
1.723 - COMPUTATIONAL METHODS FOR FLOW IN POROUS MEDIA
Spring 2009

FINITE DIFFERENCE METHODS (II):
1D EXAMPLES IN MATLAB

Luis Cueto-Felgueroso

1. COMPUTING FINITE DIFFERENCE WEIGHTS

The functionfdcoefs computes the finite difference weights using Fornberg’s algorithm (based on
polynomial interpolation). The syntax is

>> [coefs]= fdcoefs(m,n,x,xi);

Given a set ofn + 1 nodes, with coordinatesx = [x0, . . . , xn] (remember the basic idea of the
point-wise finite difference discretization, figure 1),fdcoefs(m,n,x,xi) computes the FD weights
associated to each nodal point for the approximation of them-th derivative at pointxi (xi may or may
not be a grid point).

1.1. A first example

We may usefdcoefs to derive general finite difference formulas. Let’s compute, for example, the
weights of the5-point, centered formula for the first derivative

u′j =
−uj+2 + 8uj+1 − 8uj−1 + uj−2

12∆x
+ O(∆x4) (1)

Here we are interested in the first derivative (m = 1) at point xj . The stencil is, in principle,
{xj−2, xj−1, xj , xj+1, xj+2}. In order to usefdcoefs , we could either generate a vectorxxxxxxxxxxxxxx with
the coordinates of the particular points we are considering or, specially for uniformly spaced nodes,
compute the general weights assuming∆x = 1. In the latter approach, the∆x will enter separately in
the FD formula, as in the denominator of (1). Thus, the functionfdcoefs will provide the coefficients
{αj+2, αj+1, αj , αj−1, αj−2} such that

u′j =
αj+2uj+2 + αj+2uj+1 + αjuj + αj−1uj−1 + αj−2uj−2

∆x
+ O(∆x4) (2)

How is this done? After setting

>> m= 1; % First order derivative
>> n= 4; % The stencil comprises n+1 points...
>> x= [2 1 0 -1 -2]; % Generic coordinates of the points (dx= 1)
>> xi= 0; % Formula for the central point

2 FINITE DIFFERENCE METHODS (II)

0= x
0 x

1
x

2
x

3 x
4

x
5

x
6
= L

u
0

u
1 u

2

u
3

u
4

u
5

u
6

u(x)

Figure 1. Point-wise discretization used by finite differences.

we runfdcoefs , to obtain

>> coefs= fdcoefs(m,n,x,xi)’

coefs =

-0.08333333333333
0.66666666666667

0
-0.66666666666667

0.08333333333333

The output is therefore the vectorcoefs= [-1 8 0 -8 1]/12= [αj+2 αj+1 αj , αj−1, αj−2],
whose components are precisely the coefficients in (1). Analogously, we could obtain the coefficients
to compute the second derivative using a7-point centered formula, through the sequence

>> m= 2; % Second order derivative
>> n= 6; % The stencil comprises n+1 points...
>> x= [3 2 1 0 -1 -2 -3]; % Generic coordinates of the points (dx= 1)
>> xi= 0; % Formula for the central point
>> coefs= fdcoefs(m,n,x,xi);

and nowcoefs= [2 -27 270 -490 270 -27 2]/180 .
Note that, for uniformly spaced nodes, we may write a general approximation for them-th derivative

at pointi, using a stencil ofn + 1 neighbor nodes, as

u
(m)
i =

1
∆xm

n∑

j=0

αjuj (3)

where the coefficients{αj} are computed on a standard grid with∆x = 1, as we did before.
We may also usefdcoefs to obtain one-sided formulas, use irregularly spaced points, etc. Let

us compute the coefficients of an approximation for the first derivative at pointx1, using the stencil
{x0, x1, x2, x3, x4}, as

1.723 - Computational methods for flow in porous media

LCF 3

u′1 =
α0u0 + α1u1 + α2u2 + α3u3 + α4u4

∆x
+ O(∆x4) (4)

