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Abstract In this paper we focus on the application of a
higher-order finite volume method for the resolution of
Computational Aeroacoustics problems. In particular, we
present the application of a finite volume method based in
Moving Least Squares approximations in the context of a
hybrid approach for low Mach number flows. In this case,
the acoustic and aerodynamic fields can be computed sep-
arately. We focus on two kinds of computations: turbulent
flow and aeroacoustics in complex geometries. Both fields
require very accurate methods to capture the fine features of
the flow, small scales in the case of turbulent flows and very
low-amplitude acoustic waves in the case of aeroacoustics.
On the other hand, the use of unstructured grids is inter-
esting for real engineering applications, but unfortunately,
the accuracy and efficiency of the numerical methods devel-
oped for unstructured grids is far to reach the performance
of those methods developed for structured grids. In this con-
text, we propose the FV-MLS method as a tool for accurate
CAA computations on unstructured grids.
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1 Introduction

Computational Fluid Dynamics (CFD) has become an in-
dispensable tool in both, design and research. In aerospace
industry, it is difficult to find a project in which CFD is
not present. However, and despite the great success that
CFD has achieved, it is fair to acknowledge that it still
has a long way to go. In turbulent flows, for example, the
Reynolds number achieved in full-scale numerical simula-
tions of flows is still very low, and it is very far from the
numbers of interest in industrial processes. Even with this
limitation, Direct Numerical Simulation (DNS) plays a key
role in fundamental research. CFD has contributed to the
advance in knowledge about turbulence, astrophysical pro-
cesses and in general in those phenomena where experimen-
tal measurement is difficult or even impossible. Moreover,
in these “virtual experiments”, the researcher can access to
every variable of interest. This kind of research has also fa-
vored the development of turbulence models that allow the
computation of flows with higher Reynolds numbers (but at
the expense of a lower accuracy). In this context it is worth
mentioning the idea of Large Eddy Simulation (LES), in
which the biggest scales of the flow are directly solved (that
is, without any model) whereas the smaller flow scales are
modeled.

Godunov’s theorem [1] establishes that it is impossible to
develop a monotone linear numerical scheme with an order
of accuracy higher than one. That is, high-accuracy and the
absence of new extrema near sharp gradients are two con-
tradictory requirements for linear methods. This is the diffi-
culty that high-order methods have to face. However, in CFD
there is really a need of high-accuracy methods for problems
in which is essential to capture the fine features of the flow.
Thus, in the simulation of turbulent flows (both in DNS and
LES) it is required a high resolution of the frequency spec-
trum. In DNS, for example, the amplitude of Fourier modes
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of the velocity field is distributed continuously in a wide
range of wave numbers. On the other hand, if the numeri-
cal scheme is not able to solve accurately the scales lying on
the higher frequency range of the spectrum, the distribution
of the energy spectrum is displaced to the high-frequency
range and the simulation fails (pile-up).

Aeroacoustics is another field in which the accuracy re-
quirements of the numerical method are critical. The low-
amplitude of acoustic waves and the wide range of frequen-
cies present in the solution makes very difficult the numeri-
cal resolution of these problems. The most usual approach to
solve Computational Aeroacoustics (CAA) problems nowa-
days is the so-called “hybrid approach”. In particular, when
the Mach number is small, it is possible to separate the aero-
dynamic and acoustic problems. Thus, acoustic sources are
obtained by a computation of the turbulent flow and propa-
gated using a wave equation, the linearized Euler equations
or other approaches.

In a hybrid approach, numerical methods with high-
resolution are required to solve the turbulent flow and also
the propagation of the acoustic sources. Moreover it is
needed an adequate dissipation, and the requirements of the
dissipation properties of the numerical scheme are different
for the resolution of a turbulent flow or an acoustic prob-
lem. In this context, “high-resolution” means high accuracy
in the Fourier space, that is, accuracy in the widest possi-
ble range of frequencies. Thus, even though “higher-order”
usually is identified with “more accurate solution”, it is pos-
sible the existence of more efficient procedures to increase
the width of the range of frequencies solved than raising the
order of the numerical scheme. In this context “adequate dis-
sipation” means that the dissipation of the numerical scheme
has to be enough to stabilize the computations without mod-
ifying the features of the flow (in turbulent computations)
or dissipate the acoustic waves (in CAA computations). For
example, quasi-spectral finite differences schemes [2–5] are
commonly used in such high-accuracy demanding applica-
tions. In these schemes, some of the order that it could be
possible to achieve is sacrificed to obtain a better approxi-
mation in a wider range of the frequency spectrum. These
methods are very accurate and efficient, but unfortunately
they require an structured grid to be applied. For rather
complex geometries, however, different strategies have to
be used. For example, the use of multi-block grids allows
the use of structured grid procedures, but it requires an ad-
ditional effort to build the grids and their interfaces. On the
other hand, the global nature of classical spectral methods
may be changed for a more local approach, following the
spirit of hp finite element methods [6, 7]. Thus, the use of
unstructured-grid methods is an attractive option. But this
kind of methods presents several problems for its applica-
tion to real engineering problems. Some of them suffer a

great increase of the computational resources and many oth-
ers have difficulties for the evaluation of high-order deriva-
tives of the variables. Another approach that holds promise
for the resolution of CFD problems on complex geometries
is the so-called Isogeometric Analysis [8, 9]. This technol-
ogy includes Finite Element Analysis as a special case, but
also offers other possibilities, such as, for example, precise
geometrical modeling or simplified mesh refinement. The
main idea of Isogeometric Analysis is using Non-Uniform
Rational B-Splines (NURBS) [10] as basis functions in a
variational formulation. The use of NURBS leads to more
robust [11] higher-order formulations and to enhanced spec-
tral resolution of the approximation [12] compared to classi-
cal polynomial-based Finite Elements. We feel that the rea-
son for this lies in two properties of NURBS not possessed
by classical Finite Elements, namely, smoothness and non-
interpolatory character. The basis functions built with the
formulation employed in this paper do exhibit the smooth-
ness and non-interpolatory character of NURBS and we be-
lieve that this fact may contribute to explain the robustness
of our method.

Most Numerical schemes developed for unstructured
grids are based on polynomial approximations. In this con-
text, it is not easy to find other ways to improve the accuracy
different from increasing the order of the numerical scheme.

When we use high-resolution schemes to solve com-
pressible flows, an additional difficulty appears: the possible
presence of shock waves. When using high-order schemes,
a shock wave originates first-order errors that propagate
through the domain of computation, far of the shock region.
In order to deal with shock waves, and “circumvent” the
Godunov’s theorem high-order methods add some kind of
numerical dissipation. This fact limits the resolution of the
scheme, since small-scale features of the flow are damped
out by this additional dissipation.

Among the most successful higher-order numerical
schemes for unstructured grids we can cite higher-order
finite volume methods [13–23], Discontinuous Galerkin
methods [24–38], essentially non-oscillatory (ENO and
WENO) methods [39–53], the Spectral Finite volume
method [54–60] and Residual Distribution schemes [61–79].

These methods are designed in origin for the resolution of
hyperbolic conservation laws, and their application to non-
strictly hyperbolic equations is not straightforward. Thus,
the discretization of viscous terms (of elliptic nature) in the
Navier-Stokes equations is a source of problems. In fact,
most of the differences between the Discontinuous Galerkin
schemes for this set of equations relies in the discretization
of viscous terms, and it is one of the main drawbacks of
these numerical schemes.

On the other hand, the Discontinuous Galerkin method
obtains very accurate results in the case of purely hyper-
bolic systems when the flow is smooth. However, the use
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of this numerical scheme when shock waves are present is
difficult. The spectral volume method, presents advantages
in this case, since it is possible to apply the limiting tech-
niques developed for finite volume methods. When deal-
ing with shocks, ENO and WENO are the reference meth-
ods. They circumvent the Godunov’s theorem by using non-
linear (data dependent) reconstructions. The idea is to use
an adaptive stencil, looking for the stencil that obtains the
less oscillatory solution. Originally developed for structured
grids, the extension to unstructured grids is not straightfor-
ward due to the increase in the size of the stencils. Thus,
only recently a modified WENO method has been applied
to three-dimensional problems [49].

Nowadays, the use of finite volume methods with slope
limiters is the most common approach to deal with com-
pressible flows in engineering applications.

A high order method well-suited for the application on
unstructured grids has been recently presented in [80, 81].
This method is based on the application of a meshfree tech-
nique (Moving LeastSquares) [82–84] in a finite volume
framework. We refer to this numerical scheme as the FV-
MLS method. One of its advantages is the increase of the
order of accuracy without raising the number of degrees
of freedom. Another interesting feature is the treatment of
viscous terms in the Navier-Stokes equations, since viscous
terms are directly computed at integration points. This pro-
cedure leads to a clear and accurate approximation of the
viscous fluxes [85]. Moreover, since the FV-MLS method is
a finite volume solver, it is possible to use any of the robust
and widely used shock capturing techniques developed for
the finite volume method. In order to improve the behav-
ior of these shock-capturing methods, new selective limiting
techniques have been proposed [86, 87]. In this paper we are
going to focus on the application of the FV-MLS method to
the resolution of CAA problems in a context of a hybrid ap-
proach. Thus, we examine here the ability of this numerical
scheme to simulate turbulent compressible flows and also to
solve the Linearized Euler equations.

The outline of this paper is as follows: In Sect. 2 we
present a non-extensive review about the most common ap-
proaches to simulate compressible turbulent flows. Section 3
is devoted to present different techniques for the resolu-
tion of aeroacoustic problems, focusing on the different hy-
brid approaches. In Sect. 4 we review the FV-MLS method
and point out several issues concerning the multiresolu-
tion properties of the numerical discretization and its appli-
cation to the resolution of turbulent flows and aeroacous-
tics problems. In Sect. 5 we present a implicit turbulence
model based on the multiresolution properties of the FV-
MLS scheme. In Sect. 6 several numerical examples of the
application of the FV-MLS method to aeroacoustics are ex-
posed. Finally, we present the conclusions.

