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Abstract

In this work we study the dispersion and dissipation characteristics of a
higher-order Finite Volume Method based on Moving Least Squares approx-
imations (FV-MLS), and we analyze the influence of the k ernel parameters
on the properties of the scheme. Several numerical examples are included.
The results clearly show a significant improvement of dispersion and dissipa-
tion properties of the numerical method if the third-order FV-MLS scheme
is used compared with the second-order one. Moreover, with the explicit
fourth-order Runge-Kutta scheme the dispersion error is lower than with the
third-order Runge-Kutta scheme, whereas the dissipation error is similar for
both time-integration schemes. It is also shown than a CFL number lower
than 0.8 is required to avoid an unacceptable dispersion error.

Key words: High-order methods, Moving Least Squares, Dispersion and
dissipation characteristics

1. Introduction

The resolution of wave propagation problems is a challenging work for
numerical methods. The solution we want to approximate usually presents a
wide spectrum of frequencies, and the numerical scheme has to be accurate

∗Corresp onding author, e-mail: icolominas@udc.es
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enough to preserve the shape and frequency of propagating waves. It is
also usual to face with nonlinear interactions and complex geometries. In
order to accurately solve this kind of problems, the numerical scheme should
introduce the minimal dispersion and dissipation errors.

Computation of derivatives is a crucial point to assess the quality of
a numerical scheme. Although a higher-order discretization usually means
greater accuracy, it is not always true, specially for shorter waves relative to
grid size [1]. Thus, it is possible to develop numerical schemes optimized to
solve a wider range of the spectrum of frequencies [2, 3, 4, 5, 6]. In these
methods, the number of available coefficients to perform the optimization
process is increased by decreasing the order of the approximation. Thus, it is
possible to develop numerical methods with higher spectral resolution than
other higher-order discretizations.

However, the use of structured grids on complex geometries may lead to
distort elements that affect greatly to the accuracy of the numerical method.
For these geometries, it could be interesting the use of unstructured grids.
However, most of the high-accurate methods developed for structured grids
do not work on unstructured or distorted grids.

On this kind of grids it is difficult to increase the spectral resolution of
a given numerical scheme by using methodologies different than raising the
order of the numerical scheme, due to the difficulty in generalizing the meth-
ods developed for structured meshes. Some approaches have been developed
for the construction of accurate methods to solve wave propagation on un-
structured grids [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. The finite volume
method is well suited for the computation of wave transport problems, par-
ticularly for the non-linear case, where finite difference approaches may fail
[19]. Moreover, this method can be applied on unstructured grids, but the
way for increasing the order of the scheme on these grids is not obvious. The
main problem is the evaluation of high-order derivatives.

The FV-MLS method [20, 21, 22, 23, 24] overcomes the difficulty in the
computation of high-order derivatives by using the Moving Least Squares
(MLS) technique [25]. This scheme builds higher-order schemes in a finite
volume framework without the introduction of new degrees of freedom. One
of the advantages of this numerical method is its good performance on un-
structured grids, due to the accurate and multidimensional nature of MLS
reconstructions. Thus, the FV-MLS method has successfully been applied
to Euler (and Linearized Euler) and Navier-Stokes equations, shallow wa-
ter equations and also to Cahn-Hilliard and Kuramoto-Sivashinsky type of

2
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equations.
One of the key points in the development of the FV-MLS method is the

kernel function. In this work we present the first analysis of the influence
of the kernel parameters on the dispersion and dissipation characteristics of
the FV-MLS method. In particular, we analyze the behavior of the FV-MLS
method with two kinds of kernels: the cubic spline kernel and the exponential
kernel.

Section 2 is devoted to present the fundamentals of the Finite volume
method based on Moving Least Squares approximations. Section 3 analyzes
the influence of the kernel parameters on the MLS-shape functions and its
derivatives. In section 4 we study the influence of kernel parameters in the
computation of discrete differential operators by using MLS, and then, in
section 5, we analyze the discretization of the one-dimensional linear equation
with the third-order FV-MLS method. In section 6 we study the influence
of kernel parameters on the discretization of elliptic and hyperbolic terms.
In section 7 we present two 1D numerical examples for the linear and the
non-linear case, with the purpose of showing the performance of the proposed
methodology. Moreover, a 2D case computed using an unstructured grid is
presented, to check the validity of the 1D analysis to more general problems.
Finally, conclusions are drawn on section 8.

