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In this work we study the dispersion and dissipation characteristics of a higher-order finite volume
method based on Moving Least Squares approximations (FV-MLS), and we analyze the influence of the
kernel parameters on the properties of the scheme. Several numerical examples are included. The results
clearly show a significant improvement of dispersion and dissipation properties of the numerical method
if the third-order FV-MLS scheme is used compared with the second-order one. Moreover, with the
explicit fourth-order Runge–Kutta scheme the dispersion error is lower than with the third-order
Runge–Kutta scheme, whereas the dissipation error is similar for both time-integration schemes. It is also
shown than a CFL number lower than 0.8 is required to avoid an unacceptable dispersion error.
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1. Introduction

The resolution of wave propagation problems is a challenging
work for numerical methods. The solution we want to approximate
usually presents a wide spectrum of frequencies, and the numeri-
cal scheme has to be accurate enough to preserve the shape and
frequency of propagating waves. It is also usual to face with
non-linear interactions and complex geometries. In order to accu-
rately solve this kind of problems, the numerical scheme should
introduce the minimal dispersion and dissipation errors.

Computation of derivatives is a crucial point to assess the qual-
ity of a numerical scheme. Although a higher-order discretization
usually means greater accuracy, it is not always true, specially
for shorter waves relative to grid size [1]. Thus, it is possible to de-
velop numerical schemes optimized to solve a wider range of the
spectrum of frequencies [2–6]. In these methods, the number of
available coefficients to perform the optimization process is in-
creased by decreasing the order of the approximation. Thus, it is
possible to develop numerical methods with higher spectral reso-
lution than other higher-order discretizations.

However, the use of structured grids on complex geometries
may lead to distort elements that affect greatly to the accuracy
of the numerical method. For these geometries, it could be inter-
esting the use of unstructured grids. However, most of the high-
accurate methods developed for structured grids do not work on
unstructured or distorted grids.
ll rights reserved.
On this kind of grids it is difficult to increase the spectral resolu-
tion of a given numerical scheme by using methodologies different
than raising the order of the numerical scheme, due to the difficulty
in generalizing the methods developed for structured meshes.
Some approaches have been developed for the construction of accu-
rate methods to solve wave propagation on unstructured grids [7–
18]. The finite volume method is well suited for the computation of
wave transport problems, particularly for the non-linear case,
where finite difference approaches may fail [19]. Moreover, this
method can be applied on unstructured grids, but the way for
increasing the order of the scheme on these grids is not obvious.
The main problem is the evaluation of high-order derivatives.

The FV-MLS method [20–24] overcomes the difficulty in the
computation of high-order derivatives by using the Moving Least
Squares (MLS) technique [25]. This scheme builds higher-order
schemes in a finite volume framework without the introduction
of new degrees of freedom. One of the advantages of this numerical
method is its good performance on unstructured grids, due to the
accurate and multidimensional nature of MLS reconstructions.
Thus, the FV-MLS method has successfully been applied to Euler
(and Linearized Euler) and Navier–Stokes equations, shallow water
equations and also to Cahn–Hilliard and Kuramoto–Sivashinsky
type of equations.

One of the key points in the development of the FV-MLS method
is the kernel function. In this work we present the first analysis of
the influence of the kernel parameters on the dispersion and dissi-
pation characteristics of the FV-MLS method. In particular, we ana-
lyze the behavior of the FV-MLS method with two kinds of kernels:
the cubic spline kernel and the exponential kernel.

http://dx.doi.org/10.1016/j.cma.2009.12.015
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Section 2 is devoted to present the fundamentals of the finite
volume method based on Moving Least Squares approximations.
Section 3 analyzes the influence of the kernel parameters on the
MLS-shape functions and its derivatives. In Section 4 we study
the influence of kernel parameters in the computation of discrete
differential operators by using MLS, and then, in Section 5, we ana-
lyze the discretization of the one-dimensional linear equation with
the third-order FV-MLS method. In Section 6 we study the influ-
ence of kernel parameters on the discretization of elliptic and
hyperbolic terms. In Section 7 we present two 1D numerical exam-
ples for the linear and the non-linear case, with the purpose of
showing the performance of the proposed methodology. Moreover,
a 2D case computed using an unstructured grid is presented, to
check the validity of the 1D analysis to more general problems. Fi-
nally, conclusions are drawn on Section 8.

2. Numerical method: a MLS-based finite volume scheme

A method based on the application of Moving Least Squares [25]
to compute the derivatives in a finite volume framework (FV-MLS)
has been developed in [20–22]. In order to increase the order
achieved by the finite volume method, a Taylor expansion of the
variable is performed at the interior of each cell. The approxima-
tion of the higher-order derivatives needed to compute the Taylor
reconstruction is obtained by a Moving Least Squares approach.

Thus, if we consider a function UðxÞ defined in a domain X, the
basic idea of the MLS approach is to approximate UðxÞ, at a given
point x, through a weighted least-squares fitting of UðxÞ in a neigh-
borhood of x as

UðxÞ � bUðxÞ ¼Xm

i¼1

piðxÞaiðzÞjz¼x ¼ pTðxÞaðzÞjz¼x; ð1Þ

pTðxÞ is a m-dimensional (usually polynomial) basis and aðzÞjz¼x is a
set of parameters to be determined, such that they minimize the
following error functional:

JðaðzÞjz¼xÞ ¼
Z

y2Xx

Wðz � y; hÞjz¼x½UðyÞ � pTðyÞaðzÞjz¼x�
2dXx; ð2Þ

being Wðz � y;hÞjz¼x a kernel with compact support (denoted by Xx)
centered at z = x. The parameter h is the smoothing length, which is
a measure of the size of the support Xx [20].

In this work the following polynomial cubic basis is used:

pðxÞ ¼ ð1 x y xy x2 y2 x2y xy2 x3 y3ÞT ; ð3Þ

which provides cubic completeness. In the above expression, ðx; yÞ
denotes the Cartesian coordinates of x. From a practical point of
view, for each point I we need to define a set of neighbors inside
the compact support Xx. Following [20], the interpolation structure
can be identified ascUI ðxÞ ¼ pTðxÞaðzÞjz¼x ¼ pTðxÞM�1ðxÞPXx WðxÞUXx ¼ NTðxÞUXx ; ð4Þ

cUI ðxÞ ¼
XnxI

j¼1

NjðxÞUj: ð5Þ

In the above, nxI is the number of neighbors of the cell I. Moreover,
M ¼ PXx WðxÞPT

Xx
is the moment matrix.