2 The Numerical Simulation of Turbulent Flows

The simulation of turbulence is one of the most challeng-
ing problems that the research community has to face nowa-
days. This is true not only from a “numerical” point of view,
but also from more deeper sights. Thus, even the question
about the nature of turbulence remains unclear [88]. How-
ever, although there is not a single definition of turbulence,
it is possible to identify a number of common properties to
every turbulent flow:

1. Apparently random and chaotic behavior.
2. Dependence on initial conditions.
3. A wide range of length and time scales.
4. Three-dimensional, time-dependent and rotational char-

acter.
5. Time and space intermittency.
6. Diffusion and dissipation phenomena.

Since the problem of the simulation of turbulence is vast
enough to cover several books (for example [89–92]), our
intention here is to present the most common approaches
for the simulation of turbulent flows.

2.1 The Energy Cascade

The wide range of scales present in a turbulent flow sug-
gested to Richardson [93] the idea of the self-similarity of
turbulent flows. Then Kolmogorov [94] introduced the con-
cept of energy cascade. Most of the kinetic energy of a tur-
bulent flow is in the biggest vortices (biggest scales). These
vortices are created by instabilities of the mean flow and
they are also under the action of inertial instabilities that may
break them down into smaller ones. These smaller vortices
are also under the action of instabilities and they may break
again. Each time that a vortex breaks the energy of the bigger
scales is transferred to the smaller structures. This process is
continuously taking place in a flow. Inertial forces dominate
the process and viscosity does not take part in it. However,
from a certain size of the smaller scales, the Reynolds num-
ber (Re) takes a value near to one. In this moment, viscous
forces are not negligible and dissipation becomes important.
The scale for which Re ≈ 1 is called the Kolmogorov scale.
Smaller vortices should be in a state in which the rate of ki-
netic energy received from larger vortices equals the rate of
energy dissipated as heat by viscous forces. This hypothe-
sis was introduced by Kolmogorov [94] and is known as the
universal equilibrium theory.

With this theory and using dimensional analysis, it is pos-
sible to determine the size of the smaller structures in a tur-
bulent flow [95]:

η ∼ lRe
−3
4

T (1)

v ∼ uRe
−1
4

T (2)



318 X. Nogueira et al.

where l is the typical size of bigger structures, η is the typ-
ical size of the smaller vortices, u is the typical velocity of
bigger vortices and v is the velocity of the smaller ones. Tur-
bulent Reynolds number is given by ReT = k1/2l/ν. k is the
kinetic energy of turbulent fluctuations per unit mass and ν

is the kinematic molecular viscosity. We note that when the
Reynolds number is increased, the size of the smaller scales
decrease.

2.2 Length and Time Scales

One of the typical features of turbulent flows is the presence
of a large number of structures with a very wide range of
time and length scales. In the study of turbulence, there are
four main sets of scales:

1. Large scale, based on the geometry (l).
2. Integral scale, it is a fraction (usually 20%) of the large

scale.
3. Taylor microscale (λ).
4. Kolmogorov scale (η).

Using dimensional analysis and assuming Kolmogorov’s
universal equilibrium theory, it is concluded that the dynam-
ics of the smaller scales will depend on the kinetic energy
dissipation rate per unit of mass ε ([L2T −3]) and on the
kinematic viscosity ν ([L2T −1]). Thus, considering that ε

and ν as the dimensional parameters we obtain length, time
and velocity Kolmogorov’s scales:

η ≡ (ν3/ε)
1
4 (3)

τ ≡ (ν/ε)
1
2 (4)

v ≡ (νε)
1
4 (5)

From this expressions it is possible to obtain the expression
for v given by (2).

The Taylor microscale for isotropic turbulence verifies

λ ∼ (lη2)
1
3 . Moreover, the eddy turnover time is a measure

of the time that a vortex needs to interact with its surround-
ings. It is defined as a characteristic time in terms of a char-
acteristic length (l) and a characteristic velocity (k1/2).

An important consideration is the spectral representation
of the properties of a turbulent flow. As turbulent flows con-
tain a continuous spectrum of scales, it is convenient to per-
form an analysis in terms of spectral distribution of energy.
Thus, the energy spectrum (E(κ)) is represented as the de-
composition in wavenumbers (κ). In general, the distribu-
tion of energy is a function of ν, ε, l, κ and the mean strain
rate S. However, Kolmogorov suggests that there is a range
of scales for which the energy transferred by inertial effects
is dominant, and then the spectral distribution of energy only
depends on ε and κ . This range of scales is the inertial sub-
range.

2.3 Direct Numerical Simulation and Statistically
Averaged Methods

The most straightforward approach for the simulation of
a turbulent flow is to solve the full range of scales in
the Navier-Stokes equations. Unfortunately, the number of
flows we can compute with this approach is very limited.
The higher the Reynolds number is, the smaller the size of
the scales present in the flow. In fact, it can be proven [92]
that the ratio of the largest to the smallest flow scale is pro-
portional to Re9/4. This proportion suggest that the number
of nodes scales with Re9/4. This implies prohibitively com-
puter requirements with current technology for most flows
of engineering interest. However, DNS plays a very impor-
tant role in fundamental research [96]. Thus, the extensive
use of direct simulations has been crucial for a better knowl-
edge of turbulence and for the development of models that
allow the simulation of flows at higher Reynolds numbers.

Although the direct solution of the Navier-Stokes equa-
tions is not applicable to most engineering problems, there
is still a need for solving them in real practical applications.
Thus, a great effort has been devoted to developing mod-
els to simulate the effect of the unresolved scales. Probably,
the most common approach in flows of engineering inter-
est has been the use of the statistical time averaging of the
solution. This technique, called the Reynolds averaged nu-
merical simulation (RANS) is based on the idea of the de-
composition of the flow in two parts: The statistical average
and a fluctuation:

ui = ui + u′
i (6)

The averaging process reduces the number of scales in
the solution, but also precludes the numerical scheme from
capturing the fine features of the flow. Thus, the effect
of small scales (the fluctuation) is included by a turbulent
model.

The RANS equations for an incompressible flow are the
following [92]:

∂ui

∂xi

= 0

ρ
∂ui

∂t
+ ρuj

∂ui

∂xj

= − ∂p

∂xi

+ ∂(2μSij − ρu′
j u

′
i )

∂xj

(7)

the superindex ¯ means an statistical average of the vari-
able, and repeated indices indicate summation (Einstein no-
tation). The term ρu′

j u
′
i appears due to the non-linearity of

the Navier-Stokes equations. It is known as the Reynolds
stress tensor (or turbulent stress tensor). It introduces six
additional unknowns to the system. In order to solve the
system, we need to obtain additional equations relating the
fluctuating part with the averaged part of the flow. The lack
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of these equations is the turbulent closure problem. The at-
tempts to find such relations represent the history of the evo-
lution of turbulent models.

The first attempts to develop a mathematical description
of the Reynolds stress tensor were made by analogy with
the molecular diffusion. Thus, Boussinesq introduces the
concept of turbulent viscosity as the “turbulent” analog of
molecular viscosity. As the viscous stress tensor is related to
the velocity gradient by the molecular viscosity, the Boussi-
nesq hypothesis relates turbulent stresses with the gradient
of the averaged velocity by means of the turbulent viscosity.
However, unlike molecular viscosity, which is independent
of the flow, the turbulent viscosity is different for each flow.
This dependence is the reason for the lack of an universal
turbulent model.

The similarity between turbulence and molecular pro-
cesses is also present in the Prandtl’s theory of mixing
length. He suggested that the turbulent viscosity can be de-
fined from the so-called “mixing length”, in an analogy with
the kinetic theory of gases, that predicts the value of the
molecular viscosity from the value of the molecular mean
free path. Even though this hypothesis presents many theo-
retical problems to be justified [92], it works reasonably well
in shear flows, when the right value of the mixing length is
used. The idea of the mixing length is the basis of the so-
called algebraic models.

The search of an universal turbulence model continued
with models in which the turbulent viscosity is not only a
function of the mixing length but also of other parameters.
These additional parameters try to consider the “history” of
the flow, in an effort to obtain a more realistic description of
the Reynolds stresses. This is the origin of the n−equation
models. These models introduce a new set of n transport dif-
ferential equations in addition to the conservation of mass,
momentum and energy equations. Kolmogorov [97] was the
first to propose a two-equation model. Since then, several
sets of equations have been developed. Among others we
can mention the k − ε model [98], the k −ω model [99], the
SST model [100], or the ν2 −f model [101]. Several authors
use the renormalization group theory to derive expressions
for the turbulent viscosity [102, 103]. This modification im-
proves the behavior of the turbulence models near the walls.

Algebraic and n-equation methods are widely used for
real engineering applications. However, they have some
drawbacks that preclude their use when high accuracy is re-
quired. RANS methods obtain acceptable results for statis-
tically steady flows, which roughly means that all statisti-
cal properties are constant in time. This is not the case, for
example, in phenomena such as transition, boundary layer
separation or vortex interaction. Moreover they are unable
to accurately predict turbulent flows at high Mach numbers
[104]. The reason is the even more complex phenomena in-
volved in turbulent compressible flows [105].