2. Numerical method: A MLS-based Finite V olume scheme

A method based on the application of Moving Least Squares [25] to com-
pute the derivatives in a finite volume framework (FV-MLS) has been de-
veloped in [20, 21, 22]. In order to increase the order achieved by the finite
volume method, a Taylor expansion of the variable is performed at the inte-
rior of each cell. The approximation of the higher order derivatives needed
to compute the Taylor reconstruction is obtained by a Moving Least Squares
approach.

Thus, if we consider a function Φ(xxx) defined in a domain Ω, the basic idea
of the MLS approach is to approximate Φ(xxx), at a given point xxx, through a
weighted least-squares fitting of Φ(xxx) in a neighborhood of xxx as

Φ (xxx) ≈ Φ̂ (xxx) =
m∑

i=1

pi (xxx)αααi (zzz)
∣∣∣
zzz=xxx

= ppp
T (xxx)ααα (zzz)

∣∣∣
zzz=xxx

(1)

ppp
T (xxx) is an m-dimensional (usually polynomial) basis and ααα(zzz)

∣∣∣
zzz=xxx

is a set

3



ACCEPTED MANUSCRIPT 
 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

of parameters to be determined, such that they minimize the following error
functional:

J
(
ααα(zzz)

∣∣∣
zzz=xxx

)
=

∫

yyy∈Ωxxx

W (zzz − yyy, h)
∣∣∣
zzz=xxx

[
Φ(yyy) − pppT (yyy)ααα(zzz)

∣∣∣
zzz=xxx

]2

dΩxxx (2)

being W (zzz − yyy, h)
∣∣∣
zzz=xxx

a kernel with compact support (denoted by Ωxxx) cen-

tered at zzz = xxx. The parameter h is the smoothing length, which is a measure
of the size of the support Ωxxx [20].
In this work the following polynomial cubic basis is used:

ppp(xxx) =
(
1 x y xy x2 y2 x2y xy2 x3 y3

)T
(3)

which provides cubic completeness. In the above expression, (x, y) denotes
the Cartesian coordinates of xxx. From a practical point of view, for each
point I we need to define a set of neighbors inside the compact support Ωxxx.
Following [20], the interpolation structure can be identified as

Φ̂I(xxx) = pppT (xxx)ααα (zzz)
∣∣∣
zzz=xxx

= pppT (xxx)MMM−1(xxx)PPPΩxxx
WWW (xxx)ΦΦΦΩxxx

= NNNT (xxx)ΦΦΦΩxxx
(4)

Φ̂I(xxx) =

nxxxI∑

j=1

Nj(xxx)Φj (5)

In the above, nxxxI
is the number of neighbors of the cell I. Moreover,

MMM = PPPΩxxx
WWW (xxx)PPP T

Ωxxx
is the moment matrix.

W e also define the matrices (see [20]):

PPPΩxxx
=

(
ppp(x)1 · · ·ppp(x)nxxxI

)
(6)

ΦΦΦΩxxx
=

(
Φ(x1) · · ·Φ(xnxxxI

)
)

(7)

and
WWW (xxx) = diag(Wi(xxx)) i = 1, · · · , nxxxI

. (8)

From equation (5), the approximation is written in terms of the MLS
“shape functions” NNNT (xxx).

NNNT (xxx) = pppT (xxx)MMM−1(xxx)PPPΩxxx
WWW (xxx) (9)

4
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In order to improve the conditioning, the polynomial basis (3) is locally
defined and scaled: if the shape functions are evaluated at xxxI , the polynomial
basis is evaluated at (xxx−xxxI)/h. Thus, shape functions evaluated at xxxI read:

NNNT (xxxI) = pppT (000)MMM−1(xxxI)PPPΩxxxI
WWW (xxxI) = pppT (000)CCC(xxxI) (10)

we define the matrix CCC(xxx) as:

CCC(xxx) = MMM−1(xxx)PPPΩxxx
WWW (xxx) (11)

The derivatives of NNNT (xxx) can be used to compute an approximation to

the derivatives of the function. So, the gradient of Φ̂(xxx) is evaluated as

∇∇∇Φ̂(xxx) =

nxxxI∑

j=1

Φj∇∇∇Nj(xxx) (12)

In a context of generalized Godunov’s methods we use equation (12) to
compute the first and second derivatives required for the Taylor reconstruc-
tion of the variables at quadrature points at the edges. Elliptic terms, like vis-
cous terms in the Navier-Stokes equations, are computed directly using MLS
approximations. In case of unsteady problems, this reconstruction needs to
use correction terms in order to ensure that the average value of the recon-
structed variables over a cell I is the centroid value UUU I [8, 20, 21, 22]. The
resulting scheme is a third-order method.