We also define the matrices (see [20]):

PXx ¼ ðpðxÞ1 � � �pðxÞnxI
Þ; ð6Þ

UXx ¼ ðUðx1Þ � � �UðxnxI
ÞÞ; ð7Þ

and

WðxÞ ¼ diagðWiðxÞÞ; i ¼ 1; . . . ;nxI : ð8Þ

From Eq. (5), the approximation is written in terms of the MLS
‘‘shape functions” NTðxÞ.
NTðxÞ ¼ pTðxÞM�1ðxÞPXx WðxÞ: ð9Þ

In order to improve the conditioning, the polynomial basis (3) is lo-
cally defined and scaled: if the shape functions are evaluated at xI ,
the polynomial basis is evaluated at ðx� xIÞ=h. Thus, shape func-
tions evaluated at xI read:

NTðxIÞ ¼ pTð0ÞM�1ðxIÞPXxI
WðxIÞ ¼ pTð0ÞCðxIÞ; ð10Þ

we define the matrix C(x) as:

CðxÞ ¼M�1ðxÞPXx WðxÞ: ð11Þ

The derivatives of NTðxÞ can be used to compute an approximation
to the derivatives of the function. So, the gradient of bUðxÞ is evalu-
ated as

$bUðxÞ ¼XnxI

j¼1

Uj$NjðxÞ: ð12Þ

In a context of generalized Godunov’s methods we use Eq. (12) to
compute the first and second derivatives required for the Taylor
reconstruction of the variables at quadrature points at the edges.
Elliptic terms, like viscous terms in the Navier–Stokes equations,
are computed directly using MLS approximations. In case of unstea-
dy problems, this reconstruction needs to use correction terms in
order to ensure that the average value of the reconstructed vari-
ables over a cell I is the centroid value U I [8,20–22]. The resulting
scheme is a third-order method.

The neighbors of each cell centroid I of the grid are the centroids
of the neighboring cells. For boundary cells, we add nodes (ghost
nodes) placed in the middle of the edge defining the boundary.
The definition of the stencil for each cell is done at the beginning
of the calculations. It is possible to use different kernels for the def-
inition of shape functions. We have considered two of them: the
cubic spline kernel and the exponential kernel. The 1D cubic kernel
is given by:

WðdÞ ¼
1� 3

2 d2 þ 3
4 d3 d 6 1

1
4 2� dð Þ3 1 < d 6 2
0 d > 2

8><>: ð13Þ

In Eq. (13) d ¼ jxj�x�j
h , and h ¼ k max ðjxj � x�jÞ with j ¼ 1; . . . ;nx� . We

call x� to the reference point (the point where the MLS-shape func-
tions are evaluated), and nx� is the number of neighbors of the ref-
erence point. The exponential kernel may be defined in 1D as:

Wðx; x�; sxÞ ¼
e�

d
cð Þ2 � e�

dm
cð Þ2

1� e�
dm
cð Þ2

ð14Þ

with d ¼ jxj � x�j;dm ¼ 2 maxðjxj � x�jÞ, with j ¼ 1; . . . ; nx� ; c ¼ dm
sx
; x is

the position of every cell centroid of the stencil and sx is a shape
parameter. A 2D kernel is obtained by multiplying two 1D kernels.
Thus, the 2D exponential kernel is the following:

Wjðx; x�; sx; syÞ ¼Wjðx; x�; sxÞWjðy; y�; syÞ: ð15Þ

More details about the FV-MLS method can be found in [20–22].

3. Influence of kernel parameters on the MLS-shape functions
and its derivatives

In Section 2, we have exposed that the derivatives needed in the
reconstruction step of the finite volume method are computed by
using MLS shape functions. Thus, MLS shape functions are going
to play a crucial role in the accuracy of this method. In this section
we perform a 1D study of the influence of the choice of the differ-
ent parameters defining the kernel function. It is possible to find a
great amount of kernel functions [26], but here we only focus on
the kernels defined by (13) and (15).



X. Nogueira et al. / Comput. Methods Appl. Mech. Engrg. 199 (2010) 1471–1490 1473
We consider a 5-point stencil, namely �2, �1, 0, +1, +2, where 0
is the point where we compute the derivative (Fig. 1). We also con-
sider equally-spaced points. The number of points of the stencil
also has an influence on the behavior of the method, and also the
basis p(x). However, in this work we focus on the 5-point stencil
and the cubic polynomial basis. The reason is that the polynomial
cubic basis is the usual choice in the implementation of the third-
order FV-MLS method, and five is the maximum number of ele-
ments in one direction when multidimensional stencils are used
with the third-order FV-MLS method [20–22]. Clearly, the results
of the present study no longer holds for the case of arbitrary distri-
butions of points, but we will be able to get a flavor of the behavior
of the scheme in this cases, as it will be shown in the numerical
examples.

As parameters for modifying the kernels, we have chosen k for
the cubic spline (13) and sx for the exponential kernel (15). A
change of these parameters causes a modification in the shape of
the kernels, as is plotted in Fig. 2. The shape variation as we change
the value of the parameter is bigger for the exponential kernel than
for the cubic spline kernel. This feature of exponential kernel rep-
resents an advantage in terms of robustness for arbitrary meshes.

When we compute the derivatives with (12) we need to com-
pute the derivative of the MLS shape functions. Thus, in Figs. 3–5
we plot the value of @Nj

@x in the points of the stencil
ðj ¼ �2;�1;0;þ1;þ2Þ.

The values of the first derivative of the MLS shape functions
computed with (13) do not depend on the value of the smoothing
length ðhÞ. These values match with the coefficients of a fourth-or-
der centered finite difference discretization. The case of the expo-
nential kernel is completely different. With this kernel the values
obtained depend on the shape parameter sx. We observe that for
sx > 4 these values tend to the values obtained with the cubic
spline kernel. Moreover, for this value of sx there is a change in
the tendency of the evolution of the first derivative. The reason
Fig. 1. Spatial discretization scheme.
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Fig. 2. Shape of the kernel function for different choices of the defining parameters. On th
modified. On the right we plot the results for the cubic spline (13) when we vary the k
of this behavior relies on the fact that the derivative of (15)
changes its tendency for a value of sx next to four (Fig. 6).

From Eq. (10), the derivative of a MLS shape function can be
written as:

@NTðxÞ
@x

¼ @pTð0Þ
@x

CðxÞ þ pTð0Þ @CðxÞ
@x

; ð16Þ

where the derivative of C is:

@CðxÞ
@x

¼ CðxÞW�1 @WðxÞ
@x

ðI � PXxCðxÞÞ: ð17Þ

Eqs. (16) and (17) show the influence of the derivative of the kernel
on the MLS-shape function. In Fig. 6 we plot the evolution of the
kernel derivative when we modify the kernel parameters. We ob-
serve that for nodes 1, 2, �2, �1 the tendency of the evolution
changes when the value of sx is between 3 and 4.

In Fig. 4 we plot the variation of the second derivative of the
MLS shape functions. In this case, the influence of the parameters
is bigger than for the first derivative for both the exponential ker-
nel and the cubic spline kernel. Third derivative of the MLS shape
functions is independent of the kernel parameters (see Fig. 5).

4. Influence of kernel parameters on the discrete differential
operators

In this section we analyze the dispersion and dissipation prop-
erties of the discrete differential operators obtained with MLS
approximations.