With the aim of showing the increase in difficulty, we
apply the Reynolds averaging to the compressible Navier-
Stokes equations. It is convenient to introduce the Favre av-
eraging:

˜� = ρ�

ρ
(8)

and

�i = ˜�i + �′′
i (9)

Thus, the Favre-averaged Navier-Stokes equations are:

∂ρ

∂t
+ ∂[ρ ũi]

∂xi

= 0

∂(ρ ũi)

∂t
+ ∂[ρ ũi ũj + pδij + ρu′′

i u
′′
j − τji]

∂xj

= 0

∂(ρ ẽ0)

∂t
+ ∂[ρ ũj ẽ0 + ũjp + u′′

jp + ρu′′
j e

′′
0 + qj − uiτij ]

∂xj

= 0

(10)

In these equations, ẽ0 is the density averaged total energy:

ẽ0 = ẽ0 + ũkũk

2
+ ũ′′

ku
′′
k

2
(11)

It is usual to rewrite unknown terms as:

τji = τ̃j i + τ ′′
ji

u′′
jp + ρu′′

j e
′′
0 = Cpρu′′

j T + uiρu′′
i u

′′
j + ρu′′

j u
′′
i u

′′
i

2

(12)

qj = −Cp

μ

Pr

∂T

∂xj

= −Cp

μ

Pr

∂˜T

∂xj

− Cp

μ

Pr

∂T ′′
∂xj

uiτij = ũi τ̃ij + u′′
i τij + ũiτ

′′
ij

(13)

where Pr is the Prandtl number. Moreover, we have ne-
glected the molecular viscosity (μ) fluctuations.

Favre-averaged Navier-Stokes equations present differ-
ent properties than Reynolds-averaged Navier-Stokes. For
example, there is no mass flux across the Favre-averaged
streamlines [105, 106]. However, in homogeneous flows
(those whose statistics of turbulent fluctuations are indepen-
dent of position [107]) it can be shown that Favre averaging
and ensemble average give identical results. A discussion of
advantages and drawbacks of Favre-averaging is found in
[106].

Incompressible, non-heat conducting flows are described
completely by the velocity field. In this case the divergence-
free condition couples the pressure with the velocity. In
compressible flows the pressure is determined by an equa-
tion of state.
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In compressible flows we can split the turbulent fluctua-
tions in a compressible and an incompressible parts. The in-
compressible part of this splitting can be understood as the
part of the solution that satisfies the incompressible Navier-
Stokes equations, and the compressible part is the remainder.
However, there is no general decomposition based on this
approach useful for the analysis, since there is no explicit
distinction between acoustic waves and other compressible
events [90].1 Kovasznay [108] introduced linearized theory
based on a small parameter expansion to obtain a decom-
position of compressible turbulent fluctuations. Thus, these
fluctuations can be considered as combinations of acousti-
cal, vortical and entropy modes. Although the validity of this
assumption is restricted, this decomposition is useful since
it gives considerable insight of this kind of flows. Following
this approach, it is possible intermodal energy transfer in
addition to interscale energy transfer. Hence the increasing
complexity in modeling compressible turbulence.

The number of terms of (10) to be modeled is bigger than
in the incompressible case. Unfortunately, it has been shown
that the models based on the extension of those developed
originally for incompressible flows fail to adequately predict
turbulent flows at high Mach numbers, and a specific work
is required for compressible flows.

An important concept is that of isotropy. In case of turbu-
lent flows, isotropy usually means direction invariance. Ex-
periments seems to confirm the hypothesis of local isotropy
is reasonable for the flow smaller scales. However most
turbulence models are developed under the assumption of
isotropy in all the range of scales, which possibly introduce
errors in the solution.

Second-order closure models [109–111] abandon the
Boussinesq hypothesis. These methods introduce a differen-
tial equation for each component of the Reynolds stresses,
and another equation to determine the dissipation. This ap-
proximation removes the isotropy assumption of the Boussi-
nesq hypothesis, and it accounts for phenomena such as
flows over curved surfaces. However, the numerical reso-
lution of these models presents problems due to instability.
Moreover, several terms of the exact transport equations for
the components of the Reynolds stresses are unknown and
the modeling of these terms introduces again the Boussinesq
hypothesis.

We refer the interested reader to [92] for a thorough dis-
cussion of these methods.

Even though it is fair to acknowledge the importance of
RANS methods in the development of turbulence computa-
tions, there is a theoretical issue that is important to remem-
ber. When we average the Navier–Stokes equations, the na-
ture of the equations change. A deterministic phenomenon is

1When the nonlinear mechanism of the flow is dominant it is possible
to use the Helmholtz decomposition of the compressible velocity field,
but without a direct decomposition of the other variables [90].

expressed in terms of a set of statistic equations. If we accept
that the Navier–Stokes equations describe correctly the dy-
namics of a flow, there is a contradiction with the statistical
approach of averaging. In this context the approach of Large
Eddy Simulation allows to circumvent this contradiction.

2.4 Large Eddy Simulation

Large Eddy Simulation (LES) of turbulent flows is a dif-
ferent strategy to solve turbulent flow problems. Turbulent
flows are characterized by vortices with a wide range of
length and time scales. Biggest vortices have a size com-
parable to the length size of the mean flow. On the other
hand, the dissipation of kinetic energy occurs at the smaller
scales. The idea of LES is to model only the scales that are
not solved by the numerical scheme. Ideally, the smallest
size of the resolved scales is determined by the grid size,
and then the subgrid scales (SGS) are those of a size smaller
than the grid size. However, the numerical method may in-
troduce dispersion and dissipation errors even in scales cap-
tured by the grid. Thus, in current LES models SGS terms
include scales bigger than the grid size but not well resolved
by the numerical method. The separation of this scales is
performed by means of filtering. Thus, subfilter scales (SFS)
instead of SGS models is a more suitable term. We consider
a resolved scale as a scale whose wavenumber is below the
cut-off frequency of the numerical method.

The filtering operation has to fulfill some requirements
[89]

1. Constant preservation

a = a, a ∈ R (14)

2. Linearity,

� +  = � + , (15)

3. Commutation with derivation:

∂�

∂s
= ∂�

∂s
, with s = x, t (16)

Many filters have been used in literature, among them we
can cite the volume-average box filter [112] and the Gaus-
sian filter [113]. In the context of structured grids, LES with
Padé filters [2, 4, 5] has obtained very good results. How-
ever, filtering for unstructured grid is more difficult. In par-
ticular, the development of commutative filters for this kind
of grids is specially complex. The use of MLS has been
proposed [114], and also other approaches based on Least-
Squares [115], or in discrete triangular filters with weights
assigned to each vertex [116].

Most turbulence models are developed under the assump-
tion of Boussinesq hypothesis, and therefore, they suppose
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isotropic flows. This assumption does not hold for a vast
majority of flows in nature. However, in LES formulations
the idea is to apply the turbulence model only to the smaller
scales. In this context, the assumption of isotropy in these
scales is more reasonable. Another advantage of the LES ap-
proach is that the Navier-Stokes equations are not averaged,
keeping their deterministic nature.

2.4.1 The Filtered Navier-Stokes Equations

In the following, super index ¯ indicates filtered variables.
Favre-filtered variables (�̃ = ρ�/ρ) are denoted with ˜.
Quantities denoted by ˆ are computed according its defini-
tion but from filtered variables. Prime ′ variables are used
for the small scale part of the variables. We define the small
scale as the subfilter part of a variable, u′

i = u − ũ.
Following [117, 118], the filtered compressible Navier

Stokes equations, for the conservative variables (ρ,ρũ, ρṽ,

ρw̃, ρÊ) are

∂ρ

∂t
+ ∂(ρũj )

∂xj

= 0

∂(ρũi)

∂t
+ ∂(ρũi ũj + pδij − τ̂ij )

∂xj

= −∂(ρσij )

∂xj

+ βi

∂ρÊ

∂t
+ ∂[(ρÊ + p)ũj − τ̂ij ũi + q̂j ]

∂xj

= −α1 − α2 − α3 + α4 + α5 − α6

(17)

The term ρσij = ρ(ũiuj − ũi ũj ) represents the subgrid
stresses and βi is:

βi = ∂(τ ij − τ̂ij )

∂xj

(18)

βi arises from the nonlinearity of the viscous stress. We de-
fine the total resolved energy Ê = p/(γ − 1)+ 1

2ρuiρuj /ρ,
and p is the filtered pressure. Subgrid terms in the energy
equation are:

α1 = ũi

∂ρσij

∂xj

, α2 = 1

γ − 1

∂(puj − pũj )

∂xj

α3 = p
∂uj

∂xj

− p
∂ũj

∂xj

, α4 = τij

∂ui

∂xj

− τij

∂ũj

∂xj

(19)

α5 = ∂(ũiτ ij − ũi τ̂ij )

∂xj

, α6 = ∂(qj − q̂j )

∂xj

(20)

α1 is the SGS dissipation and α2 is the pressure-velocity
subgrid term, which describes the effect of subgrid turbu-
lence on the conduction of heat in the resolved scales. The
term α3 is the pressure-dilatation correlation. On the other
hand, α4 is related to the SGS molecular dissipation. More-
over α5 is the SGS diffusion due to molecular transport of

momentum, and α6 is the SGS diffusion due to molecular
transport of heat. This is not the only possible formulation.
Thus, it is possible to modify the thermodynamic variables
to obtain other expressions of the compressible LES filtered
equations [90, 119].

Subgrid stresses, ρσij , are usually expressed as the sum
of three terms:

ρσij = ρ( ˜ũi ũj − ũi ũj ) + ρ( ˜u′
i ũj + ˜ũiu

′
j ) + ρ( ˜u′

iu
′
j ) (21)

The first term is the Leonard stress tensor, which repre-
sents a relation between filtered quantities. The second is the
cross-term stress. It accounts for the interactions between re-
solved and unresolved scales. The third term represents the
SGS Reynolds stresses, which relates only subgrid quanti-
ties.

Classical LES models for compressible flow start from
these equations and introduce a SGS model, for exam-
ple the Smagorinsky [120] or the more advanced Dynamic
Smagorinsky [121, 122] models. Terms α3–α6 and βi are
neglected under the assumption that they are smaller than
the SGS modeled terms [123]. One of the main assumptions
in the modeling of SGS terms for compressible flow is the
incompressibility of the subgrid scales, that is, compressibil-
ity only affects the large scales.