The neighbors of each cell centroid I of the grid are the centroids of the
neighboring cells. For boundary cells, we add nodes (ghost nodes) placed in
the middle of the edge defining the boundary. The definition of the stencil
for each cell is done at the beginning of the calculations. It is possible to use
different kernels for the definition of shape functions. We have considered
two of them: the cubic spline kernel and the exponential kernel. The 1D
cubic kernel is given by:

W (d) =





1 − 3
2
d2 + 3

4
d3 d ≤ 1

1
4
(2 − d)3 1 < d ≤ 2

0 d > 2

(13)

In equation (13) d =
|xj−x∗|

h
, and h = k max (|xj − x∗|) with j = 1, . . . , nx∗ .

We call x∗ to the reference point (the point where the MLS-shape functions

5
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are evaluated), and nx∗ is the number of neighbors of the reference point.
The exponential kernel may be defined in 1D as:

W (x, x∗, sx) =
e−( d

c )
2

− e−( dm
c )

2

1 − e−( dm
c )

2
(14)

with d = |xj − x∗|, dm = 2 max (|xj − x∗|), with j = 1, . . . , nx∗ , c = dm

sx
, x

is the position of every cell centroid of the stencil and sx is a shape param-
eter. A 2D kernel is obtained by multiplying two 1D kernels. Thus, the 2D
exponential kernel is the following:

Wj(xxx,xxx∗, sx, sy) = Wj(x, x∗, sx)Wj(y, y∗, sy) (15)

More details about the FV-MLS method can be found in [20, 21, 22].

3. Influence of k ernel parameters on the MLS-shape functions and

its deriv ativ es

In section 2, we have exposed that the derivatives needed in the recon-
struction step of the finite volume method are computed by using MLS shape
functions. Thus, MLS shape functions are going to play a crucial role in the
accuracy of this method. In this section we perform a 1D study of the influ-
ence of the choice of the different parameters defining the kernel function. It
is possible to find a great amount of kernel functions [26], but here we only
focus on the kernels defined by (13) and (15).

We consider a 5-point stencil, namely −2,−1, 0, +1, +2, where 0 is the
point where we compute the derivative (figure 1). We also consider equally-
spaced points. The number of points of the stencil also has an influence on
the behavior of the method, and also the basis ppp(xxx). However, in this work
we focus on the 5-point stencil and the cubic polynomial basis. The reason
is that the polynomial cubic basis is the usual choice in the implementation
of the third-order FV-MLS method, and five is the maximum number of
elements in one direction when multidimensional stencils are used with the
third-order FV-MLS method [20, 21, 22]. Clearly, the results of the present
study no longer holds for the case of arbitrary distributions of points, but we
will be able to get a flavor of the behavior of the scheme in this cases, as it
will be shown in the numerical examples.

6
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Figure 1: Spatial discretization scheme.

Figure 2: Shape of the k ernel function for different choices of the defining parameters.
On the left, we show the results for the exponential k ernel(15) when the parameter sx is
modified. On the right we plot the results for the cubic spline (13) when we vary the k

parameter defining the smoothing length h.

As parameters for modifying the k ernels, we hav e chosen k for the cubic
spline (13) and sx for the exponential k ernel (15 ). A change of these param-
eters causes a modification in the shape of the k ernels, as is plotted in figure
2. The shape v ariation as we change the v alue of the parameter is bigger for
the exponential k ernel than for the cubic spline k ernel. This feature of ex-
ponential k ernel represents an adv antage in terms of robustness for arbitrary
meshes.

When we compute the deriv ativ es with (12) we need to compute the
deriv ativ e of the MLS shape functions. Thus, in figures 3, 4 and 5 we plot
the v alue of

∂ Nj

∂ x
in the points of the stencil (j = −2,−1, 0, +1, +2).