Let us consider a periodic function uðxÞ in a domain ½0; L�. Then,
uðxÞ is decomposed in a discrete Fourier series as follows:

uðxÞ ¼
XM2�1

q¼�M
2

fqeijqx; ð18Þ

where jq ¼ 2pq
DxM is the wavenumber, Dx ¼ L

M ; i ¼
ffiffiffiffiffiffiffi
�1
p

and fq are the
Fourier coefficients. If uðxÞ is smooth enough, the exact derivative
of (18) is

@uðxÞ
@x

¼
XM2�1

q¼�M
2

fqijqeijqx: ð19Þ

On the other hand, given a discrete set of points
xj ¼ jDx; j ¼ 1;2; . . . ;M we can write:

uðxjÞ ¼
XM2�1

q¼�M
2

fqeijqxj : ð20Þ
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For a MLS approximation of the derivative of uðxjÞ, we write:

@u
@x

����
xj

¼
XQ

l¼�P

@Njþl

@x
uðxjþlDxÞ ¼

XQ

l¼�P

@Njþl

@x

XM2�1

q¼�M
2

fqeijqðxjþlDxÞ

24 35
¼
XM2�1

q¼�M
2

fq

XQ

l¼�P

@Njþl

@x
eijqðxjþlDxÞ

" #

¼
XM2�1

q¼�M
2

fqeijqxj
XQ

l¼�P

@Njþl

@x
eijqðlDxÞ

" #
¼
XM2�1

q¼�M
2

fqij�qeijqxj ; ð21Þ

where P is the number of cells of the stencil on the left of cell 0
(Fig. 1) and Q is the number of cells on the right. Comparing with
(19) the modified wave number j�q

� �
of the numerical scheme is:

j�q ¼ ð�iÞ
XQ

l¼�P

@Njþl

@x
� eijqðlDxÞ ð22Þ

The wavenumber is proportional to the frequency. Thus, the numer-
ical scheme introduces a different error depending on the frequency
of the wave. For certain frequencies the modified wavenumber
coincide with the real wavenumber. These are the ‘‘resolved” fre-
quencies for the numerical method. When the numerical wavenum-
ber does not match with the real wavenumber dispersion errors
appear. On the other hand, the amplitude error (dissipation error)
is related to the imaginary part of the modified wavenumber of
the numerical scheme [2]. It is convenient to introduce a scaled
wavenumber jDx, on the domain ½0;p�. In Fig. 7 we plot the real
scaled wavenumber jDx versus the real part of the modified scaled
wavenumber j�Dx for three different numerical schemes: a second-
order centered finite differences scheme, a fourth-order tridiagonal
compact finite difference scheme (see [2]), and a MLS approxima-
tion with polynomial cubic basis. Fig. 7 shows the spectral resolu-
tion of the represented numerical schemes. The curve of the
modified wavenumber seems to be overlapped with the curve of
real wavenumber in a range of frequencies. However, this overlap-
ping may be not perfect, but at this scale this is difficult (or impos-
sible) to appreciate. But when the error is plotted in a logarithmic
scale (as in the dispersion error curve) this appear as ‘‘dips”. The
reason for this is that the numerical wavenumber is greater than
the actual wavenumber through a portion of the wavenumber spec-
trum, and then it dips below. When the numerical wavenumber
crosses through the actual wavenumber, they are equal and the er-
ror is zero, causing the ‘‘dip” in Fig. 7 (right).

We remark that the variation of the parameters of the kernel
function ðk; sxÞ does not influence the dispersion properties of the
MLS approximation (for the stencil plotted in Fig. 1). Moreover,
the dispersion curve matches with the dispersion curve of a
fourth-order centered finite differences (non-compact). On the
other hand, the imaginary part of the modified wavenumber (22)
of the MLS approximation with the cubic spline kernel (13) is null.
However, when we use the exponential kernel the imaginary part
is not null. As the imaginary part is related to the dissipation error,
we conclude that the use of the exponential kernel introduces
more dissipation than the cubic kernel.

We note that for the computations of Figs. 7 and 8 we have con-
sidered the 5-points centered stencil plotted in Fig. 1, so then
P ¼ Q ¼ 2.
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The previous analysis of the discrete MLS operator indicates the
behavior of the MLS approximation to the computation of elliptic
terms (viscous terms) in the Navier–Stokes equations when com-
puted with MLS shape functions (see [20]).
5. 1D linear advection equation analysis

Now, we examine the behavior of the FV-MLS method [20–22]
in the computation of hyperbolic terms. We study the resolution of
the 1D linear advection equation:
@u
@t
þ a

@u
@x
¼ 0 ð23Þ

on the domain 0 6 x 6 2p, with an harmonic wave as initial
condition:

uðx;0Þ ¼ gð0Þeikx ð24Þ

and that also verifies that uð0Þ ¼ uð2pÞ. In Eq. (23), u is a scalar
quantity propagating with phase velocity a. In order to make the
exposition easier to follow, we consider only a > 0. However, the
conclusions will be valid for any value of a.



Fig. 8. Imaginary part of the modified wavenumber of the MLS approximations
with the exponential kernel for different values of sx . A zero value indicates that
there is no introduction of dissipation.
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With this initial setup, the solution of the problem is written as:

uðx; tÞ ¼ gðtÞeijx: ð25Þ

Thus, introducing (25) in (23):

dg
dt

eijx þ iajgeijx ¼ 0; ð26Þ

that is,

dg
dt
¼ �iajg ð27Þ

and consequently gðtÞ is

gðtÞ ¼ gð0Þe�iajt; ð28Þ

where gð0Þ is the initial value of gðtÞ. Thus, we have:

uðx; tÞ ¼ gð0Þeiðjx�ajtÞ: ð29Þ

On the other hand, an arbitrary initial wave can be obtained by the
addition of initial conditions of the form (24):

uðx;0Þ ¼
XF

q¼1

gqð0Þeijqx; ð30Þ

where F is the number of Fourier modes.
Due to the linearity of (23), the solution can be obtained by the

addition of solutions of the form (29). Thus, for F modes we obtain:

uðx; tÞ ¼
XF

q¼1

gqð0Þeijqðx�atÞ: ð31Þ

A real wavenumber j is related to a real frequency x ¼ aj, such as
Eq. (31) is a solution of (23). The relationship between frequency
and wavenumber is called dispersion relation. For Eq. (23) this rela-
tionship is linear, that is a characteristic feature of wave propaga-
tion in non-dispersive media. Thus, the phase velocity is the same
for all the wavenumbers.

The discretization of Eq. (23) usually introduces a dispersion er-
ror. This means that in the numerical solution of (23), waves with
different wavenumber propagate with different velocities. More-
over, if the modified wavenumber is complex, dissipation errors
will appear.
In the following, we expose the analysis of the discretization of
the Eq. (23) with the third-order FV-MLS method. This analysis will
allow us to evaluate the behavior of the FV-MLS method in the
approximation of convective terms of a transport equation. We
start with the analysis of the spatial discretization only, without
taking into account the effects of time integration. The analysis
of the complete discretization will be exposed in Section 6.2.1.

As the solution is linear, we perform the analysis for a single
Fourier mode (Eq. (30)), so the subindex q is omitted.

Different from a finite difference discretization, where we use
point values of the variable, a finite volume scheme refers to the
mean value of the variables inside a control volume I.

