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FINITE DIFFERENCE METHODS (I):
INTRODUCTION

Luis Cueto-Felgueroso

1. BASIC DEFINITIONS AND NOTATION

1.1. Discretization. Grid functions.

Consider a functionu(x), defined on the intervalI = [0, L]. Let us discretizeI into a set ofN + 1
uniformly spacednodes{xj , j = 0, . . . , N},

0 = x0, x1, . . . , xj , . . . , xN−1, xN = L (1)

with nodal coordinatesxj = j∆x, where∆x = L/N is the (uniform) grid spacing. The above set of
nodes induces a partition of the interval into a set ofN subintervals{Ij , j = 1, . . . , N}, such that

I =
N⋃

j=1

Ij , Ij = [xj−1, xj ] (2)

Thegrid function{uj , j = 0, . . . , N} is defined, point-wise, by the discrete values ofu(x) at the grid
nodes, i.e.uj = u(xj).

1.2. Discrete differentiation.

Given a grid{xj , j = 0, . . . , N}, and a grid function{uj , j = 0, . . . , N}, we are interested in

computing approximations to the derivatives ofu(x),
dmu(x)

dxm
. More precisely, we want to compute

grid functions{u(m)
j , j = 0, . . . , N}, such that

u
(m)
j ≈ dmu(x)

dxm

∣∣∣∣
x=xj

(3)

Finite difference methods attempt to compute these approximations by expressing the discrete
derivatives at the grid nodes as linear combinations of the grid function values, i.e.

u
(m)
j =

N∑

k=0

α
(m)
k uk (4)
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Figure 1. Finite difference grid

Note that the set of coefficients{αk} will be different, in general, for each grid point, and therefore (4)
can be written in the more general fashion

u
(m)
j =

N∑

k=0

α
(m)
jk uk (5)

or, in matrix form,

uuuuuuuuuuuuuu(m) = DDDDDDDDDDDDDD(m)uuuuuuuuuuuuuu (6)

where

uuuuuuuuuuuuuu(m) =




u
(m)
0

u
(m)
1
...

u
(m)
N−1

u
(m)
N




uuuuuuuuuuuuuu =




u0

u1

...
uN−1

uN




(7)

and

DDDDDDDDDDDDDD(m) =




α
(m)
00 α

(m)
01 . . . α

(m)
0N

α
(m)
10 α

(m)
11 . . . α

(m)
1N

...
...

. . .
...

α
(m)
N0 α

(m)
N1 . . . α

(m)
NN




(8)

is thedifferentiation matrix.
There are two basic considerations that must be taken into account when designing finite difference

formulas. One is how many nodes, and of course which ones, will be used for the computation of a
certain derivative at each grid pointj. This set of “neighbor” nodes is called thestencilof the formula,
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and has a strong impact on the computational cost of applying the formula: the differentiation matrix
will be less sparse, and therefore the matrix-vector operation will require more operations. On the other
hand, larger stencils will allow, in general, the construction of finite differences of higheraccuracy,
which is the other fundamental design variable.

1.3. First examples

A common difference formula for the first derivative is the centered, second order formula

u′j =
uj+1 − uj−1

2∆x
u′j =

du

dx

∣∣∣∣
x=xj

+ O(∆x2) (9)

For the second derivative, the classical second order finite difference formula is given by

u′′j =
uj+1 − 2uj + uj−1

∆x2
u′′j =

d2u

dx2

∣∣∣∣
x=xj

+ O(∆x2) (10)

On a periodic grid, their associated differentiation matrices are

DDDDDDDDDDDDDD(1) =




0 1 0 0 . . . 0 −1
−1 0 1 0 . . . 0 0
0 −1 0 1 . . . 0 0
...

...
. . .

.. .
. ..

...
...

0 0 . . . −1 0 1 0
0 0 . . . 0 −1 0 1
1 0 . . . 0 0 −1 0




(11)

and

DDDDDDDDDDDDDD(2) =




−2 1 0 0 . . . 0 1
1 −2 1 0 . . . 0 0
0 1 −2 1 . . . 0 0
...

...
. ..

.. .
. ..

...
...