The v alues of the first deriv ativ e of the MLS shape functions computed
with (13) do not depend on the v alue of the smoothing length (h). These
v alues match with the coefficients of a fourth-order centered finite diff erence

7
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discretization. The case of the exponential kernel is completely different.
With this kernel the values obtained depend on the shape parameter sx. We
observe that for sx > 4 these values tend to the values obtained with the
cubic spline kernel. Moreover, for this value of sx there is a change in the
tendency of the evolution of the first derivative. The reason of this behavior
relies on the fact that the derivative of (15) changes its tendency for a value
of sx next to four (figure 6).

F rom equation (10), the derivative of a MLS shape function can be written
as:

∂ NNNT (xxx)

∂ x
=

∂ pppT (000)

∂ x
CCC(xxx) + pppT (000)

∂ CCC(xxx)

∂ x
(16)

where the derivative of CCC is:

∂ CCC(x)

∂ x
= CCC(x)WWW−1

∂ WWW (x)

∂ x
(III −PPPΩxCCC(x)) (17)

Equations (16) and (17) show the influence of the derivative of the kernel
on the MLS-shape function. In figure 6 we plot the evolution of the kernel
derivative when we modify the kernel parameters. We observe that for nodes
1, 2,−2,−1 the tendency of the evolution changes when the value of sx is
between 3 and 4.

In figure 4 we plot the variation of the second derivative of the MLS shape
functions. In this case, the influence of the parameters is bigger than for the
first derivative for both the exponential kernel and the cubic spline kernel.
Third derivative of the MLS shape functions is independent of the kernel
parameters (see figure 5).

4. Influence of k ernel parameters on the discrete differential oper-

ators

In this section we analyze the dispersion and dissipation properties of the
discrete differential operators obtained with MLS approximations.

Let us consider a periodic function u(x) in a domain [0, L]. Then, u(x) is
decomposed in a discrete F ourier series as follows:

u (x) =

M
2
−1∑

q=−

M
2

fqe
iκqx (18)

8
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∂
∂

∂
∂

Figure 3: V ariation of the v alues of the first deriv ativ e of the MLS shape function N with
the parameters of the k ernel function. On the left we plot the results for the exponential
k ernel (15), when we vary sx. On the right, we show the results for the cubic k ernel (13),
when we vary the parameter k.

∂
∂

∂
∂

Figure 4: V ariation of the v alues of the second deriv ativ e of the MLS shape function
N with the parameters of the k ernel function. On the left we plot the results for the
exponential k ernel (15), when we vary sx. On the right, we show the results for the cubic
k ernel (13), when we vary the parameter k.

where κq = 2π q

∆xM
is the wavenumber, ∆x = L

M
, i =

√

−1 and fq are the

9
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∂
∂

∂
∂

Figure 5: Variation of the values of the third derivative of the MLS shape function N with
the parameters of the kernel function. On the left we plot the results for the exponential
kernel (15), when we vary sx. On the right, we show the results for the cubic kernel (13),
when we vary the parameter k.

−2 −1 0 1 2
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

x

dW
/d

x

k=0.52
k=0.6
k=0.7
k=1.0

Figure 6: Variation of the values of the first derivative of the exponential kernel with sx

(left). On the right we plot the variation of the values of the first derivative of the cubic
spline with k.

Fourier coefficients. If u(x) is smooth enough, the exact deriv ativ e of (18 ) is

∂ u (x)

∂ x
=

M

2
−1∑

q=−

M
2

fqiκqe
iκqx (19)

10
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On the other hand, giv en a discrete set of points xj = j∆x, j = 1, 2, . . . , M
we can write:

u (xj) =

M
2
−1

∑

q=−
M
2

fqe
iκqxj (20)

F or a MLS approximation of the deriv ativ e of u (xj), we write:

∂ u

∂ x

∣

∣

∣

∣

xj

=

Q
∑

l=−P

∂ Nj+l

∂ x
u(xj+l∆x) =

=

Q
∑

l=−P

∂ Nj+l

∂ x





M
2
−1

∑

q=−
M
2

fqe
iκq(xj+l∆x)