~uI ¼
1
Dx

Z xR

xL

udx; ð32Þ

where xR and xL are the values of the x-coordinate of the cell I inter-
faces I þ 1

2 and I � 1
2, as is plotted in Fig. 1. Introducing (25) in (30),

and by integration, we obtain:

~uI ¼
gðtÞ
ijDx

ðeijðxRÞ � eijðxLÞÞ: ð33Þ

Then, writing (33) in terms of gð0Þ

~uI ¼
gð0Þ
ijDx

ðeijðxR�atÞ � eijðxL�atÞÞ: ð34Þ

The FV-MLS method uses the integral form of Eq. (23):

@

@t

Z xR

xL

u dx ¼ �ðf ðxR; tÞ � f ðxL; tÞÞ; ð35Þ

where f ðuÞ ¼ au is the flux function. Thus, by using the mean value
definition (32) of uðxÞ, the spatial discretization of (35) reads as:

@~uI

@t
¼ � a

Dx
u�

Iþ1
2ð Þ � u�

I�1
2ð Þ

� �
; ð36Þ

where u� is the value of the variable reconstructed at the interfaces
I þ 1

2 ; I � 1
2

� 	
(see Fig. 1). For the third-order FV-MLS method we

need a quadratic reconstruction of the variable at I þ 1
2:

u�ðIþ1
2Þ
¼ ~uI þ

@~uI

@x
Dx
2
þ 1

2
@2~uI

@x2

Dx
2

� �2

� TCI
1 þ #ðDx3Þ: ð37Þ

TCI
1 is the correction term to guarantee the conservation of the

mean [8,20]:

TCI
1 ¼

1
2Dx

@2~uI

@x2

Z
I
ðx� xIÞ2dx: ð38Þ

Similarly, for I � 1
2 we write:

u�
I�1

2ð Þ ¼
~uðI�1Þ þ

@~uðI�1Þ

@x
Dx
2
þ 1

2
@2~uðI�1Þ

@x2

Dx
2

� �2

� TCðI�1Þ
1 þ #ðDx3Þ

ð39Þ

with:

TCðI�1Þ
1 ¼ 1

2Dx
@2~uðI�1Þ

@x2

Z
ðI�1Þ
ðx� xðI�1ÞÞ2dx: ð40Þ

Left-hand side of (36) has the following exact value:

@~uI

@t
¼ @gðtÞ

@t
1
Dx

Z xR

xL

eijx dx ¼ @gðtÞ
@t
ðeijxR � eijxL Þ 1

ijDx
ð41Þ

and, introducing (27) in (41) we can write:

@~uI

@t
¼ �agðtÞ

Dx
ðeijxR � eijxL Þ: ð42Þ

The right-hand side of (36) can be written as:
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a
Dx

u�
Iþ1

2ð Þ � u�
I�1

2ð Þ

� �
¼ a

Dx
~uI þ

@~uI

@x
Dx
2
þ 1

2
@2~uI

@x2

Dx
2

� �2

� TCI
1

 !"

� ~uðI�1Þ þ
@~uðI�1Þ

@x
Dx
2
þ 1

2
@2~uðI�1Þ

@x2

Dx
2

� �2

� TCðI�1Þ
1

 !
þ #ðDx3Þ

#
:

ð43Þ

Next, we introduce the MLS approximation of derivatives,

a
Dx

u�
Iþ1

2ð Þ � u�
I�1

2ð Þ

� �

¼ a
Dx

~uI � ~uðI�1Þ þ
XQ

l¼�P

@NðIþlÞ

@x
ð~uðIþlDxÞ � ~uððI�1ÞþlDxÞÞ

Dx
2

� �"

þ1
2

XQ

l¼�P

@2NðIþlÞ

@x2
~uðIþlDxÞ

Dx
2

� �2

� A

 !"

�~uððI�1ÞþlDxÞ
Dx
2

� �2

� B

 !#
þ #ðDx3Þ

#
ð44Þ

with

A ¼ 1
Dx

Z
I
ðx� xIÞ2dx; B ¼ 1

Dx

Z
ðI�1Þ
ðx� xðI�1ÞÞ2dx: ð45Þ

Eq. (44) is obtained by assuming that all the control cells have the
same length and a periodic domain. In that case, the set of MLS-
shape functions is the same for every control volume, and
NIþl ¼ NðI�1Þþl.

Introducing Eq. (33) in (44), we write:

�a
Dx

u�
Iþ1

2ð Þ � u�
I�1

2ð Þ

� �
¼ �agðtÞ

ijDx
ðeijxR � eijxL Þ 1� e�ijDx þ

XQ

l¼�P

@NðIþlÞ

@x
ðeijlDx

"
� eijðl�1ÞDxÞ Dx

2

� �

þ1
2

XQ

l¼�P

@2NðIþlÞ

@x2 ðeAeijlDx � eBeijðl�1ÞDxÞ þ #ðDx3Þ
#
; ð46Þ

where eA and eB are:

eA ¼ Dx
2

� �2

� A; ð47Þ

eB ¼ Dx
2

� �2

� B: ð48Þ

Finally, we can write

�a
Dx

u�
Iþ1

2ð Þ � u�
I�1

2ð Þ

� �
¼ �agðtÞ

ijDx
ðeijxR � eijxLÞZI; ð49Þ

where we call ZI to

ZI ¼ 1� e�ijDx þ
XQ

l¼�P

@NðIþlÞ

@x
ðeijlDx � eijðl�1ÞDxÞ Dx

2

� �

þ 1
2

XQ

l¼�P

@2NðIþlÞ

@x2 ðeAeijlDx � eBeijðl�1ÞDxÞ þ #ðDx3Þ: ð50Þ

We note that we have obtained Eqs. (42) and (49) from the left-
hand side and the right-hand side of Eq. (36). Thus, the wavenum-
ber is:

j ¼ ZI

i
: ð51Þ

Now, we define Z� as the approximation (50) of ZI including qua-
dratic terms. Thus, the modified wavenumber can be written as:
j� ¼ Z�

i
: ð52Þ

Eq. (52) is the expression of the modified wavenumber of the third-
order FV-MLS method.

If we only consider the spatial discretization error, the numeri-
cal solution of (36) is:

~unum
I ¼ gð0Þ

ijDx
ðeij xR�a�tð Þ � eij xL�a�tð ÞÞ ð53Þ

with a� ¼ aZI
ij . Thus, we can write

a�

a
¼ Z�

ij
: ð54Þ

The modified phase velocity ða�Þ is the numerical propagation
velocity of a harmonic function. For example, if a�

a < 1, the numerical
propagation is slower than the real velocity. So, there are dispersion
errors in the numerical solution. As the original equation is non-dis-
persive, the numerical solution of an harmonic function with differ-
ent wavenumbers loses its original shape. For a non-harmonic
problem, the crests of the waves propagate with the phase velocity
but the energy of the wave packet propagate with the group veloc-
ity vg ¼ a @j�

@j (see [27]).
In Fig. 9 we plot the real part of the scaled modified wavenum-

ber versus the real scaled wavenumber for different numerical
methods. We observe that the third-order FV-MLS method pre-
sents a narrow range of frequencies whose error is below 0.1%,
and a wide range of frequencies whose error is below 1%. We ob-
serve that the dispersion curves of the FV-MLS method with differ-
ent kernels plotted in that figure are almost overlapped.