2.4.2 Current Techniques

One of the main drawbacks of classical LES techniques is
that the SGS model is in fact applied to the whole range of
scales. Current LES techniques try to modify only the range
of scales that are unresolved. From a physical standpoint,
these methods try to take into account the interaction be-
tween the unresolved scales and the smallest resolved scale.
Interactions between largest scales of the flow and subgrid
scales are neglected.

The Variational Multiscale Method (VMS) [124–127] is
a different approach to Large Eddy Simulation. It uses vari-
ational projections instead of filtered-equations. This fact
avoids the problems caused by non-commutative filters. In
their formulation, they decompose the solution space of the
Navier-Stokes equation into large and small scales. Later,
the VMS framework was extended to a three-level approach
where the scales are divided in coarse, fine and unresolved
scales [128]. In earlier versions of VMS, the idea is to ap-
ply the subscale model to the unresolved scales, whereas
large and small scales are solved directly. A more recent ap-
proach [129] is the Residual-based subgrid-scale modeling.
In this approach, the problem of solving the Navier-Stokes
equations is divided in two problems: obtaining approximate
solutions to the fine-scale problem (that involves the unre-
solved scales) and the resolution of the coarse-scale prob-
lem (that involves the coarse and fine scales). The solution
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of the fine-scale problem is inserted in the coarse-scale prob-
lem. Interactions between coarse and fine scales are included
in the formulation without addition of any eddy-viscosity
model. In practice, the fine-scale problem is not solved ex-
actly. Instead an approximate expression is used [129].

The VMS method could be included in a class of meth-
ods of Multi-level Simulations [89]. These methods try to
solve an equation for the subgrid terms, and it seems that
currently they are the preferred for the research community.
Among these Multi-level techniques, we can cite methods
with several grid levels [130, 131] or methods that use sev-
eral filtering levels [132].

Another method is the Approximated Deconvolution
Model (ADM) [133]. The idea of this method is to recover
the unfiltered solution with an approximated deconvolution
and the application of a relaxation term to model the effect
of subgrid scales on the resolved scales.

Usual SGS models for LES are computed from filtered
variables. In [117, 134] a High Pass Filtered (HPF) model
is used. The idea of this method is to use high-pass fil-
tered variables instead of filtered variables to compute the
SGS model terms. In [118] it is shown an analogy between
the VMS and filtering in LES. In this framework, the HPF
model may also be related to the VMS method.

A successful technique in structured grids is the use of
high-resolution compact finite differences with the addition
of an explicit filter [2, 4, 5]. These techniques are usually
called “no model” methods. However, there is an implicit
SGS model in them: the filter. Padé filters depend on a pa-
rameter. Depending on this parameter, the amount of filter-
ing changes, according to its transfer function. In practice,
the amount of filtering is selected following stability crite-
ria. Since the filtering has only (ideally) a dissipative action,
backscatter is not modeled. This approach is also related
with the ADM method, since the ADM process is equiva-
lent to filtering a wider range of high frequencies [135].

The spirit of this approach is similar to that of Implicit
Large-Eddy Simulation (ILES) techniques. The main as-
sumption in ILES is that the action of the subgrid scales on
the resolved scales is purely dissipative. In these methods,
the numerical discretization introduces the amount of dissi-
pation needed without explicit subgrid modeling. In LES the
energy cascade process is truncated since the smaller scales
are not solved by the grid. However, there are methods used
in LES that introduce certain amount of dissipation. Thus, it
is legitimate to ask if it is convenient the use of a dissipative
SGS model with these methods. The use of upwind meth-
ods for LES is controversial [136, 137], due to the excessive
dissipation in coarse grids. On the other hand, in [138] it is
shown that the amount of dissipation of upwind discretiza-
tions mainly depends on the quality of the approximation
of the derivatives. The use of upwind methods for LES has
been proposed in [139–144] without using any SGS model.

This approach is the Monotonically Integrated Large-Eddy
Simulation (MILES). In some of the MILES approaches, the
physical viscosity is set to zero [145], and all the viscos-
ity (molecular also) is introduced by the numerical method.
However, this approach presents consistency problems. The
main drawback of the MILES approach is the lack of physi-
cal foundation. Even though from a numerical point of view
the method obtains goods results, there is no solid physical
basis for this approach. However, there are some theoreti-
cal advances [144], that relate the form of certain terms of
the discretized equations with a subgrid tensor. Since the nu-
merical method also plays the role of a dissipation model, it
is very important the numerical scheme used in these tech-
niques. Not all the methods are valid for use in MILES, since
they have to mimic the dissipation of energy at the smaller
scales [146].

3 Computational Aeroacoustics

The sound generation by a flow and its propagation are a
matter of aerodynamics. Indeed, the conservation equations
of mass and momentum govern both the flow dynamics and
the resulting acoustic phenomena. However, the features of
the aerodynamic flow and the sound are different. The first
is convective and/or diffusive and the second is propaga-
tive with very low attenuation due to viscosity. On the other
hand, aeroacoustic problems present a wider range of wave-
lengths than those of aerodynamic ones.

Aeroacoustic noise optimization is the main topic of
many widespread research studies of industrial interest
[147–149]. In fact, the noise level emitted by a device could
determine the success or failure of a new prototype. On the
other hand turbomachines are widely found in industrial ap-
plications. In these devices the level of sound generated is a
very important parameter of design.

The prediction of aerodynamic noise benefits from recent
developments in numerical methods and computer science.
However, despite the knowledge accumulated over the past
few decades on the mechanisms of noise generation on com-
plex systems as for example air delivery systems, the predic-
tion of such a flow field and the resulting acoustic pressure,
by numerical methods is still difficult. This is due to our
inability to model the turbulent viscous flow with enough
accuracy on complex geometries and to the complicated na-
ture of flow through turbomachines. Until now, there is still
no consensus about the aeroacoustic approach to adopt, and
actually, it depends on the application. In the following we
present a succinct description of the most commonly used
approaches.

Previously to our exposition, we recall the concepts of
far and near-fields. The concept of far-field, relative to the
effects of the flow compressibility, concerns the propaga-
tion of acoustic waves produced by a pressure change in the
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propagation medium. The occurred disturbance propagates
gradually by molecular excitement to the observer located
far from the source. Unlike the far-field, near-field includes
the sound due to the fluid compressibility and another com-
ponent called the aerodynamic disturbance field or pseudo-
sound. It consists of all pressure fluctuations governed pri-
marily by the incompressibility directly related to the flow.
These fluctuations are local and are not propagative.

In Computational Aeroacoustics (CAA), two computa-
tional approaches are possible:

Direct Approach This approach consists of adjusting the
aerodynamic numerical modeling to the acoustics require-
ments. In other words, it is needed to use numerical
schemes adapted to the acoustic propagation, providing low-
dissipation and low-dispersion. However, the complexity of
implementing these schemes and the far field constraint,
where the grid must extend over very large distances, greatly
increases the computational costs and makes using this ap-
proach very difficult for complex geometries.

Hybrid Approach This approach can be divided into two
types of modeling.

– The first one is to use the direct approach near distur-
bances in which the acoustic waves are propagated over a
short distance. They are then propagated using an adapted
propagation operator, as Kirchhoff’s equation [150] for
example, to the far field. For adapted wave operator we
mean a wave equation or other conservation equation sys-
tem that permits an acoustic wave to propagate from a
given acoustic source. However, the simulation of the
flow field requires DNS or LES, and the treatment of
boundary conditions must be done with utmost care to
ensure an accurate transition between near and far fields.

– The second consists of separating aerodynamics and
acoustics computations. This is possible when the Mach
number of the flow is small [151]. Thus, acoustic sources
are given by aerodynamic calculation and propagated us-
ing wave equation (Ffowcs Williams-Hawkings [153],
Kirchhoff, . . . ), linearized Euler equations (LEE) or other
approaches like linearized perturbed compressible equa-
tions (LPCE) [154], . . . The constraints and the computa-
tion time is considerably reduced compared to DNS.

3.1 Aeroacoustics of Complex Geometries

Aeroacoustics is a science dealing with the sound generated
either by the flow itself, as free jet turbulence or by its inter-
action with a moving or static surface, rigid or deformable,
as fan blades, helicopter rotor, compressors or turbines, etc.
Thus, in these latter kinds of applications, we need to deal
with flow through complex geometries.

The first attempt to formulate a theory about the acous-
tics of propellers was conducted by Lynam and Webb [155]
in 1919. They showed that the rotation of the blades of a
propeller causes a periodic modulation of the fluid flow and
associated acoustic disturbance. Another approach, initiated
by Bryan [156] in 1920, is to study the propagation of a
source point in uniform motion. This had as main feature
the introduction of the concept of delayed time.

Gutin [157] was the first to establish a theoretical for-
malism of a steady noise source through linear acoustics.
He showed that steady aerodynamic forces correspond to
dipole source distribution on the disc of a propeller. This
model proves to be incomplete because, in reality, the noise
emitted by rotating blades extends rather high frequencies.
The sound at high frequencies is a consequence of the un-
steadiness of aerodynamic loads.

Advances in the prediction of noise from the airflow, are
based on of Lighthill’s [158, 159] investigations. In his anal-
ogy, the generated noise is mathematically reduced to the
study of wave propagation in a medium at rest, in which the
effect of the flow is replaced by a distribution of sources.
The pressure is therefore regarded as characterizing a sound
field of small amplitude carried by a fluid, whose properties
are uniform throughout the area at rest. The major intake of
Lighthill is to include nonlinear terms expressing the noise
generation by turbulent flow.

Curle [160] extended the Lighthill’s analogy to include
solid boundaries by treating them as distributions of sur-
face loads. Subsequently, Ffowcs Williams and Hawkings
(FW&H) [153] have extended this approach by taking into
account the motion of solid surfaces in the flow.