The use offdcoefs in this case reads

>> m= 1; % First order derivative
>> n= 4; % The stencil comprises n+1 points...
>> x= [0 1 2 3 4]; % Generic coordinates of the points (dx= 1)
>> xi= 1; % Formula for the second point
>> coefs= fdcoefs(m,n,x,xi);

which producescoefs= [-3 -10 18 -6 1]/12= [α0 α1 α2 α3 α4]
The grid points need not be uniformly spaced, nor the evaluation point has to be one of the grid

points. Assume for example that we are given the values of a functionu(x) at 5 points with coordinates
xxxxxxxxxxxxxx = [x0 x1 x2 x3 x4] = [-0.12 0.03 0.205 0.34 0.5] . We could approximate the second
derivative ofu(x) atxi = 0.103 , for example, with an expression of the form

u′′i =
4∑

j=0

αjuj (5)

and determine the weights{αj} usingfdcoefs , as

>> m= 2;
>> n= 4;
>> x= [-0.12 0.03 0.205 0.34 0.5];
>> xi= 0.103;
>> alpha= fdcoefs(m,n,x,xi)’

alpha =

9.55277974400200
14.32199405938392

-78.42383543004449
63.08923101917553
-8.54016939251694

2. CREATING DIFFERENTIATION MATRICES. CONVERGENCE

Consider now a full grid ofN +1 points,{x0, x1, . . . , xN}. Once we have determined the weights that
we will use to approximate them-th derivatives at each grid point, we can evaluate them as

u
(m)
i =

N∑

j=0

d
(m)
ij uj (6)

Note that, although the sum extends in principle over all grid points, in practice only a few coefficients
are different from zero (for each nodei, thosen + 1 nodes that belong to itsstencil). The right hand
side of equation (6) is just a matrix-vector product, which can be written as

uuuuuuuuuuuuuu
(m)
i = DDDDDDDDDDDDDD(m)uuuuuuuuuuuuuu (7)

1.723 - Computational methods for flow in porous media

4 FINITE DIFFERENCE METHODS (II)

whereDDDDDDDDDDDDDD(m) is thedifferentiation matrix. For general, irregular grids, this matrix can be constructed by
generating the FD weights for each grid pointi (using fdcoefs , for example), and then introducing
these weights in rowi. Of coursefdcoefs only computes the non-zero weights, so the other
components of the row have to be set to zero.

For a grid ofN +1 uniformly spaced points, the functiondiffmatrix computes the differentiation
matrices for the first and second derivatives. It generates formulas with centered stencils for interior
nodes, and one-sided approximations near the boundaries. You can specify the size of the stencils. It
works with formulas of arbitrary number of pointsn, but it assumes thatn is odd (i.e. it will only work
for n = 3, 5, 7, 9, 11, ...). The syntax is

>> [D1,D2]= diffmatrix(x,n);

wherex is a vector containing the coordinates of the grid points (now this means the coordinates of
theN + 1 points of the grid, not just those of the nodes in a particular stencil like infdcoefs), and
n is the stencil of the formulas (n = 5 for 5-point formulas...). Consider, for example, the function
u(x) = x2, defined on the intervalI = [0, 3], and discretized into a grid of4 evenly spaced points,
with coordinatesxxxxxxxxxxxxxx = (0 1 2 3). In order to compute the first and second order derivatives at the grid
points, we may usediffmatrix to construct the3-point differentiation matrices as

>> n= 3;
>> x= 0:3;
>> [D1,D2]= diffmatrix(x,n)

D1 =

-1.5 2 -0.5 0
-0.5 0 0.5 0

0 -0.5 0 0.5
0 0.5 -2 1.5

D2 =

1 -2 1 0
1 -2 1 0
0 1 -2 1
0 1 -2 1

We can thus approximate the derivatives at the grid points as

uuuuuuuuuuuuuu′i = DDDDDDDDDDDDDD(1)uuuuuuuuuuuuuu =

−1.5 2 −0.5 0
−0.5 0 0.5 0

0 −0.5 0 0.5
0 0.5 −2 1.5

0
1
4
9

 =

0
2
4
6

 (8)

and

uuuuuuuuuuuuuu′′i = DDDDDDDDDDDDDD(2)uuuuuuuuuuuuuu =

1 −2 1 0
1 −2 1 0
0 1 −2 1
0 1 −2 1

0
1
4
9

 =

2
2
2
2

 (9)

In this simple case, asu(x) is just a quadratic function, the computed derivatives are exact at the nodes.