For the wave equation it is usual to represent the numerical
phase and group velocities. These are plotted in Fig. 10. We see
one of the effects of the bad resolution of the waves: the spurious
parasitic waves. In Fig. 9 it is shown that a given modified wave-
number represents two discrete waves. One is related to low fre-
quencies (physical) and other related to high frequencies
(spurious). In the plot of group velocities Fig. 10 (right), we see that
there exists a wavenumber (different for each numerical scheme)
for which the group velocity becomes negative. This parasitic wave
propagates for the whole computational domain spoiling the
numerical solution. As this parasitic wave could be supersonic, this
behavior is expected even in supersonic flows, where propagation
upstream is clearly non-physical.

As we said before, the imaginary part of the modified wave-
number ðj�Þ is related to dissipation errors. The FV-MLS modified
wavenumber presents a non-null imaginary part, due to the
upwinding. Although this could be seen as a drawback in terms
of accuracy, the greatest part of the dissipation is introduced in
the scales that are wrongly resolved for the numerical method.
This can be seen as an implicit filtering of the spurious waves,
remaining unaffected the resolved scales.

If we compare the dispersion and dissipation curves of a sec-
ond-order and a third-order scheme, plotted in Fig. 11, we see that
the increase of accuracy of the numerical method is achieved by
diminishing both, dispersion and dissipation errors. The dissipa-
tion introduced is considerably lower, and the range of frequencies
well resolved also increases.

The number of points per wavelength (ppw) that a numerical
scheme needs to approximate the exact wavenumber within a spec-
ified error tolerance is given by 2p

jDx. Following [2] we define the
resolving efficiency of a scheme as the fraction of the well-resolved
waves, ef ¼ j�c

p , where ðj�cÞ define the shortest well-resolved wave.
In Table 1 we show the ppw for different schemes, for a given error
tolerance � ¼ jj��jj

j . We also show the resolving efficiency of each
scheme and the scaled wavenumber ðj�cÞDx. We note that the MLS
approximation (polynomial cubic basis) has the same resolving effi-
ciency than a fourth-order centered finite difference scheme.
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6. Influence of the kernel function on the properties of the FV-
MLS method

In the previous section we have derived the expression (52), for
the modified wavenumber of the third-order FV-MLS method in
the case of the 1D linear advection equation. This expression de-
pends on the first derivatives of the MLS shape functions. In this
section we examine the influence of the choice of the parameters
of the kernel on the dispersion and dissipation properties of a
MLS approximation, and then, we analyze the effect in the FV-
MLS method.

6.1. MLS approximation

When we use a direct MLS discretization (for example, in the
discretization of elliptic-like terms) we have seen that the disper-



Table 1
Resolving efficiency ðef Þ, number of points per wavelength ðppwÞ and scaled wavenumber of the shortest well-resolved wave j�cDx

� 	
for different numerical schemes for different

tolerances �. (a) Second-order centered finite differences, (b) fourth-order centered finite differences, (c) MLS approximation cubic basis and cubic spline kernel k ¼ 0:7, (d)
fourth-order tridiagonal compact finite differences a ¼ 5=14 (see [2]), and (e) third-order FV-MLS with exponential kernel and sx ¼ 5.

Scheme Tolerance ð�Þ

� ¼ 0:001 � ¼ 0:005 � ¼ 0:01

ef ppw j�cDx ef ppw j�c ef ppw j�cDx

a 0.02 78.5 0.08 0.05 36.96 0.17 0.08 26.18 0.24
b 0.13 15.32 0.41 0.2 10.13 0.62 0.24 8.37 0.75
c 0.13 15.32 0.41 0.2 10.13 0.62 0.24 8.37 0.75
d 0.52 3.81 1.65 0.56 3.54 1.77 0.59 3.38 1.86
e 0.14 13.96 0.45 0.23 8.73 0.72 0.29 6.90 0.91
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sion characteristics of the MLS approximation are independent of
the kernel parameters (for the stencil of Fig. 1). Moreover, for the
cubic spline kernel, there is no dissipation. This effect becomes
clear if we examine Eq. (22). Thus for the 5-point stencil, we write:

j� ¼ ð�iÞ
XQ

l¼�P

@NI�l

@x
eijðlDxÞ

¼ sinð2jDxÞ @NðIþ2Þ

@x
� @NðI�2Þ

@x

� �
þ sinðjDxÞ @NðIþ1Þ

@x
� @NðI�1Þ

@x

� �
� i cosð2jDxÞ @NðIþ2Þ

@x
þ @NðI�2Þ

@x

� �

þ cosðjDxÞ @NðIþ1Þ

@x
þ @NðI�1Þ

@x

� �
þ @NI

@x

�
; ð55Þ
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where ðI � 2Þ; ðI � 1Þ; I; ðI þ 1Þ; ðI þ 2Þ are referring to the cells of the
stencil plotted in Fig. 1.

Recalling that the dispersion is related to the real part of the
modified wavenumber, from Eq. (55) we see that the dispersion
of the numerical scheme depends on the difference of the deriva-
tives of the shape function in symmetric cells. If the kernel function
and the stencil are symmetric, the value of this difference is inde-
pendent of kernel parameters, and so the dispersion of the numer-
ical scheme.

On the other hand, the dissipation is related to the imaginary
part of the modified wavenumber. For the cubic spline kernel, @NI

@x

is null (see Fig. 3), and for the given stencil @NðIþiÞ
@x ¼ �

@NðI�iÞ
@x . Then,

the imaginary part of the modified wavenumber is null and no dis-
sipation is added for the numerical scheme (we remark that this
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conclusion is valid only for an uniform distribution of the grid
nodes). This is not the situation of the exponential kernel, since
@NI
@x is not null, as it was shown in Fig. 8. However, even although
the value of the first derivative of the MLS-shape function is differ-
Table 2
Resolving efficiency of the third-order FV-MLS method for different tolerances � and diffe

sx � ¼ 0:001 � ¼ 0:005

ef ppw j�cDx ef ppw j�cDx

1 0.13 15.32 0.41 0.20 9.82 0.64
2 0.12 16.11 0.39 0.19 10.30 0.61
3 0.12 16.98 0.37 0.18 11.02 0.57
3.5 0.11 17.45 0.36 0.18 11.21 0.56
4 0.12 16.98 0.37 0.18 11.02 0.57
5 0.14 13.96 0.45 0.23 8.73 0.72
6 0.20 10.13 0.62 0.40 5.07 1.24

Table 3
Resolving efficiency of the third-order FV-MLS method for different tolerances � and diffe

k � ¼ 0:001 � ¼ 0:005

ef ppw j�cDx ef ppw j�cD

0.501 0.23 8.73 0.72 0.38 5.33 1.18
0.52 0.23 8.85 0.71 0.38 5.28 1.19
0.6 0.17 12.08 0.52 0.29 6.98 0.90
0.7 0.15 13.66 0.46 0.23 8.61 0.73
0.8 0.14 14.28 0.44 0.22 8.85 0.71
1 0.14 14.61 0.43 0.22 9.24 0.68

0 0.5 1 1.5 2 2.5 3
10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

CFL=0.2
CFL=0.8
CFL=1.2
CFL=1.4

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

κΔx

|r|

CFL=0.2
CFL=0.8
CFL=1.2
CFL=1.4

UNSTABLE

STABLE

Fig. 16. Dispersion error ka
� j�aj
p (top), and dissipation (bottom) for the third-order FV-ML

fourth-order Runge–Kutta method for different CFL.
ent for each value of sx (see Fig. 1), the difference @NðIþiÞ
@x ¼ �

@NðI�iÞ
@x re-

mains constant (for the given stencil), and thus the dispersion for
the stencil plotted in Fig. 1 is independent of the parameters of
the kernel.
rent values of sx .