Limits of Aeroacoustic Analogy and Alternative Approaches
In the common formulation of aeroacoustic analogy solu-
tion, the noise is radiated in free and far field. As strong hy-
potheses: reflections, diffractions, scattering as well as the
confinement effects are not taken into account. These hy-
potheses make very easy the use aeroacoustic analogy for
noise prediction of open rotors or free jets for example, but
they are also its weaknesses in case of confining. In [149] it
was shown that using the FW&H formulation to model the
noise generated by a centrifugal fan does not match mea-
surements because of the presence of a casing. Taking into
account the sound attenuation of the casing to correct the di-
rectivity has not really solved the problem. For this kind of
problems, it was therefore concluded that the aeroacoustic
analogy does not obtain accurate results.

To take into account confining effects, it is expected that
LEE can give satisfactory results. In fact, with LEE one can
use the same acoustic sources as FW&H for example, and
in addition reflections, diffractions and scattering are natu-
rally taken into account by an adequate choice of boundary
conditions.
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Linearized Euler Equations In many aeroacoustic applica-
tions we can assume that problems are linear [151]. In those
cases, it is possible to linearize the Euler equations around a
(mean) stationary solution U0 = (ρ0, u0, v0,p0). Thus, we
can write the Linearized Euler Equations written in conser-
vative form are the following:

∂U

∂t
+ ∂F

∂x
+ ∂G

∂y
+ H = S (22)

In (22) S a source term and

U =

⎛

⎜

⎜

⎝

ρ

ρu

ρv

p

⎞

⎟

⎟

⎠

F =

⎛

⎜

⎜

⎝

ρu0 + ρ0u

p + ρ0u0u

ρ0u0v

u0p + γp0u

⎞

⎟

⎟

⎠

G =

⎛

⎜

⎜

⎝

ρv0 + ρ0u

ρ0v0u

p + ρ0v0v

v0p + γp0v

⎞

⎟

⎟

⎠

(23)

H =

⎛

⎜

⎜

⎜

⎜

⎝

0
(ρ0u + u0ρ)

∂u0
∂x

+ (ρ0v + v0ρ)
∂u0
∂y

(ρ0u + u0ρ)
∂v0
∂x

+ (ρ0v + v0ρ)
∂v0
∂y

(γ − 1)p∇ · ν0 − (γ − 1)ν · ∇p0

⎞

⎟

⎟

⎟

⎟

⎠

(24)

where ν = (u, v) is the perturbation in velocity, ν0 =
(u0, v0), ρ is the perturbation in density, p is the pertur-
bation in pressure and γ = 1.4. In case of an uniform mean
flow, H is null. To solve these equations, we need to com-
pute previously the acoustic sources S, by using LES or
DNS. In [152] is presented a methodology to compute the
sources.

4 The FV-MLS Method

The Finite Volume method is one of the most usual numer-
ical techniques for the resolution of fluid dynamics prob-
lems in complex geometries on unstructured grids [1, 17,
161]. The main problem for achieving higher-order accu-
racy when these methods are used with unstructured grids
is the computation of the gradients and successive deriva-
tives required for the reconstruction of the variables inside
the cells by Taylor approximations. Moreover, the accuracy
in the computations of the gradients is also important in
the computation of viscous fluxes in the case of the Navier-
Stokes equations. The first attempts to obtain finite volume
methods with order higher than one were the Monotone Up-
stream Schemes for Conservation Laws (MUSCL) [13]. One
drawback of this technique is the lack of multidimension-
ality, since it is based on the direct extension of the one-
dimensional approach.

One technique that has achieved the least dissipative re-
sults for hyperbolic problems is the so called Residual Dis-
tribution or Fluctuation Splitting techniques [61–79]. The
main problem of this technique is that it is based on a con-
servative linearization of the inviscid flux, which is not al-
ways available. Moreover the viscous flux discretization and
the extension to orders of accuracy higher than two are not
straightforward. Other authors compute the gradients by us-
ing the Least-Squares technique or reconstructions based on
the Green-Gauss theorem [16, 19, 22, 162]. However, by us-
ing these techniques it is no easy to find convergence orders
higher than two. The k-exact reconstruction [18, 163, 164]
is based on the computation of a polynomial expansion in-
side each cells that preserves the mean of the variable in that
cell. This polynomial expansion reconstructs exactly poly-
nomials up to order k. The coefficients defining this poly-
nomial are chosen by minimization, in the Least-Squares
sense, of the difference between the averages of the recon-
structing polynomial and the actual averages. Moreover, ge-
ometric weights are included to measure the relative impor-
tance of the error incurred at each control volume. These
weights are functions of the distance. These constraints in
the Least-Squares problems makes mandatory the resolution
of the Least-Squares problem each time step. This technique
has problems with boundary-layer grids and in the compu-
tation of viscous fluxes. Recently, a generalization of the
k-exact reconstruction is introduced in [165, 166]. More in-
formation about high-order methods for unstructured grids
can be found in [86].

The basic idea of the FV-MLS method [80, 81, 85,
167] is to use Moving-Least Squares [82–84] approxima-
tions to compute the derivatives required for the finite vol-
ume scheme. The MLS method, and in general Reproducing
Kernel methods [83, 84], have been widely used in surface
reconstruction and by the meshless community. It is able to
obtain accurate approximations of a variable and its deriva-
tives from a scattered set of data. Thus, it is very convenient
for use with unstructured grids in a finite volume frame-
work. Moreover, the centered nature of the MLS approxi-
mations makes it very suitable for the computation of vis-
cous terms. Thus, viscous fluxes are directly computed at
integration points whereas for convective terms an upwind
discretization is used.

The usual approach of high-order finite volume schemes
is pragmatic and bottom-up. Starting from an underlying
piecewise constant representation, a discontinuous recon-
struction of the field variables is performed at the cell level.
An important practical consequence is that the discretiza-
tion of higher order terms requires some kind of recovery
procedure, which is, almost invariably, inconsistent with the
aforementioned reconstruction. Our approach is somewhat
the opposite. We start from a high-order and highly reg-
ular representation of the solution, obtained by means of
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Moving Least-Squares approximations [82]. This approach
is directly suitable for the discretization of elliptic/parabolic
equations and high-order spatial terms. For equations with a
predominantly hyperbolic character, the global representa-
tion is broken locally, at the cell level, into a piecewise poly-
nomial reconstruction, which allows to use the finite volume
technology of Godunov-type schemes for hyperbolic prob-
lems (e.g. Riemann solvers, limiters).

4.1 General Formulation

Consider a system of conservation laws of the form

∂u

∂t
+ ∇ · (FH + FE) = S in � (25)

supplemented with suitable initial and boundary conditions.
The fluxes have been generically split into a hyperbolic-
like part, FH , and an elliptic-like part, FE . Consider, in
addition, a partition of the domain � into a set of non-
overlapping control volumes or cells, T h = I . Furthermore,
we define a reference point (node), xI inside each cell (the
cell centroid).

The spatial representation of the solution is as follows:
consider a function u(x), given by its point values, uI =
u(xI ), at the cell centroids, with coordinates xI . The ap-
proximate function uh(x) belongs to the subspace spanned
by a set of basis functions {NI (x)} associated to the nodes,
such that uh(x) is given by

uh(x) =
nx
∑

j=1

Nj(x)uj (26)

which states that the approximation at a point x is computed
using certain nx surrounding nodes. This set of nodes is re-
ferred to as the stencil associated to the evaluation point x.
In particular, the above approximation is constructed us-
ing Moving Least-Squares (MLS) approximation [82]. Note
that, using MLS, the approximate function uh(x) is not a
polynomial in general. The centered character of the ap-
proximation avoids the spatial bias which is often found in
patch-based piecewise polynomial interpolation. MLS shape
functions values at a point depend on the number of neigh-
bors considered for this point (nx ), a kernel function and a
basis [167]. In this work we use a polynomial basis and the
following exponential kernel, defined in 1D as:

W(x,x∗, sx) = e−( d
c
)2 − e−( dm

c
)2

1 − e−( dm
c

)2
(27)

with d = |xj − x∗|, dm = 2 max(|xj − x∗|), with j =
1, . . . , nx∗ , c = dm

sx
, x∗ is the position of a reference point,

x is the position of every cell centroid of the stencil and sx

is a shape parameter. A 2D kernel is obtained by multiply-
ing two 1D kernels. Thus, the 2D exponential kernel is the
following:

Wj(x,x∗, sx, sy) = Wj(x, x∗, sx)Wj (y, y∗, sy) (28)

The integral form of the system of conservation laws (25)
for each control volume I is:
∫

�I

∂u

∂t
d� +

∫

�I

(FH + FE) · nd� =
∫

�I

S d� (29)

Introducing the component-wise reconstructed function uh

we obtain

∫

�I

∂uh

∂t
d� +

∫

�I

(FhH + FhE) · nd� =
∫

�I

S(uh) d�

(30)

For hyperbolic problems, we introduce a “broken” recon-
struction, uhb

I , which approximates uh(x) (and, therefore,
u(x)) locally inside each cell I , and is discontinuous across
cell interfaces [81, 86]. In general, we require the order of
accuracy of the broken reconstruction to be the same as that
of the original continuous reconstruction. Thus, using Tay-
lor series expansions; a quadratic reconstruction inside cell
I , reads

uhb
I (x) = uh

I + ∇uh
I · (x − xI ) + 1

2
(x − xI )

T H h (x − xI )

(31)

where the gradient ∇uh
I and the Hessian matrix H h involve

the successive derivatives of the continuous reconstruction
uh(x), which are evaluated at the cell centroids using MLS.
This dual continuous/discontinuous reconstruction of the so-
lution is crucial in order to obtain accurate and efficient nu-
merical schemes for mixed parabolic/hyperbolic problems.
The cell-wise broken reconstruction defined here is actually
a piecewise continuous approximation to uh. The advan-
tage is that it allows to make use of Riemann solvers, lim-
iters, and other standard finite volume technologies, while
keeping some consistency in terms of functional represen-
tation. Thus, the general continuous reconstruction is used
to evaluate the viscous (elliptic-like) fluxes, whereas its dis-
continuous approximation is used to evaluate the inviscid
(hyperbolic-like) fluxes.