1.723 - Computational methods for flow in porous media

LCF 5

2.1. Another example of numerical differentiation

Consider a more general differentiation example. We will now be using the functiondiff_test.m ,
which also callsdiffmatrix.m . Consider the function

u(x) =
3

5− 4cos2(2x)
x ∈ [0, 2π] (10)

This function is periodic in[0, 2π], but we will not make use of this property in this example. The
function diff_test computes the first and second order derivatives ofu(x) using finite differences
on a grid ofN + 1 points. The syntax is

>> diff_test(n,N);

For example,

>> diff_test(7,134);

would produce the plots shown in figure (2). Let’s take a look a the code... it starts by creating “inline”
functions that will be used later to evaluate the function at the grid points and to compute the exact
derivatives for the error analysis

syms x
u= 3*(5-4*cos(2*x)ˆ2)ˆ-1;
du = diff(u,1);
ddu= diff(u,2);
Fu = inline(vectorize(simplify(u)));
Fdu = inline(vectorize(simplify(du)));
Fddu= inline(vectorize(simplify(ddu)));

then we generate the grid and differentiation matrices

h= 2*pi/N;
x= (0:h:2*pi)’;
[D1,D2]= diffmatrix(x,n);

We can now compute the derivatives ofu... but first we need its values at the nodes...

u= Fu(x);

and then we are just a matrix-vector product away...

duFD = D1*u;
dduFD= D2*u;

The remainder of the function is just computing errors and plotting...

1.723 - Computational methods for flow in porous media

6 FINITE DIFFERENCE METHODS (II)

0 1 2 3 4 5 6

−6

−4

−2

0

2

4

6

error= 0.00069016

X

d1 u/
dx

1

0 1 2 3 4 5 6

−80

−60

−40

−20

0

20

error= 0.0030272

X
d2 u/

dx
2

Figure 2. What pops up when we rundiff test(7,134)

2.2. Periodic functions

The functiondiff_test_per.m is similar to diff_test.m , but it exploits the fact thatu(x) is
periodic. It also goes a step further in that it “formally” allows to compute derivatives of arbitrarily
high orderm. I say “formally” because in practice the propagation of roundoff errors would end up
ruining our finite difference computations for sufficiently largem’s. Differentiation is numerically
unstable...

The syntax fordiff_test_per is

>> diff_test_per(m,n,N);

which means that we want to compute them-th derivative ofu(x) (the same function as in the previous
case (10)), with ann-point formula, on a periodic grid ofN points in[0, 2π]. It also assumes thatn is
odd.

For example,

>> diff_test_per(3,9,147);

would produce the plot shown in figure (3).
The main difference with respect todiff_test is that diff_test_per computes the weights

using fdcoefs for a generic point of grid, and then just constructs the differentiation matrix as a
Toeplitz one.

Thus, the coefficients of the formula are first computed with

%Coefficients of the difference scheme
x= -(n-1)/2:(n-1)/2;
[FDcoefs]= fdcoefs(m,n-1,x,0);

after which the grid and differentiation matrices are

1.723 - Computational methods for flow in porous media

LCF 7

0 1 2 3 4 5 6

−800

−600

−400

−200

0

200

400

600

800

error= 0.0035141

X

d3 u/
dx

3

Figure 3. What pops up when we rundiff testper(3,9,147)

%Grid and differentiation matrix
h= 2*pi/N;
x= 0:h:2*pi;x= x(1:N)’;
FDcoefs= FDcoefs/(hˆm);
R= [FDcoefs((n-1)/2+1:n) zeros(1,N-n) FDcoefs(1:(n-1)/2)];
C= [fliplr(FDcoefs(1:(n-1)/2+1)) zeros(1,N-n) fliplr(FDcoefs((n-1)/2+2:n))];
D= toeplitz(sparse(C),sparse(R));

Note that we had to divide by∆xm (and that I calledh = ∆x). Also note that, when we generate
the grid, wedon’t include the node at the right boundary (periodicity implies that the point at the left
boundary would be there again).

Once we have the differentiation matrix, computing the derivative is just

%Finite difference derivative
u= Fu(x);
duFD= D*u;

And then plotting...