 =

=

M
2
−1

∑

q=−
M
2

fq

[

Q
∑

l=−P

∂ Nj+l

∂ x
eiκq(xj+l∆x)

]

=

=

M
2
−1

∑

q=−
M
2

fqe
iκqxj

[

Q
∑

l=−P

∂ Nj+l

∂ x
eiκq(l∆x)

]

=

M
2
−1

∑

q=−
M
2

fqiκ
∗

qe
iκqxj (21)

where P is the numb er of cells of the stencil on the left of cell 0 (figure 1)
and Q is the numb er of cells on the right. Comparing with (19) the modified
wav e numb er (κ∗

q) of the numerical scheme is:

κ∗

q = (−i)

Q
∑

l=−P

∂ Nj+l

∂ x
eiκq(l∆x) (22)

The wav enumb er is proportional to the frequency . Thus, the numer-
ical scheme introduces a different error depending on the frequency of the
wav e. F or certain frequencies the modified wav enumb er coincide with the real
wav enumb er. These are the “resolv ed” frequencies for the numerical method.
When the numerical wav enumb er does not match with the real wav enumb er
dispersion errors appear. On the other hand, the amplitude error (dissipation
error) is related to the imaginary part of the modified wav enumb er of the nu-
merical scheme [2]. It is conv enient to introduce a scaled wav enumb er κ∆x,
on the domain [0, π]. In figure 7 we plot the real scaled wav enumb er κ∆x

11
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κ∆

κ
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κ∆

κ
∆

κ∆
π

Figure 7: κ∗∆x v ersus κ∆x for different schemes. On the right w e plot the magnitude of
the dispersion error (|R e(k∗∆x) − k∆x|/p).

versus the real part of the modified scaled wavenumber κ∗∆x for three dif-
ferent numerical schemes: a second-order centered finite differences scheme,
a fourth-order tridiagonal compact finite difference scheme (see [2]), and a
MLS approximation with polynomial cubic basis. Figure 7 shows the spectral
resolution of the represented numerical schemes. The curve of the modified
wavenumber seems to be overlapped with the curve of real wavenumber in
a range of frequencies. However this overlapping may be not perfect, but at
this scale this is difficult (or impossible) to appreciate. But when the error is
plotted in a logarithmic scale (as in the dispersion error curve) this appear as
“dips”. The reason for this is that the numerical wavenumber is greater than
the actual wavenumber through a portion of the wavenumber spectrum, and
then it dips below. When the numerical wavenumber crosses through the
actual wavenumber, they are equal and the error is zero, causing the “dip”
in figure 7 (right).

We remark that the variation of the parameters of the k ernel function
(k,sx) does not influence the dispersion properties of the MLS approxima-
tion (for the stencil plotted in figure 1). Moreover, the dispersion curve
matches with the dispersion curve of a fourth-order centered finite differ-
ences (non-compact). On the other hand, the imaginary part of the modified
wavenumber (22) of the MLS approximation with the cubic spline k ernel (13)
is null. However, when we use the exponential k ernel the imaginary part is
not null. As the imaginary part is related to the dissipation error, we con-

12
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Figure 8: Imaginary part of the modified wavenumb er of the MLS approximations with
the exponential k ernel for different values of sx. A zero value indicates that there is no
introduction of dissipation.

clude that the use of the exponential kernel introduces more dissipation than
the cubic kernel.

We note that for the computations of figures 7 and 8 we have considered
the 5-points centered stencil plotted in figure 1, so then P = Q = 2.

The previous analysis of the discrete MLS operator indicates the behav-
ior of the MLS approximation to the computation of elliptic terms (viscous
terms) in the Navier-Stokes equations when computed with MLS shape func-
tions (see [20]).

5. 1D linear adv ection equation analysis

Now, we examine the behavior of the FV-MLS method [20, 21, 22] in the
computation of hyperbolic terms. We study the resolution of the 1D linear
advection equation:

∂u

∂t
+ a

∂u

∂x
= 0 (23)
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on the domain 0 ≤ x ≤ 2π, with an harmonic wave as initial condition:

u(x, 0) = g(0)eik x (24)

and that also verifies that u(0) = u(2π). In equation (23), u is a scalar
quantity propagating with phase velocity a. In order to make the exposition
easier to follow, we consider only a > 0. However, the conclusions will be
valid for any value of a.