The final semidiscrete scheme for the continuous/discon-
tinuous approach can be written as
∫

�I

∂uh

∂t
d� +

∫

�I

H (uhb+,uhb−) d� +
∫

�I

FhE · nd�

=
∫

�I

S(uh) d� (32)

where H (uhb+,uhb−) is a suitable numerical flux.
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Time integration scheme requires special attention. It has
been shown [168] that at most third order of accuracy is
achieved by using an explicit time integration scheme with a
zero-mean reconstruction [18, 169]. This problem is avoided
by using mass lumping formulations or implicit time inte-
gration techniques [168].

4.2 1D Linear Advection Equation Analysis

In the following, we expose the analysis of the discretiza-
tion of the 1D linear advection equation with the third-order
FV-MLS method. This analysis will allow us to evaluate the
behavior of the FV-MLS method in the approximation of
convective terms of a transport equation. We note that this
analysis is only valid for equally-spaced nodes, but it will be
useful to compare with other existing methods and to get a
flavor of the behavior of the numerical scheme. In this anal-
ysis we analyze the spatial discretization only, without tak-
ing into account the effects of time integration. For a study
of the effects of third and fourth order Runge-Kutta explicit
schemes we refer the reader to [167].

The 1D linear advection equation reads

∂u

∂t
+ a

∂u

∂x
= 0 (33)

on the domain 0 ≤ x ≤ 2π , with an harmonic wave as initial
condition:

u(x,0) = g(0)eikx (34)

and that also verifies that u(0) = u(2π). In (33), u is a scalar
quantity propagating with phase velocity a. In order to make
the exposition easier to follow, we consider only a > 0.
However, the conclusions will be valid for any value of a.

With this initial setup, the solution of the problem is writ-
ten as:

u(x, t) = g(t)eiκx (35)

Thus, introducing (35) in (33):

dg

dt
eiκx + iaκgeiκx = 0 (36)

that is,

dg

dt
= −iaκg (37)

and consequently g(t) is

g(t) = g(0)e−iaκt (38)

where g(0) is the initial value of g(t). Thus, we have:

u(x, t) = g(0)ei(κx−aκt) (39)

Fig. 1 1D Spatial discretization scheme

On the other hand, an initial wave can be obtained by the
addition of initial conditions of the form (34):

u(x,0) =
F

∑

q=1

gq(0)eiκqx (40)

where F is the number of Fourier modes.
Due to the linearity of (33), the solution can be obtained

by the addition of solutions of the form (39). Thus, for F

modes we obtain:

u(x, t) =
F

∑

q=1

gq(0)eiκq (x−at) (41)

A real wavenumber κ is related to a real frequency ω =
aκ , such that (41) is a solution of (33). The relationship be-
tween frequency and wavenumber is called dispersion re-
lation. For (33) this relationship is linear, that is a charac-
teristic feature of wave propagation in non-dispersive me-
dia. Thus, the velocity of propagation is the same for all the
wavenumbers.

The discretization of (33) usually introduces a dispersion
error. This means that in the numerical solution of (33),
waves with different wavenumber propagate with different
velocities. Moreover, if the modified wavenumber is com-
plex, dissipation errors will appear.

The linearity of the solution allows us to perform the
analysis for a single Fourier mode (see (40)), so the subindex
q is omitted.

In contrast with a finite difference discretization, where
we use point values of the variable, a finite volume scheme
refers to the mean value of the variables inside a control vol-
ume I .

ũI = 1

�x

∫ xR

xL

udx (42)

where xR and xL are the values of the x-coordinate of the
cell I interfaces I + 1

2 and I − 1
2 , as is plotted in Fig. 1.

The FV-MLS method uses the integral form of (33):

∂

∂t

∫ xR

xL

udx = −(f (xR, t) − f (xL, t)) (43)

where f (u) = au is the flux function. by using the mean
value definition (42) of u(x), the spatial discretization of
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(43) reads as:

∂ũI

∂t
= − a

�x
(u∗

(I+ 1
2 )

− u∗
(I− 1

2 )
) (44)

In (44), u∗ refers to the reconstruction of the value of u at in-
tegration points (I ± 1

2 ). After some algebra, we obtain the
modified wavenumber of the third order FV-MLS scheme.
The interested reader is referred to [167] for the complete
process. Note that this is a time-dependent problem, and
in this analysis we have introduced the correction terms re-
quired for the conservation of the mean (zero-mean) of the
third-order scheme [81, 168].

Here, we only point out that the modified wavenumber of
the third order FV-MLS scheme is:

κ∗ = Z∗

i
(45)

with

Z∗ = 1 − e−iκ�x

+
Q

∑

l=−P

∂N(I+l)

∂x
(eiκl�x − eiκ(l−1)�x)

(

�x

2

)

+ 1

2

Q
∑

l=−P

∂2N(I+l)

∂x2
(˜Aeiκl�x − ˜Beiκ(l−1)�x) (46)

and

˜A =
(

�x

2

)2

− 1

�x

∫

I

(x − xI )
2 dx (47)

˜B =
(

�x

2

)2

− 1

�x

∫

(I−1)

(x − x(I−1))
2 dx (48)

Note that ˜A and ˜B include the zero-mean terms. If we only
consider the spatial discretization error, we can write [167]

a∗

a
= Z∗

iκ�x
(49)

The modified phase velocity a∗ is the numerical prop-
agation velocity of a harmonic function. When a∗ and a

are different, dispersion errors appear in the numerical so-
lution. As the original equation (33) is non-dispersive, the
numerical solution of an harmonic function with different
wavenumbers loses the original shape.

The real part of the modified wavenumber is related to
dispersion errors, whereas the imaginary part is related to
dissipation errors. Upwinding introduces a non-null imag-
inary part in the modified wavenumber of the FV-MLS
method. Although this could be seen as a drawback in terms
of accuracy, we note the remarkable property that most of
the dissipation is introduced in the wavenumbers that are
not accurately resolved for the numerical method. This fact

can indeed be seen as an implicit low-pass filtering of the
spurious waves.

Remark 1 This is an interesting feature of the numerical
scheme, since it is going to be used on unstructured grids.
On this kind of grids, the anisotropy of the elements may
originate additional spurious waves. The implicit filtering
helps to attenuate the distortion of the solution by these
waves.

In Fig. 2 we plot the real and the imaginary parts of
the scaled modified wavenumber versus the real scaled
wavenumber for different values of the kernel shape param-
eter sx . Resulting curves show the dispersion and dissipation
errors of the third-order FV-MLS numerical scheme. We ob-
serve the strong dependence of the properties of the numer-
ical method with the choice of the kernel parameter. More-
over, its properties also depend on the kind of kernel [167].

For a problem with non-harmonic waves, the crests of the
waves propagate with the phase speed but the energy of the
wave packet propagate with the group velocity vg = a ∂κ∗

∂κ

(see [170]). The phase speed and the group velocity of the
third-order FV-MLS method are shown in Fig. 3.

In Fig. 4 we plot a comparison between the third and
second-order FV-MLS method and the first order upwind
scheme in terms of dispersion and dissipation error. It is
clear the improvement in the properties of the numerical
scheme by increasing the order.

Remark 2 Note that the main source of differences between
two different finite volume methods, in terms of dispersion
and dissipation properties, is the accuracy on the computa-
tion of the derivatives, provided the numerical flux functions
are the same. Thus, it is very important an accurate compu-
tation of the derivatives. In multidimensional problems and
in a finite volume framework, it is also important a multidi-
mensional character of the computation of the derivatives.

4.2.1 A Numerical Benchmark for Simulation of Wave
Propagation

In this section we solve the first problem presented in the
First ICASE/LaRC Workshop on Benchmark Problems in
Computational Aeroacoustics [171]. We solve (33) in the
domain −20 ≤ x ≤ 450 with the following initial condition:

u(x,0) = 0.5e[−ln(2)( x
3 )2] (50)

The transported wave may be considered as the addition
of a number of harmonic waves with different frequencies
and amplitudes. If the numerical scheme is not able to simu-
late accurately the propagation of waves with very different
frequencies the numerical solution will be a very distorted
wave.
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Fig. 2 Dispersion and
dissipation curves of the
third-order FV-MLS method for
different values of the kernel
shape parameter sx . On the top,
we plot the real part of the
modified scaled wavenumber,
related to the dispersion of the
numerical scheme (left) and the
dispersion error in logarithmic
scale (right). On the bottom, we
plot the imaginary part of the
modified scaled wavenumber,
related to dissipation

Fig. 3 Phase-speed (left) and
group velocity (right) of the
third-order FV-MLS method for
different values of the kernel
shape parameter sx

In Fig. 5 we show the results for the second order FV-
MLS method. We observe that the solution is not accurate,
as it presents a very distorted wave. The results with the
second-order FV-MLS scheme are equivalent to the results
of the MUSCL scheme using centered fourth-order differ-
ences (this result only holds for 1D [167]).

In order to improve the resolution, we increase the order
of the numerical scheme. In figure 6 we plot the results for
the third-order FV-MLS method at non-dimensional times

t = 100, t = 400. For this grid spacing (�x = 1) the solu-
tion is somewhat dissipative, and the wave shape presents
a certain amount of distortion for t = 400. However, the
dispersion and dissipation errors of the wave are smaller
than those of other higher-order methods as the fourth-order
MacCormack method presented in [172], or fourth-order
centered finite differences [173].