0 0 . . . 1 −2 1 0
0 0 . . . 0 1 −2 1
1 0 . . . 0 0 1 −2




(12)

Note that, in the case of periodic grids, we drop the last node of the grid. In other words, we have
nowN nodes{xj , j = 0, . . . , N − 1}, as

0 = x0, x1, . . . , xj , . . . , xN−2, xN−1 = L−∆x ∆x = L/N (13)

2. DESIGN OF FINITE DIFFERENCE APPROXIMATIONS. CONVERGENCE

2.1. Some definitions

A discrete differentiation method isconsistentwith the exact derivative if, for sufficiently smooth
functionsu(x),
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(
u

(m)
j − dmu

dxm

∣∣∣∣
x=xj

)
→ 0 ∀j = 0, . . . , N (14)

when∆x → 0. The difference between the approximate and exact derivative is calledtruncation error

τj = u
(m)
j − dmu

dxm

∣∣∣∣
x=xj

j = 0, . . . , N (15)

Finally, a finite difference formula is oforder p if the truncation error satisfies

τj = O(∆xp) (16)

where we define a functionf(∆x) to beO(∆xp), as∆x → 0, if there exist constantsC andε, such
that|f(∆x)| < C∆xp, for all ∆x < ε.

2.2. Design of finite difference approximations

Given a stencil ofn = l + r +1 distinct nodes around each grid pointj, {xj−l, . . . , xj , . . . , xj+r}, the

basic design objective is to find the coefficientsα
(m)
k that maximize the order of the approximation

dmu

dxm

∣∣∣∣
x=xj

≈ u
(m)
j =

j+r∑

k=j−l

α
(m)
k uk (17)

2.3. Taylor series expansions

Let us derive an approximation for the second derivative at grip pointj, using the stencil
{xj−1, xj , xj+1}. Expandingu(x) in a neighborhood ofxj , we can write

uj+1 = uj + ∆xu′j +
∆x2

2!
u′′j +

∆x3

3!
u′′′j + O(∆x4)

uj−1 = uj −∆xu′j +
∆x2

2!
u′′j −

∆x3

3!
u′′′j + O(∆x4) (18)

adding the expressions above, we arrive at

uj+1 + uj−1 = 2uj + ∆x2u′′j + O(∆x4) (19)

and therefore

u′′j =
uj−1 − 2uj + uj+1

∆x2
+ O(∆x2) (20)

This formula maximizes the order of the truncation error attainable with the three-point, centered
stencil, and issecond order accurate.

Increasing the stencil of the approximation in order to a 5-point formula, and matching terms in the
Taylor series expansions foruj−2, uj−1, uj+1 anduj+2}, we would arrive at

u′′j =
−uj−2 + 16uj−1 − 30uj + 16uj+1 − uj+2

12∆x2
+ O(∆x4) (21)

which isfourth orderaccurate.
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2.4. Polynomial interpolation

An alternative approach, and perhaps a more convenient one from the perspective of computer
implementation, is to fit a polynomial through the stencil points, and then approximate the derivatives
by the derivatives of the polynomial.

Consider again a stencil ofn = l + r + 1 nodes around grid pointj, {xj−l, . . . , xj , . . . , xj+r}. We
approximateu(x) aroundxj as

u(x) ≈ ũ(x) =
j+r∑

k=j−l

Lk(x)uk (22)

where the functionsLk(x) are the Lagrange polynomials

Lk(x) =
(x− xj−l) . . . (x− xk−1)(x− xk+1) . . . (x− xj+r)

(xk − xj−l) . . . (xk − xk−1)(xk − xk+1) . . . (xk − xj+r)
(23)

Note thatLk(xi) = δki, which implies that the polynomial̃u(x) interpolates the nodes. Of course,
ũ(x) is a polynomial of degreen − 1, and formally|u(x) − ũ(x)| = O(∆xn) for smooth functions
u(x). We may approximate the derivatives ofu(x) as

dmu

dxm

∣∣∣∣
x=xj

≈ dmũ

dxm

∣∣∣∣
x=xj

=
j+r∑

k=j−l

dmLk

dxm

∣∣∣∣
x=xj

uk (24)

and therefore

α
(m)
k =

dmLk

dxm

∣∣∣∣
x=xj

(25)

For sufficiently smooth functionsu(x), the approximation of them-th derivative ofu(x) using a stencil
comprisingn points is formally of ordern −m. In the case ofcentered formulas with uniform grid
spacing, the approximation is of ordern−m + 1 due to symmetries.