With this initial setup, the solution of the problem is written as:

u (x, t) = g(t)eiκx (25)

Thus, introducing (25) in (23):

dg

dt
eiκx + iaκgeiκx = 0 (26)

that is,

dg

dt
= −iaκg (27)

and consequently g(t) is
g(t) = g(0)e−iaκt (28)

where g(0) is the initial value of g(t). Thus, we have:

u (x, t) = g(0)ei(κx−aκt) (29)

On the other hand, an arbitrary initial wave can be obtained by the
addition of initial conditions of the form (24):

u(x, 0) =
F

∑

q=1

gq(0)eiκqx (30)

where F is the number of Fourier modes.
Due to the linearity of equation (23), the solution can be obtained by the

addition of solutions of the form (29). Thus, for F modes we obtain:

u(x, t) =
F

∑

q=1

gq(0)eiκq(x−at) (31)
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A real wavenumber κ is related to a real frequency ω = aκ, such as the
equation (31) is a solution of (23). The relationship between frequency and
wavenumber is called dispersion relation. For equation (23) this relationship
is linear, that is a characteristic feature of wave propagation in non-dispersive
media. Thus, the phase velocity is the same for all the wavenumbers.

The discretization of equation (23) usually introduces a dispersion er-
ror. This means that in the numerical solution of (23), waves with different
wavenumber propagate with different velocities. Moreover, if the modified
wavenumber is complex, dissipation errors will appear.

In the following, we expose the analysis of the discretization of the equa-
tion (23) with the third-order FV-MLS method. This analysis will allow us
to evaluate the behavior of the FV-MLS method in the approximation of
convective terms of a transport equation. We start with the analysis of the
spatial discretization only, without taking into account the effects of time
integration. The analysis of the complete discretization will be exposed in
the section 6.2.1.

As the solution is linear, we perform the analysis for a single Fourier mode
(equation (30)), so the subindex q is omitted.

Different from a finite difference discretization, where we use point values
of the variable, a finite volume scheme refers to the mean value of the variables
inside a control volume I.

ũI =
1

∆x

∫ xR

xL

u dx (32)

where xR and xL are the values of the x-coordinate of the cell I interfaces
I + 1

2
and I − 1

2
, as is plotted in figure 1. Introducing (25) in (30), and by

integration, we obtain:

ũI =
g (t)

iκ∆x

(

eiκ(xR) − eiκ(xL)
)

(33)

Then, writing (33) in terms of g (0)

ũI =
g (0)

iκ∆x

(

eiκ(xR−at) − eiκ(xL−at)
)

(34)

The FV-MLS method uses the integral form of equation (23):

∂

∂t

∫ xR

xL

u dx = − (f (xR, t) − f (xL, t)) (35)

15
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where f (u) = au is the flux function.
Thus, by using the mean value definition (32) of u(x), the spatial dis-

cretization of (35) reads as:

∂ũI

∂t
= −

a

∆x

(

u∗

(I+ 1

2
) − u∗

(I− 1

2
)

)

(36)

where u∗ is the value of the variable reconstructed at the interfaces (I+ 1
2
, I−

1
2
) (see figure 1). For the third order FV-MLS method we need a quadratic

reconstruction of the variable at I + 1
2
:

u∗

(I+ 1

2
)
= ũI +

∂ũI

∂x

∆x

2
+

1

2

∂2ũI

∂x2

(

∆x

2

)2

− T CI
1 + ϑ

(

∆x3
)

(37)

T CI
1 is the correction term to guarantee the conservation of the mean [8, 20]:

T CI
1 =

1

2∆x

∂2ũI

∂x2

∫

I

(x − xI)
2 dx (38)

Similarly, for I − 1
2

we write:

u∗

(I− 1

2
)
= ũ(I−1) +

∂ũ(I−1)

∂x

∆x

2
+

1

2

∂2ũ(I−1)

∂x2

(

∆x

2

)2

− T C
(I−1)
1 +ϑ

(

∆x3
)

(39)

with:

T C
(I−1)
1 =

1

2∆x

∂2ũ(I−1)

∂x2

∫

(I−1)

(x − x(I−1))
2 dx (40)

Left hand side of (36) has the following exact value:

∂ũI

∂t
=

∂g (t)