� ¼ 0:008 � ¼ 0:01

ef ppw j�cDx ef ppw j�cDx

0.23 8.61 0.73 0.25 7.95 0.79
0.22 8.98 0.70 0.24 8.49 0.74
0.21 9.67 0.65 0.22 9.11 0.69
0.20 9.81 0.64 0.22 9.23 0.68
0.21 9.67 0.65 0.22 9.11 0.69
0.27 7.48 0.84 0.29 6.90 0.91
0.41 4.87 1.29 0.42 4.76 1.32

rent values of k.

� ¼ 0:008 � ¼ 0:01

x ef ppw j�cDx ef ppw j�cDx

0.40 5.07 1.24 0.40 4.95 1.27
0.40 5.02 1.25 0.41 4.91 1.28
0.46 4.39 1.43 0.46 4.33 1.45
0.27 7.31 0.86 0.30 6.76 0.93
0.26 7.76 0.81 0.28 7.14 0.88
0.25 7.95 0.79 0.27 7.39 0.85
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6.2. FV-MLS method for hyperbolic terms

In this section we examine the effect of the kernel parameters
on the FV-MLS method for hyperbolic terms. In Figs. 12 and 13
we show the dispersion–dissipation curves and the phase speed
and group velocity for different values of the shape parameter sx

of the exponential kernel. The results for the cubic spline kernel
are drawn in Figs. 14 and 15. As we have mentioned before, the
FV-MLS method is dissipative due to the upwinding. However,
the amount of introduced dissipation depends on the value of
the kernel parameters.

For the exponential kernel, the choice sx ¼ 6 introduce the min-
imum amount of dissipation. For the exponential kernel this hap-
pens for a value of the parameter of k ¼ 0:501. These are the
practical limits of the kernel parameter, since a lower value makes
the moment matrix M singular. On unstructured grids these values
could be unattainable, because they may lead to a bad conditioning
of the moment matrix. It is important to note that it is possible to
develop very similar numerical schemes from different kernels, by
selecting the right value of the parameter. This is important since
the exponential kernel is more robust than the cubic spline on arbi-
trary meshes.

On the other hand, in Tables 2 and 3 we show the resolving effi-
ciency of the method FV-MLS for several values of the kernel
parameters sx and k. The influence of sx is bigger than the influence
of k. The value k ¼ 0:6 yields the best results in terms of resolving
efficiency for the cubic spline kernel. For the exponential kernel,
the best resolving efficiency is obtained for sx ¼ 6, that also pre-
sents the less dissipative behavior. This fact may cause instabilities
in certain problems, overall in Euler equations, where there is no
dissipative terms that help to the stabilization. So, a recommended
value for this kind of problems is sx ¼ 1 or sx ¼ 5. We note that the
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Fig. 17. Dispersion error ka
� j�aj
p (top), and dissipation (bottom) for the third-order FV-MLS

fourth-order Runge–Kutta method for different CFL.
values for sx ¼ 3 and sx ¼ 4 are identical. This is due to the effect of
the kernel derivatives previously commented on Section 3. We
check the change in the tendency of the curves by comparing the
values for sx ¼ 3; sx ¼ 3:5 and sx ¼ 4.

We remark that the dissipation is introduced for the numerical
scheme in the range of bad-resolved waves, so it dims the spurious
waves generated by the numerical scheme. From this point of view,
we could consider this as a low-pass filtering. This implicit filtering
acts similarly to the explicit filters developed for finite difference
methods [2,4].

6.2.1. Analysis of the complete discretization
In previous sections, we have analyzed the behavior of the spa-

tial discretization for direct approximations with MLS and for the
finite volume-based method FV-MLS. In this section we introduce
the effect of the time integration. We consider an explicit Runge–
Kutta time integration.

Eq. (30) indicates that the exact solution of (23) may be decom-
posed in both an spatial and a temporal part. With a Runge–Kutta
method, we approximate the temporal part of (23) with a Taylor
expansion. Following to [28,29] we write Eq. (23) as:

@u
@t
¼ qu; ð56Þ

where q ¼ �iaj is complex. We define the amplification factor of a
Runge–Kutta method as

rðzÞ ¼ unþ1

un
; ð57Þ

thus, introducing (29), the exact amplification factor is

reðzÞ ¼
unþ1

un
¼ gð0Þeijðx�aðtþDtÞÞ

gð0Þeijðx�atÞ ¼ e�iajDt ¼ ez ð58Þ
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with z ¼ �iajDt ¼ qDt.
On the other hand, if q is a linear operator, a fourth-order Run-

ge–Kutta method applied to Eq. (23) reads as:

u1
j ¼ un

j þ
1
4

qun
j Dt; ð59Þ

u2
j ¼ un

j þ
1
3

qu1
j Dt; ð60Þ

u3
j ¼ un

j þ
1
2

qu2
j Dt; ð61Þ

unþ1
j ¼ un

j þ qu3
j Dt: ð62Þ

Upper index 1, 2 and 3 refer to intermediate steps in the time
marching process, and n and nþ 1 refer to the solution in time n
and nþ 1.

From Eq. (62), and knowing that z ¼ qDt, we write,

unþ1
j ¼ un

j 1þ zþ 1
2

z2 þ 1
6

z3 þ 1
24

z4
� �

: ð63Þ

Then, the amplification factor for a fourth-order Runge–Kutta meth-
od is

rðzÞ ¼ 1þ zþ 1
2

z2 þ 1
6

z3 þ 1
24

z4
� �

: ð64Þ

These are the first terms of a Taylor expansion of ez. This result can
be written in a more general form for any Runge–Kutta method
[29].

Thus, rðzÞ is a complex number that we write as:

rðzÞ ¼ jrðzÞjeiaðjÞ: ð65Þ
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Fig. 18. Dispersion error ka
� j�aj
p (top), and dissipation (bottom) for the third-order FV-ML

third-order Runge–Kutta method for different CFL.
Following [30], the numerical dissipation is given by the magnitude
of the amplification factor. When jrðzÞj 6 1 the method is stable.
On the other hand, aðjÞ represents the dispersion of the numerical
scheme.

From (58) and (65) we obtain a ¼ aj�Dt. We represent the dis-
persion with the parameter a� ¼ a

CFL, where CFL is the Courant–
Friedrichs–Lewy number CFL ¼ aDt

Dx , since

a� ¼ a
CFL
¼ aj�DtDx

aDt
¼ j�Dx: ð66Þ

We remark that in rðzÞ is also included the spatial discretization.
Thus, the dispersion and dissipation curves obtained in this section
represent the complete discretization.