2.5. Practical consequences of the convergence order

We have seen that ap-th order finite difference approximation is such that, asymptotically (for
sufficiently smooth functionsu(x) and small grid sizes∆x), the errorε behaves like

ε = O(∆xp) = O(N−p) (26)

since∆x = L/N . We still need to define suitable measures of the error for which (26) may hold. In
particular, we will consider

ε∞ = maxj

(
dmu

dxm

∣∣∣∣
x=xj

− u
(m)
j

)
(27)

and
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ε2 =

√√√√√√
N∑

j=0

(
dmu

dxm

∣∣∣∣
x=xj

− u
(m)
j

)2

N + 1
(28)

For either of these error norms, we could in principle find a constantC such that, asymptotically,

ε = CN−p (29)

Taking logarithms in the expression above, we arrive at

log ε = log C − p log N (30)

and thus in logarithmic scale the error decays like a straight line with slope−p.

3. NON-PERIODIC GRIDS: ONE-SIDED FORMULAS

The grid points located at or near the boundary require special attention, as it will not be possible, in
general, to use the centered formulas derived so far. This is obviously the case for grid points lying on
the boundary, but for very high-order methods, which require large stencils, the use of non-centered
formulas may be required for several layers of nodes inside the domain. Assume, for example, that for
interior nodes we use the fourth order centered approximation

u′j =
uj+1 − uj−1

∆x
+ O(∆x2) (31)

In this case we only need special formulas for nodesj = 0 andj = N . In particular, forj = 0 we
could use

u′0 =
−3u0 + 4u1 − u2

2∆x
+ O(∆x2) (32)

Analogously, a second order formula forj = N reads

u′N =
3uN − 4uN−1 + uN−2

2∆x
+ O(∆x2) (33)

4. EXAMPLES

Let us look at some practical examples of numerical differentiation. A more in-depth analysis of the
practical implementation of finite difference formulas will be presented in part (II). The basic problem
statement is: given the values of a certain smooth functionu(x), defined on an intervalI = [0, L], at
theN + 1 nodes{xj , j = 0, . . . , N} of a grid (i.e. given thegrid function{uj , j = 0, . . . , N}), use
finite difference formulas to approximate the derivatives ofu(x) at the nodes.

Consider for example the function (figure 2)

u(x) =
3

5− 4cos2(2x)
x ∈ [0, 2π] (34)
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Figure 2. The functionu(x) =
3

5− 4cos2(2x)

which is continuous and periodic in[0, 2π]. Furthermore, all its derivatives are continuous and periodic
in [0, 2π] as well. We will study the convergence of several finite difference formulas for its first and
second order derivatives. In particular, consider the second, fourth and sixth order center formulas for
thefirst derivative,

u′j =
uj+1 − uj−1

2∆x
+ O(∆x2) (35)

u′j =
−uj+2 + 8uj+1 − 8uj−1 + uj−2

12∆x
+ O(∆x4) (36)

u′j =
uj+3 − 9uj+2 + 45uj+1 − 45uj−1 + 9uj−2 − uj−3

60∆x
+ O(∆x6) (37)

as well as the second, fourth and sixth order center formulas for thesecondderivative,

u′′j =
uj+1 − 2uj + uj−1

∆x2
+ O(∆x2) (38)

u′′j =
−uj+2 + 16uj+1 − 30uj + 16uj−1 − uj−2

12∆x2
+ O(∆x4) (39)

u′′j =
2uj+3 − 27uj+2 + 270uj+1 − 490uj + 270uj−1 − 27uj−2 + 2uj−3

180∆x2
+ O(∆x6) (40)

In addition, we will compare the convergence of these methods with that of a spectral discretization,
which uses all the grid points for the computation of the derivatives. The particular method used
here will be covered later in the course, but the comparison will help understanding the limit case
of increasingly high-order discretizations.
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In order to have a preliminary idea of the relative accuracy of each scheme, figure 3 plots the
approximate first derivative ofu(x), computed on a grid comprisingN = 32 nodes, using the second
and fourth order formulas (left and right, respectively). Even for this coarse grid the differences
between both methods are noticeable. Figure 4 shows the convergence characteristics of the second
(FD2), fourth (FD2), and sixth (FD6) order schemes, as well as the convergence of a spectral method.
For this smooth function, the advantages of using higher order methods are huge. ForN = 300
the spectral derivative is accurate to machine precision, whereas the second order method has still
relative errors around10−2. Note also that the asymptotic (“straight line”) behavior is only achieved
for sufficiently fine grids (large N’s), while for very coarse grids the error levels tend to exhibit a more
“erratic” behavior.
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Figure 3. Approximation of the first derivative ofu(x) (34) usingN = 32, points and the second and fourth order
centered formulas (left and right, respectively).
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Figure 4. Convergence of finite difference approximations for smooth functions: first and second derivatives of
u(x) (34) (left and right, respectively).
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