∂t

1

∆x

∫ xR

xL

eiκx dx =
∂g (t)

∂t

(

eiκxR − eiκxL
) 1

iκ∆x
(41)

and, introducing (27) in (41) we can write:

∂ũI

∂t
=

−ag (t)

∆x

(

eiκxR − eiκxL
)

(42)

The right hand side of (36) can be written as:

16
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a

∆x

(

u∗

(I+ 1

2
) − u∗

(I− 1

2
)

)

=
a

∆x

[(

ũI +
∂ũI

∂x

∆x

2
+

1

2

∂2ũI

∂x2

(

∆x

2

)2

− TCI
1

)

−

(

ũ(I−1) +
∂ũ(I−1)

∂x

∆x

2
+

1

2

∂2ũ(I−1)

∂x2

(

∆x

2

)2

−

− TC
(I−1)
1

)

+ ϑ
(

∆x3
)

]

(43)

Next, we introduce the MLS approximation of derivatives,

a

∆x

(

u∗

(I+ 1

2
) − u∗

(I− 1

2
)

)

=
a

∆x

[

ũI − ũ(I−1) +

+

Q
∑

l=−P

∂N(I+l)

∂x

(

ũ(I+l∆x) − ũ((I−1)+l∆x)

)

(

∆x

2

)

+

+
1

2

Q
∑

l=−P

∂2N(I+l)

∂x2

[

ũ(I+l∆x)

(

(

∆x

2

)2

− A

)

−

− ũ((I−1)+l∆x)

(

(

∆x

2

)2

− B

)]

+ ϑ
(

∆x3
)

]

(44)

with

A =
1

∆x

∫

I

(x − xI)
2 dx, B =

1

∆x

∫

(I−1)

(x − x(I−1))
2 dx (45)

The equation (44) is obtained by assuming that all the control cells hav e
the same length and a p eriodic domain. In that case, the set of MLS-shap e
functions is the same for ev ery control v olume, and NI+l = N(I−1)+l.

17



ACCEPTED MANUSCRIPT 
 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Introducing the equation (33) in (44), we write:

−a

∆x

(
u∗

(I+ 1

2
) − u∗

(I− 1

2
)

)
=

−ag (t)

iκ∆x

(
eiκxR

− eiκxL

) [
1 − e−iκ∆x +

+

Q∑

l=−P

∂N(I+l)

∂x

(
eiκl∆x

− eiκ(l−1)∆x
) (

∆x

2

)
+

+
1

2

Q∑

l=−P

∂2N(I+l)

∂x2

(
Ãeiκl∆x

− B̃eiκ(l−1)∆x
)

+

+ ϑ
(
∆x3

)]
(46)

where Ã and B̃ are:

Ã =

(
∆x

2

)2

− A (47)

B̃ =

(
∆x

2

)2

− B (48)

Finally, we can write

−a

∆x

(
u∗

(I+ 1

2
) − u∗

(I− 1

2
)

)
=

−ag (t)

iκ∆x

(
eiκxR

− eiκxL

)
ZI (49)

where we call ZI to

ZI = 1 − e−iκ∆x+

+

Q∑

l=−P

∂N(I+l)

∂x

(
eiκl∆x

− eiκ(l−1)∆x
) (

∆x

2

)
+

+
1

2

Q∑

l=−P

∂2N(I+l)

∂x2

(
Ãeiκl∆x

− B̃eiκ(l−1)∆x
)

+ ϑ
(
∆x3

)
(50)

W e note that we have obtained the equations (42) and (49) from the left
hand side and the right hand side of the equation (36). Thus, the wavenumber
is:

κ =
ZI

i
(51)
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Now, we define Z∗ as the approximation (50) of ZI including quadratic
terms. Thus, the modified wavenumber can be written as:

κ∗ =
Z∗

i
(52)

Equation (52) is the expression of the modified wavenumber of the third-
order FV-MLS method.