2.3. Convergence check

In order to check the convergence of our finite difference approximations, we may generate increasingly
refined grids, and track the evolution of the error as a function of the grid size. As we saw in the
theoretical part, the plot is particularly insightful in logarithmic scale.

Take a look at the functiondiff_conv . It uses the same code as indiff_test_per to compute
derivatives, but now it does it for several values ofN , and then plots the convergence history. The
syntax is

1.723 - Computational methods for flow in porous media

8 FINITE DIFFERENCE METHODS (II)

10
2

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

N

er
ro

r

Figure 4. The convergence test.

>> diff_conv(m,n,N);

meaning that we are analyzing the convergence of ann-point formula for them-th derivative. In this
caseN is a vectorcontaining the number of grid points on each refinement level. We use again the
same functionu(x) of the previous examples (10).

For this convergence test, in addition to difference formulas, the function includes the limit case of
using all the points to compute the derivative (n = N). This may be specified by settingn= NaN, and
in this case the derivatives are computed in Fourier space (we will talk about this later in the course).
For example, the sequence

>> diff_conv(2,3,64:16:384);
>> diff_conv(2,5,64:16:384);
>> diff_conv(2,7,64:16:384);
>> diff_conv(2,9,64:16:384);
>> diff_conv(2,11,64:16:384);
>> diff_conv(2,NaN,64:16:384);
>> axis([50,512,10ˆ-14,10ˆ2]);

produces the plot shown in figure (4), which represents a comparison of the performance of several
difference formulas for the second derivative (n = 3− 11) with a Fourier spectral method (n= NaN).
You may also plot the reference straight lines, which represent the formal order of the truncation error.
This feature is by default commented in the code.

1.723 - Computational methods for flow in porous media

LCF 9

3. BOUNDARY-VALUE PROBLEMS

Consider the 1D Poisson problem

d2u

dx
= S(x) x ∈ [0, 2π] (11)

with source term

S(x) = −9
4

cos
(

3
2
x

)
(12)

and boundary conditions

u(0) = 0
du

dx

∣∣∣∣
x=2π

= 0 (13)

The exact solution of (11)–(13) is

u(x) = cos
(

3
2
x

)
− 1 (14)

Consider a discretization of[0, 2π] into a set ofN + 1 grid points,{x0, x1, . . . , xN}. Once we have
computed the differentiation matrix for the second derivative,DDDDDDDDDDDDDD(2), the discrete version of (11) is
simply

DDDDDDDDDDDDDD(2)uuuuuuuuuuuuuu = SSSSSSSSSSSSSS (15)

where

uuuuuuuuuuuuuu =

u0

u1

...
uN

 SSSSSSSSSSSSSS =

S(x0)
S(x1)

...
S(xN)

 (16)

and we still have to include the boundary conditionsu0 = 0 andu′N = 0. The first one is trivial, while
for the second one we may generate a finite difference approximation for the first derivative atxN ,
and the impose that it vanishes. It will be more clear by taking a look at the functionpoisson_test ,
which solves this boundary value problem. The syntax is

>> poisson_test(n,N);

wheren is again the number of points in the difference formula, andN + 1 the number of grid points.
For example, the command

>> poisson_test(11,32);

produces the plot shown in figure 5
Looking into the code, the generation of the grid and differentiation matrices is carried out by

1.723 - Computational methods for flow in porous media

10 FINITE DIFFERENCE METHODS (II)

0 1 2 3 4 5 6
−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0
error= 4.0463e−006

X

u

Figure 5. What pops up when we runpoissontest(11,32)

h= 2*pi/N;
x= (0:h:2*pi)’;
[D1,D2]= diffmatrix(x,n);
L= D2;

where the discrete “Laplacian” is simplyLLLLLLLLLLLLLL = DDDDDDDDDDDDDD(2). We also need the source term

%Source term
S= FS(x);

Once we have the differentiation matrices and source term, we just need to impose the boundary
conditions

%Dirichlet
L(1,:)= 0;L(1,1)= 1;
S(1)= 0;
%Neumann
L(end,:)= D1(end,:);
S(end)= 0;

and then solve the linear system of equations (15)

%Finite difference solution
uFD= L\S;

and, of course, errors, plots and other herbs.

1.723 - Computational methods for flow in porous media

