 + Dim1/2 + 0.5*Dim1/2);
up2= u - Di/24 + 0.5*(di + 0.5*Di/2);
up3= u - Dip1/24 + 0.5*(dip12 - Dip1/2 + 0.5*Dip1/2);
%Candidates for u-1/2
um1= u - Dim1/24 - 0.5*(dim12 + Dim1/2 - 0.5*Dim1/2);
um2= u - Di/24 - 0.5*(di - 0.5*Di/2);
um3= u - Dip1/24 - 0.5*(dip12 - Dip1/2 - 0.5*Dip1/2);

which is just an implementation of (42)–(43). The ENO selection procedure, for each celli, goes as
follows:

1.723 - Computational methods for flow in porous media

LCF 15

if |di−1/2| ≤ |di+1/2|then
if |Di−1| ≤ |Di|then

ûi(x) = p1(x)
else

ûi(x) = p2(x)
end

else
if |Di| ≤ |Di+1|then

ûi(x) = p2(x)
else

ûi(x) = p3(x)
end

end

In the code the above algorithm is implemented as

%ENO selection
a= (abs(dim12)<=abs(dip12)).*(abs(Di)>abs(Dim1));
b= (abs(dim12)<=abs(dip12)).*(abs(Di)<=abs(Dim1));
c= (abs(dim12)>abs(dip12)).*(abs(Di)<=abs(Dip1));
d= (abs(dim12)>abs(dip12)).*(abs(Di)>abs(Dip1));
um0= a.*um1 + b.*um2 + c.*um2 + d.*um3;
up0= a.*up1 + b.*up2 + c.*up2 + d.*up3;

What we have so far is, for each celli, the ENO-extrapolated valuesui+1/2 andui−1/2. Thus, and since
the reconstruction is performed locally (we do not enforce continuity of the reconstructed saturations
across interfaces), we have computed two extrapolated values of the saturation at each interface: for
example, at interfacexi+1/2, we have computed a saturation coming from celli, u−i+1/2 = ui+1/2, and

another one coming from celli + 1, u+
i+1/2 = u(i+1)−1/2. Theseu− andu+ values will be introduced

in the numerical flux function, so it is interesting to compute them. They are actually the arguments
returned byENO3rec, and are obtained as

%Split uˆ- and uˆ+ for each interface
um= [uLB;up0];
up= [um0(1:end);uRB];

1.723 - Computational methods for flow in porous media

16 FINITE VOLUME METHODS

REFERENCES

1. R.J. Leveque. Finite volume methods for hyperbolic problems. Cambridge University Press (2002)
2. G. Strang. Computational science and engineering. Wellesley-Cambridge Press (2007)
3. B. Fornberg. A practical guide to pseudospectral methods. Cambridge University Press (1998)
4. L.N. Trefethen. Spectral methods in MATLAB. SIAM (2001)
5. J.P. Boyd. Chebyshev and Fourier spectral methods. Dover (1999)
6. J.S. Hesthaven, S. Gottlieb and D. Gottlieb. Spectral Methods for Time-Dependent Problems. Cambridge University Press

(2007)
7. J. Strikwerda. Finite Difference Schemes and Partial Differential Equations. SIAM. 2nd edition (2007)
8. T.J. Barth, H. Deconinck (eds.). High-order methods for computational physics. Lecture Notes in Computational Science

and Engineering. Springer (1999)
9. E. Hairer, S.P. Nørsett and G. Wanner. Solving ordinary differential equations I: Nonstiff Problems. Springer Series in

Computational Mathematics. Springer (1993)
10. E. Hairer and G. Wanner. Solving ordinary differential equations II: Stiff and Differential-Algebraic Problems. Springer

Series in Computational Mathematics. Springer (1996)
11. U. Ascher and L. Petzold. Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations.

SIAM (1998)
12. J.D. Lambert. Numerical methods for ordinary differential systems. John Wiley & Sons (1991)

1.723 - Computational methods for flow in porous media