From the present analysis, it is clear the importance of
a good resolution of a given numerical scheme for the res-
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Fig. 4 Influence of the order of
the approximation for the
FV-MLS method. On the left:
Real part of κ∗�x versus κ�x.
On the right: Imaginary part of
κ∗�x versus a κ�x

Fig. 5 Second and third-order FV-MLS solution for the first prob-
lem presented in [171] at a non-dimensional time t = 400, with
CFL = 0.6, exponential kernel sx = 6, �x = 1

olution of wave propagating problems. Thus, not only the
dissipative errors are important but also phase errors, which
may lead to a inaccurate solution. It is important that a nu-
merical scheme solves accurately the widest possible range
of frequencies. Even though on unstructured grids the main
procedure to improve the resolution is increasing the order
of the numerical scheme, it is important to note that two dif-
ferent numerical methods with the same order of accuracy
may have very different dispersion and dissipation curves.
Thus, the use of a higher-order method does not imply a
more accurate solution.

5 Implicit Filtering for Turbulence Computations

We have just seen that the kernel function determines the
properties of the FV-MLS scheme. It is possible to see dis-
sipation and dispersion curves in terms of resolved scales.

Thus, in Fig. 2, we see that the numerical scheme introduces
dispersion and dissipation errors for a given frequency (cut-
off frequency). We recall that we consider a resolved scale
as a scale whose wavenumber is below the cut-off frequency
of the numerical method. From the dissipation curve we ob-
serve that frequencies over the cut-off frequency are natu-
rally dissipated by the numerical method. This dissipation
has to mimic the high-wavenumber end of the inertial sub-
range. The spirit of this approach follows closely the MILES
method.

The methodology presented in [5] for the computation of
turbulent flows uses a no-model approach. The numerical
method is based on quasi-spectral compact finite differences
and the addition of an explicit Padé filter. The explicit fil-
ter removes the energy of the highest frequencies, and the
amount of energy removed is controlled by the parameter of
the Padé filter. Here, we follow a similar procedure, but the
filter is implicitly defined in the numerical model. Thus, the
shape parameter of the exponential kernel s acts as the filter
parameter. The dissipation curve in Fig. 2 gives a flavor of
the shape of the implicit filter.

On the other hand, in compressible flow simulations it
is possible the presence of shocks in the solution. An usual
approach with finite volume methods is the use of slope-
limiters [19, 20]. However, the use of slope-limiters presents
some drawbacks. One of the main drawbacks of slope lim-
iters is the limiting in smooth regions. In these regions,
limiting is not needed, and the introduction of additional
numerical dissipation reduces the accuracy of the numeri-
cal scheme. One possible solution is the selective-limiting
approach, in which a shock detector decides if the slope-
limiter is applied or not. There are many shock-detectors
developed in the literature. Among others, we can cite [21,
174–178]. Here, the additional dissipation introduced by the
slope-limiter is restricted by the MLS-based shock detector
developed in [86, 87]. It allows to keep the high-order of the
numerical scheme except in the vicinity of shocks (where
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Fig. 6 Third-order FV-MLS
solution for the first problem
presented in [171] at different
non-dimensional times, with
CFL = 0.6, �x = 1, exponential
kernel and several values of the
shape parameter sx

it is first-order accurate). Thus, in our approach the limit-
ing method is only used to prevent oscillations near shocks,
not to mimic the small-scale dissipation. This is a remark-
able difference with other implicit LES approaches based
on non-oscillatory finite volume schemes [142–144]. In fact,
the dissipation for the SGS model is controlled by the s pa-
rameter of the kernel.

5.1 Decay of Compressible Isotropic Turbulence

In this section we present the application of the third-order
FV-MLS method to the computation of a turbulent flow. We
solve the decay of compressible isotropic turbulence. Even
though this example is the simplest case of turbulent flow,
it is very interesting since it allows to check if the numeri-
cal method is able to mimic the dissipation of the subfilter
scales. The numerical model has to predict the evolution of a
turbulent region without walls or any mechanism to remove
or add energy, nor to organize the larger eddies.

The computational domain is [0,2π]3. We have imposed
periodic boundary conditions in all directions [138]. The
setup of the problem is the same as case 6 in [179]. The tur-
bulence length scale is defined by selecting the initial three-
dimensional energy spectrum as

E3D ∝ k4 exp

[

−2

(

k

kp

)2]

(51)

where kp = 4 is the wavenumber corresponding to the peak
of the spectrum and k is the wavenumber. Following [180],
we define χ , as the ratio of compressible kinetic energy
to the total turbulent kinetic energy. In this example, χ =
(
qd

q
)2 = 0.2, where q is the root mean square magnitude of

the fluctuation velocity, and qd is the root mean square mag-
nitude of the dilatational fluctuation velocity. We note that
χ is an indicator of the level of compressibility of the flow.
χ = 0 corresponds to an incompressible flow.

The initial velocity fluctuations are specified to obtain a
turbulent Mach number, Mt = q

c
= 0.4, where c is the mean

speed of sound. In this simulation, the initial values are given
by:

(ρ′
rms)

2
/〈ρ〉2 = 0.032

(T ′
rms)

2
/〈T 〉2 = 0.005

(52)

We recall that symbol 〈 〉 refers to mean value and primes
denote fluctuating variables.

The third-order FV-MLS scheme has been used for the
computations, with the MLS-based sensor [87] and the
Barth and Jespersen limiter [19]. We have tested two lev-
els of refinement. The coarse grid with 323 elements and
the finest grid with 643 elements. An explicit fourth-order
Runge-Kutta scheme has been used for time integration. The
time step is �t = 0.05, corresponding approximately to 250
time-steps per eddy turnover time (τ0) (the eddy turnover
time is defined as the ratio of the turbulent kinetic energy to
the dissipation rate based on the initial field).

Our “reference solution” is a LES calculation on a 1283

grid, computed with sixth-order compact finite differences
and a explicit Padé filter with parameter α = 0.49 [5]. The
result of this LES coincides with the DNS solution of [179].

In Figs. 7 and 8 we plot the results obtained on the 323

and 643 grids, for different values of the kernel shape param-
eter sx for the time evolution of the turbulent kinetic energy,
K = 〈ρ[(u′)2 + (v′)2 + (w′)2]〉, and the energy spectrum.
Results agree very well with those of the reference solution.
The choice of sx has an influence on the results. Thus, the
value of sx = 5 is somewhat under dissipative. The origin of
this under dissipation is probably related with an excess of
energy in the range of the resolved scales for this value of the
parameter, as it is shown in Fig. 8. We note the two differ-
ent slopes appearing in the results of the three-dimensional
energy spectrum. This result agrees with the Eddy-Damped
Quasi-Normal Markovian Theory (EDQNM), which pre-
dicts that the slope of the inertial range of the irrotational
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Fig. 7 Effect of the shape
parameter sx on time history of
turbulent kinetic energy decay.
Results for the 323 mesh (left)
and for the 643 mesh (right)

Fig. 8 Instantaneous
three-dimensional energy
spectra at t/τ0 = 0.3. Effect of
the shape parameter sx . Results
for the 323 mesh (left) and for
the 643 mesh (right)

velocity correlation depends on time [181, 182]. On a con-
vective time scale, it is proportional to k−5/3, whereas in a
viscous time scale it is proportional to k−11/3.

In order to compare the accuracy of this approach we
show in Fig. 9 the results of this approach and the results
of a fourth-order centered finite difference method. We note
that these results are also more accurate than the results ob-
tained with an standard third-order finite volume scheme [5].
The origin of this greater accuracy relies on the high qual-
ity of the computations of derivatives with MLS. Moreover,
we believe that the excessive dissipation usually attributed
to upwind methods is not consequence of the upwinding
process but of the poor quality of the derivatives computed
[138].

6 Selected Aeroacoustics Examples

In this section we present the results of the application of the
FV-MLS method to the resolution of some selected aeroa-
coustic problems on unstructured grids, by using the Lin-
earized Euler Equations.

Fig. 9 Time history of turbulent kinetic energy decay. Comparison
between third-order FV-MLS results and a centered fourth-order finite
differences method with an eighth-order filter [5]. Results for the 323

mesh

In CAA the treatment of boundary conditions plays a
key role [183], since even small spurious disturbances when
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the waves leave the domain can distort the acoustic field.
In the following we expose our approach to the boundary
conditions. For our modeling, the boundary conditions en-
ter in the discretized equations through a proper definition
of the numerical flux that can be written as H (U+,U∗−)

(see (32)), where U∗− is the external state variable. De-
pending on the boundary type, the construction of U∗−
accounts for, both, the physical boundary conditions that
must be enforced and the information leaving the do-
main.

Reflecting Boundary Conditions A perfectly reflecting
boundary condition is easily obtained by defining, at each
Gauss points on the rigid wall boundaries, an external mir-
ror fictitious state U∗−.

The external state is then expressed as

U∗− = RU+ (53)

where R is a transition matrix function of n’s components,
it reads

R =

⎛

⎜

⎜

⎜

⎝

1 0 0 0
0 1 − 2n2

x −2nxny 0

0 −2nxny 1 − 2n2
y 0

0 0 0 1

⎞

⎟

⎟

⎟

⎠

(54)

Using this condition, the mass flux computed by the Rie-
mann solver is zero and the non-permeability condition is
satisfied.

Absorbing Boundary Conditions Constructing absorbing
(non-reflecting) boundary conditions for CAA is pretty del-
icate because of the high sensitivity of the accuracy to the
small spurious wave reflexions at far field boundaries. Ap-
proaches based on the characteristics theory are not suited
for CAA problems, other approaches, such as Perfectly
Matched Layers (PML) [184] and radial boundary condi-
tion [185] are more indicated and widely discussed in the
literature for finite differences schemes.

In this work we employ upwinding technique used by
Bernacki et al. [186] with DG to select only outgoing waves
at the outer boundaries. Intuitively, it means that the wave is
completely dissipated at boundaries, but unfortunately noth-
ing proves that energy is actually dissipated and no spurious
wave reflexions persist. To overcome this problem, we join
to the above procedure a grid stretching zone [187]. Grid
stretching transfers the energy of the wave into increasingly
higher wavenumber modes and the numerical scheme re-
moves this high-frequency content. This is the same idea
as the one exposed for the implicit SGS modeling. With this
process most of the energy of the wave is dissipated before
reaching the boundaries.