For the FV-MLS method, from (36) and (49), we know that:

@~uI

@t
¼ �agðtÞ

ijDx
ðeijxR � eijxL ÞZ� ð67Þ

and recalling from (33) that:

@~uI

@t
¼ �aZ�~uI; ð68Þ

we obtain from (56) and from the relation z ¼ qDt:

z ¼ �aZ�Dt: ð69Þ

Figs. 16–19 show the influence of temporal discretization on the
dispersion and dissipation curves of the third-order FV-MLS
scheme, for a fourth-order (RK4) and a third-order (RK3) Runge–
Kutta method. In Fig. 20 we compare the dispersion error for differ-
ent values of the kernel parameters.

The choice of kernel parameters affects greatly to the stability of
the numerical method. Moreover, the choice of the time step and
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Fig. 19. Dispersion error ka
� j�aj
p (top), and dissipation (bottom) for the third-order FV-MLS method, cubic spline kernel k ¼ 0:52 (left column) and k ¼ 0:6 (right column), with a

third-order Runge–Kutta method for different CFL.
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the order of the RK method affect to the spectral resolution of the
method.

For a RK4 time-integration scheme we obtain the following cri-
teria for the stability of the third-order FV-MLS method: For the
exponential kernel,

CFL < 1:4 sx ¼ 1;
CFL < 1:6 sx ¼ 6;

ð70Þ
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Fig. 20. Comparison between the dispersion error ka
� j�aj
p for the third-order FV-MLS

scheme with RK4 for CFL=0.4: (a) exponential kernel sx ¼ 6, (b) exponential kernel
sx ¼ 1, (c) cubic spline kernel k ¼ 0:52, and (d) cubic spline kernel k ¼ 0:6.
whereas for the cubic spline kernel, CFL < 1:6.
For a RK3 time-integration method: For the exponential kernel,

CFL < 1:2 sx ¼ 1;
CFL < 1:6 sx ¼ 6;

ð71Þ

whereas for the cubic spline kernel.

CFL < 1:6 k ¼ 0:52;
CFL < 1:4 k ¼ 0:6:

ð72Þ

However, the accuracy of the method is greatly affected for
CFL > 0:8. We note that dispersion errors for the wavenumber re-
gion between [1,1.5] are bigger with the RK3 scheme. For such
wavenumbers the dissipation for these wavenumbers may be not
enough to completely dissipate the spurious waves. Thus, it is rec-
ommended the use of CFL numbers lower than 0.8 with the Runge–
Kutta schemes tested. This restriction becomes more important if
the RK3 scheme is used.

With this choice of CFL, the wavenumber region 0; p2
� 


suffers
from little dispersive error, for both, exponential and cubic kernels
with RK4 and RK3 time integration schemes. The dispersion error
is lower when the RK4 scheme is used, for a given kernel parame-
ter. This is shown in Fig. 21. The dissipation introduced for the
numerical scheme is similar for low CFL numbers, but the trend
is better when RK4 scheme is used, in the sense that the amount
of dissipation introduced is bigger for the highest wavenumbers.
Thus, RK4 scheme seems to be the best choice.

We have also tested an optimized RK method (Low Dispersion
and Dissipation RK LDDRK) [31] but there is no any substantial dif-
ference in comparison with a standard RK method. A similar effect
has been reported for Dispersion-Relation Preserving (DRP) schemes
[3]. In these methods the increase in the accuracy of the solution is
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reported from a six-order spatial discretization [32]. This fact sug-
gests the possibility of developing an optimized RK algorithm for
the FV-MLS method.
7. Numerical examples

7.1. One-dimensional linear wave equation

In this section we solve the first problem presented in the First
ICASE/LaRC Workshop on Benchmark Problems in Computational
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Fig. 22. Third-order FV-MLS solution for the first problem presented in [33] at differe
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Fig. 23. Third-order FV-MLS solution for the first problem presented in [33] at different
values of the shape parameter sx .
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RK4 sx ¼ 6, (c) RK3 sx ¼ 1, (d) RK3 sx ¼ 6. On the right, cubic kernel: (a) RK4 k ¼ 0:52, (
Aeroacoustics [33]. We solve Eq. (23) with the following initial
condition:

uðx;0Þ ¼ 0:5e � lnð2Þ x
3ð Þ

2
� 


: ð73Þ

The transported wave may be considered as the addition of a num-
ber of harmonic waves with different frequencies and amplitudes. If
the numerical scheme is not able to solve waves with very different
frequencies the numerical solution will be a very distorted wave.
The computational domain is �20 6 x 6 450 and we plot the re-
sults at non-dimensional times t ¼ 100; t ¼ 400.
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In Figs. 22–25 we plot the results for the third-order FV-MLS
method. For Dx ¼ 1 the solution is somewhat dissipative, and the
wave shape presents a certain amount of distortion for t ¼ 400
(see Figs. 22 and 23 for the exponential kernel results and Fig. 24
for the cubic spline kernel). However, the dispersion and dissipa-
tion errors of the wave are smaller than other higher-order meth-
ods as the fourth-order MacCormac method presented in [34], or
fourth-order centered finite differences [35]. As it is expected,
the solution improves as we decrease the grid spacing. Fig. 25
shows the results for Dx ¼ 0:25. In Fig. 26 we also show the results
for the second order FV-MLS method. It is clear the benefit of using
the third-order FV-MLS method.
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Fig. 24. Third-order FV-MLS solution for the first problem presented in [33] at differen
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7.2. One-dimensional non-linear wave equation

In this section we solve the 1D non-linear equation:

@u
@t
þ u

@u
@x
¼ 0 ð74Þ

that, written in conservative form reads:

@u
@t
þ 1

2
@u2

@x
¼ 0 ð75Þ

on the domain �4 6 x 6 10, with initial condition:
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uðx; 0Þ ¼
0; x 6 0
1; x > 0

�
: ð76Þ

The exact solution for this problem is:

uðx; tÞ ¼
0; x 6 0
x
t ; 0 < x < t

1; x > t

8><>: : ð77Þ

In Fig. 27 we plot the results for the third-order FV-MLS method and
several grid sizes with the exponential kernel and sx ¼ 1, at t ¼ 3.
The results improve as the grid size is decreased. This results agree
with those of the compact finite volume DRP and OPC (Optimized
Prefactored Compact) schemes [19]. The results of the FV-MLS
method are noticeably better than the results obtained by DRP
and OPC finite difference schemes [19,36]. This example shows
the availability of the FV-MLS method to handle strong gradients.

7.3. Wave scattering by a complex geometry

The objective of this example is to verify the generalization of
the conclusions obtained from the one-dimensional analysis of
the advection equation to the analysis of a more complex problem.
Here we propose to solve the 2D Linearized Euler Equations (LEE)
in complex geometry using the proposed formulation (the whole
set of these commonly used equations can be found in [37]). A pre-
vious work has been done by the authors [38,39] concerning the
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Fig. 27. Third-order FV-MLS solution for the first problem presented in [33] at t ¼ 3

Fig. 28. Detail of the unstructured grid u
application of FV-MLS to CAA problems on unstructured grids.
We have shown that FV-MLS is very well adapted to solve LEE with
a very good accuracy. Here, among several examples presenting
acoustic wave propagation in complex geometries, we choose the
test case of wave scattering by the NASAs 30P30N airfoil [40].