At the grid stretching zone, it is possible to use the MLS
method as a filter in unstructured grids. The filtering process
is developed by the application of a MLS reconstruction of
the variables, i.e.:

Ū(x) =
nxI
∑

j=1

U(x)Nj (x) (55)

where, U is the reconstructed variable, Ū is the filtered vari-
able and N is the MLS shape function. This reconstruction
is performed by using a kernel with shape parameters favor-
ing dissipative behavior as those used to the approximation
of the variables. The value of these parameters determines
the range of frequencies to be filtered.

At the outer boundaries, we propose the following ex-
plicit numerical flux,

H (Un,U∗n,n) = 1

2
(F(Un) · n + |P|Un−1) (56)

with, U∗n is the fictitious state corresponding to the absorb-
ing side ensuring PU∗n = |P|Un−1. P is the Jacobian matrix
of system (22) and |P| = V

−1|D|V. D and V are respec-
tively, eigenvalues diagonal matrix and eigenvectors matrix
of P. |P| then is given by

|P| =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

L3
nx

2c0
(−L1 + L2)

ny

2c0
(−L1 + L2)

−1
c2

0
L3 + 1

2c0
(L1 + L2)

0 n2
x

2 (L1 + L2) + n2
yL4

nxny

2 (L1 + L2 − 2L4)
nx

2c0
(−L1 + L2)

0 nxny

2 (L1 + L2 − 2L4)
n2

y

2 (L1 + L2) + n2
xL4

ny

2c0
(−L1 + L2)

0 nxc0
2 (−L1 + L2)

nyc0
2 (−L1 + L2)

1
2 (L1 + L2)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(57)
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Fig. 10 Radiation of a
monopolar source in a subsonic
(M = 0.5) uniform mean flow.
200 × 200 unstructured grid and
acoustic pressure at t = 270

Fig. 11 Radiation of a
monopolar source in a subsonic
(M = 0.5) uniform mean flow.
Acoustic pressure at different
times (a) t = 60, (b) t = 90,
(c) t = 150, (d) t = 210,
(e) t = 270

where,

L1 = |V0 · n − c0|
L2 = |V0 · n + c0| (58)

L3 = L4 = |V0 · n|
with, V0 = (u0, v0) and c0 the speed of sound.

6.1 Convected Monopole

This case reproduces the example of [188]. The radiation of
a monopole source is computed in a subsonic mean flow,
with Mach number Mx = 0.5. The source is located at xs =
ys = 0, and is defined as:

Sp = 1

2
exp

(

− ln(2)
(x − xs)

2 + (y − ys)
2

2

)

sin(ωt)

× [1,0,0,1]T (59)

where the angular frequency is ω = 2π/30 and t is the
time coordinate. The wave length is λ = 30 units, and
the computational domain is a square with 200 units for

each side. The source term is made dimensionless with
[ρ0c0/�x,0,0, ρ0c

3
0/�x]T . This a very good test case to

check the ability of the FV-MLS to simulate the propagation
of acoustic waves on an unstructured grid. With the aim of
testing the stability and the behavior of the proposed method
for the boundary conditions, an unstructured grid absorbing
layer has been added. The absorbing layer is placed from
the boundary of the computational domain to x = ±300 and
y = ±300. In Fig. 10 it is shown the unstructured grid used
for the resolution of this problem. To build this grid, 800
equally spaced nodes at the circumference of the computa-
tional domain are used and 120 nodes at the outer boundaries
circumference.

In addition to the absorbing boundary condition given
by (56), the shape filter parameters of the absorbing layer
are sx = sy = 8 [187].

A fifth-order mass matrix-based FV-MLS solver is used
for this example [168].

Two acoustic waves propagate upstream and downstream
of the source, and due to the effect of the mean flow, the
apparent wavelength is modified and it is different upstream
(λ1 = (1 − Mx)λ) and downstream (λ2 = (1 + Mx)λ) of the
source.



334 X. Nogueira et al.

Fig. 12 Radiation of a
monopolar source in a subsonic
(M = 0.5) uniform mean flow.
Acoustic pressure profile along
axis y = 0 at t = 270

In Fig. 11 pressure isocontours for different non-dimens-
ional times t are shown. The pressure profile along axis y =
0 at time t = 270 is reproduced in Fig. 12, and also matches
the results in [188].

In order to check the stability of the boundary condi-
tions, we let the computations to continue until 180 peri-
ods of the source. This time is enough for the wave to reach
outer boundaries. Comparing the pressure field with the one
corresponding to t = 270 (9 source periods), it is observed
that there is no change in the solution. The acoustic wave
is completely dissipated by the buffer zone when it lefts the
computational domain, see Fig. 10.

6.2 Acoustic Waves Propagation into a Centrifugal Fan

The centrifugal fan noise is usually dominated by tones pro-
duced by the impeller blade passage. The resultant tonal
noise corresponds to the blade passage frequency and its
higher harmonics. This is a consequence of the strong inter-
action between the impeller and the diffuser blades at their
interface.

Shrouded impellers are usually used in high-rotational
speed centrifugal fans. The impellers are linked downstream
by a vaned diffuser, see Fig. 13.

A methodology based on a hybrid modeling of the aeroa-
coustic behavior of a high-rotational speed centrifugal fan
is presented in this section. The main objective of this ex-
ample is to visualize the wave propagation into a centrifugal
turbomachine and demonstrate, then, the power of the pro-
posed methodology. Linearized Euler’s equations are used
to propagate noise radiated by the rotor/stator interaction.
The fluctuating forces at the interaction zone are obtained

Fig. 13 3D and 2D centrifugal fan geometry

Fig. 14 Detail of the unstructured grid at the diffuser blades

by an aerodynamic study of the centrifugal fan presented in
[149, 189]. In this section we calculate the acoustic wave
propagation of a centrifugal fan with a 9-bladed rotor and a
diffuser with 17 blades, as shown in Fig. 13. For the compu-
tations we use an unstructured grid, with at least 10 points
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Fig. 15 Acoustic pressure
history for the acoustic waves
propagation into a centrifugal
fan

per wavelength. A detail of the unstructured grid used in this
problem is shown in Fig. 14.

Sources Modeling If we refer to FW&H analogy [153],
one can identify three acoustic sources of three different na-
tures:

– Monopole or thickness source: it is a surface distribution

due to the volume displacement of fluid during the motion

of surfaces.

– Dipole source or loading source: it is a surface distribution

due to the interaction of the flow with the moving bodies.
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– Quadrupole source: it is a volume distribution due to the
flow outside the surfaces.

When the quadrupole source is included, substantially more
computational resources are needed for volume integration.
However, in many subsonic applications the contribution of
the quadrupole source is small. Thus, we have neglected it
in this calculation. Moreover, the monopolar source is also
neglected at low Mach numbers and small surface thickness.

In our case, the interaction between the impeller and the
diffuser blades is considered as the main source of noise ra-
diated by the centrifugal fan [149]. It is expressed by a pres-
sure fluctuation on impeller and diffuser blades. It is, then, of
a dipolar nature. This study takes into account only sources
located at trailing edge of impeller blades and at the leading
edge of blades of diffuser. The rotation of the impeller blades
is modeled by rotating sources. Impeller blades are not taken
into account in the propagation zone. Thus, we place 17 sta-
tionary bipolar acoustic sources located at the leading edge
of the blades of diffuser and 9 additional rotating impeller
sources located at the trailing edge of each impeller blade.

As for FW&H analogy, the source terms introduced in
the LEE are constructed from the momentum equations, and
defined by:

Spi
(x, y, t) = e− ln(2)

2 [(x−xsi
(x,y,t))2+(y−ysi

(x,y,t))2]

× pi(t) × [0, nxi
, nyi

,0]T (60)

the subscribe i corresponds to the identification of each
blade, the position of the sources is defined by the coordi-
nates (xs(x, y, t), ys(x, y, t)). For the impeller each source
moves following a circle path, the diffuser sources are static.
pi(t) is the aerodynamic static pressure and (nx, ny) are the
components of the unit radial vector at sources (xs, ys). The
exponential term of (60) models the punctual nature of the
considered sources.

Acoustic pressure history is presented in Fig. 15. At the
beginning of the simulation we can observe clearly the po-
sition of sources. But soon we lose track of them because
of reflections and interference. Thus, all these effects will
be explicitly represented in the far field. Note that they are
not represented when other approach is used (FW&H, for
example).

7 Conclusions

In this work we have presented the features of a high-order
finite volume method (FV-MLS) and its use for CAA in the
context of hybrid approaches. In this approach, we require
the computation of the turbulent flow to obtain the acous-
tic sources. These sources are propagated using an acous-
tic analogy or the Linearized Euler Equations. After a non-
extensive review about different approaches to the compu-
tation of turbulent flows and acoustic wave propagation, we

have examined the dispersion and dissipation curves of the
FV-MLS method, as these properties play a fundamental
role in the simulation of wave propagation. Moreover, these
properties are also useful in the definition of an implicit
filtering that allow us to use the FV-MLS method in a no-
model framework for the simulation of turbulent flows. The
possibility of using the FV-MLS method for LES calcula-
tion in a no-model approach is shown by the computation
of the isotropic turbulence decay problem. We have also ap-
plied the FV-MLS method to the simulation of acoustic wave
propagation in a benchmark case and also in complex ge-
ometries using unstructured grids. Obtained results are ex-
cellent and they show the real potential of FV-MLS for the
simulation of wave-propagation phenomena. From our anal-
ysis and numerical results we conclude that the FV-MLS is
an effective tool for the simulation of aeroacoustics in com-
plex geometries using unstructured grids.
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