The main acoustic noise source for this airfoil is the one gener-
ated by the vortex shedding at the trailing edge of the upstream
part, called slat noise. To simulate the slat noise we place an arti-
ficial acoustic source at ðxsc; yscÞ ¼ ð�0:012;0:01Þ defined as:
S ¼ expð�ððx� xscÞ2 þ ðy� yscÞ

2Þ=b2Þ � sinðxtÞ � ½0;0;0;1�T where
the angular frequency is x ¼ 6p; b ¼ 0:003 and t is the time coor-
dinate. The source term is made dimensionless with
½q0c0=Dx;0;0;q0c3

0=Dx�T . In this expression, q0 is the mean value
of the density of the stationary solution and c0 is the mean value
of the speed of sound. For seek of simplicity we choose an angular
frequency ðx ¼ 6pÞ. This value permits us to use a moderate grid
size, since the objective here is only to compare two configurations
with two different kernel function parameters s. The leading edge
of the main part of the airfoil is placed at (0,0).

The discretization has been performed in order to guarantee a
minimum number of six cells per wavelength around the airfoil.
A detail of the grid is shown in Fig. 28.

The exponential kernel has been selected for this example, and
the CFL number for the computations is 0.2. The results are pre-
sented at t ¼ 3 units in (Fig. 29) for sx ¼ sy ¼ 1. We observe that
pressure waves originated at the source point propagate radially
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, with CFL ¼ 0:6, and different grid spacing, exponential kernel (Eq. (15)), sx ¼ 1.

sed for the wave scattering problem.



Fig. 29. Acoustic pressure distribution at t ¼ 3 for the wave scattering problem. General view and detail of the profile, with the points A, B, C and D where the acoustic
pressure is measured continuously (Fig. 30).
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without any appreciable dispersion error in the directions free of
obstacles. On the other hand, waves propagating in the direction
of the airfoil are scattered.

In (Fig. 30) we show the time variation of the acoustic pressure
at points A(0,0.3), B(0,�0.3), C(1.23,0.07) and D(1.15,�0.48) for
sx ¼ sy ¼ 1 and sx ¼ sy ¼ 5.

Note that the results for s ¼ sx ¼ sy ¼ 5 are clearly more dissipa-
tive than those obtained for s ¼ sx ¼ sy ¼ 1. Moreover, we observe a
slight difference in the phase of the pressure waves. This is related
with the different dispersion curves of the numerical scheme for
each value of the parameter s. We also note that even though the
2D Linearized Euler Equations are not the simple 2D extension of
the 1D advection equation and an unstructured grid has used,
the conclusions obtained from the 1D advection equation still hold
for this more complex case.

8. Conclusions

In this work we perform an analysis of the influence of the ker-
nel parameters on the behavior of a high-order finite volume meth-
od based on Moving Least squares approximations. First, we obtain
an analytical expression of the modified wavenumber of the
numerical scheme, and then we examine the influence of the
parameters of the kernel function on the dispersion and dissipation
characteristics of the third-order FV-MLS method. We examine the
discretization of elliptic-like terms with a direct MLS approxima-
tion. The discretization of hyperbolic terms is performed by exam-
ination of the 1D linear advection equation. We have focused our
attention in two kernel functions: the exponential kernel and the
cubic spline kernel. The third-order FV-MLS method, presents a
more dissipative behavior when used with the exponential kernel
than when the cubic spline kernel is chosen. However, it is possible
to obtain methods with very similar characteristics by choosing the
adequate kernel parameter. This feature is important since the
shape variation as we change the value of the parameter is bigger
for the exponential kernel than for the cubic spline kernel. This
characteristic of the exponential kernel represents an advantage
in terms of robustness in arbitrary meshes. In this kind of meshes,
and for the same spatial resolution, the FV-MLS method presents a
similar accuracy than other higher-order methods as for example,
the Discontinuous Galerkin method [22], but without the addition
of new degrees of freedom.

We have also examined the influence of time integration when
explicit Runge–Kutta methods are used. We present the result for a



Fig. 30. Time variation of the acoustic pressure at points A(0,0.3), B(0,�0.3), C(1.23,0.07) and D(1.15,�0.48) for s ¼ sx ¼ sy ¼ 1 and s ¼ sx ¼ sy ¼ 5.
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RK4 and a RK3 explicit method. The FV-MLS method is more stable
when a fourth-order Runge–Kutta method is used. The results
clearly show a significant improvement of dispersion and dissipa-
tion properties of the numerical method if the third-order FV-MLS
scheme is used compared with the second-order one. Moreover,
with the explicit fourth-order Runge–Kutta scheme the dispersion
error is lower than with the third-order Runge–Kutta scheme,
whereas the dissipation error is similar for both time-integration
schemes. A value of the CFL number lower than 0.8 is required in
order to obtain a low dispersion error. CFL numbers higher than
0.8 lead to unacceptable dispersion errors, especially with the
RK3 scheme. The use of optimized RK schemes as the LDDRK does
not improve the results.

It is clear than the present analysis only holds for uniform nodal
distribution. Thus, in non-uniform nodal distributions the disper-
sion and dissipation curves will be different for each distribution
of nodes. However, the dependency of the characteristics of the
numerical method with the kernel parameter opens the possibility
of a local optimization on unstructured grids, to compute the value
of the kernel parameter for a given distribution of the points of the
stencil that obtains the best possible characteristics of the numer-
ical scheme.

We have applied the method to the resolution of the one-
dimensional linear and non-linear wave equation. The results
shows the availability of the FV-MLS method to deal with wave
propagation problems when large gradients are involved. For the
test case of the 1D non-linear wave equation, results of the third-
order FV-MLS method are noticeably better than the results ob-
tained by DRP and OPC finite difference schemes. The results for
the 1D linear wave equation are more accurate than other high-
er-order methods commonly used in literature, as the fourth-order
MacCormac method or fourth-order centered finite differences. In
order to enlarge the validity of the present analysis to more dimen-
sions and more general grids we have solved the 2D Linearized Eu-
ler Equations in a complex domain using a triangular grid. The
results keep the trend observed in 1D. The dissipation is increased
when the kernel parameter changes from sx ¼ sy ¼ 5 to sx ¼ sy ¼ 1
and there is a slight phase difference. This example also shows the
promising capabilities of the FV-MLS method for its application to
aeroacoustics.

The present study only holds for the third-order FV-MLS. How-
ever, in our opinion the conclusions obtained remain for higher-or-
der FV-MLS discretizations, provided the kernel function is the
same. However, at the present time we cannot affirm this conclu-
sion categorically, and more research is in progress. Moreover, the
author’s opinion is that the present analysis also holds for other 1D
models governed by different equations if the nature of the equa-
tions is the same than the ones examined here. Thus for elliptic
equations the conclusions of the MLS approximations holds, and
for hyperbolic equations the conclusions obtained for the FV-MLS
method will be valid.
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