If we only consider the spatial discretization error, the numerical solution
of (36) is:

ũnum
I =

g (0)

iκ∆x

(
eiκ(xR−a∗t)

− eiκ(xL−a∗t)
)

(53)

with a∗ =
aZI

iκ
. Thus, we can write

a∗

a
=

Z∗

iκ
(54)

The modified phase velocity (a∗) is the numerical propagation velocity of

a harmonic function. For example, if
a∗

a
< 1, the numerical propagation is

slower than the real velocity. So, there are dispersion errors in the numerical
solution. As the original equation is non-dispersive, the numerical solution
of an harmonic function with different wavenumbers loses its original shape.
For a non-harmonic problem, the crests of the waves propagate with the
phase velocity but the energy of the wave pack et propagate with the group

velocity vg = a
∂κ∗

∂κ
(see [27]).

In figure 9 we plot the real part of the scaled modified wavenumber versus
the real scaled wavenumber for different numerical methods. We observe
that the third-order FV-MLS method presents a narrow range of frequencies
whose error is below 0.1%, and a wide range of frequencies whose error is
below 1%. We observe that the dispersion curves of the FV-MLS method
with different k ernels plotted in that figure are almost overlapped.

For the wave equation it is usual to represent the numerical phase and
group velocities. These are plotted in figure 10. We see one of the effects of
the bad resolution of the waves: the spurious parasitic waves. In figure 9 it is
shown that a given modified wavenumber represents two discrete waves. One
is related to low frequencies (physical) and other related to high frequencies
(spurious). In the plot of group velocities 10 (right), we see that there exists

19
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Figure 9: On the left, we plot the real part of κ∗∆x v ersus κ∆x for different numerical
methods. On the right we show the dispersion error magnitude (R e(k∗∆x)−k∆x|/p). The
compared numerical methods are: (a) Third-order FV-MLS with exponential k ernel and
sx = 5, (b) MLS approximation cubic basis and cubic spline k ernel k = 0.7, (c) second-
order centered finite differences, (d) fourth-order tridiagonal compact finite differences
α = 5/14 (see [2]), (e) Third-order FV-MLS with cubic spline k ernel k = 0.6, (f) exact.
Dispersion curv es of schemes a and e are almost ov erlapped.

a wavenumber (different for each numerical scheme) for which the group
velocity becomes negative. This parasitic wave propagates for the whole
computational domain spoiling the numerical solution. As this parasitic wave
could be supersonic, this behavior is expected even in supersonic flows, where
propagation upstream is clearly non-physical.

As we said before, the imaginary part of the modified wavenumber (κ∗) is
related to dissipation errors. The FV-MLS modified wavenumber presents a
non-null imaginary part, due to the upwinding. Although this could be seen
as a drawback in terms of accuracy, the greatest part of the dissipation is
introduced in the scales that are wrongly resolved for the numerical method.
This can be seen as an implicit filtering of the spurious waves, remaining
unaffected the resolved scales.

If we compare the dispersion and dissipation curves of a second-order
and a third-order scheme, plotted on figure 11, we see that the increase of
accuracy of the numerical method is achieved by diminishing both, dispersion
and dissipation errors. The dissipation introduced is considerably lower, and
the range of frequencies well resolved also increases.
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Figure 10: numerical phase speed (left) and numerical group velocity (right) for several
numerical schemes. (a) Third-order FV-MLS with exponential kernel and sx = 5, (b) MLS
approximation cubic basis and cubic spline kernel k = 0.7, (c) second-order centered finite
differences, (d) fourth-order tridiagonal compact finite differences α = 5/14 (see [2]), (e)
Third-order FV-MLS with cubic spline kernel k = 0.6

κ∆

κ
∆

���O�R�D�E�R
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κ
∆

Figure 11: Influence of the order of the approximation for the FV-MLS method. On the

left: Real part of κ
∗∆x v ersus κ∆x. On the right: Imaginary part of κ

∗∆x v ersus a κ∆x.
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The number of points per wavelength (ppw) that a numerical scheme needs
to approximate the exact wavenumber within a specified error tolerance is
given by 2π

κ∆x
. Following [2] we define the resolving efficiency of a scheme as

the fraction of the well-resolved waves, ef = κ
∗

c

π
, where (κ∗

c
) define the shortest

well-resolved wave. In table 1 we show the ppw for different schemes, for a
given error tolerance ε = |κ∗−κ|

κ
. W e also show the resolving efficiency of

each scheme and the scaled wavenumber (κ∗
c
)∆x. W e note that the MLS

approximation (polynomial cubic basis) has the same resolving efficiency
than a fourth-order centered finite difference scheme.

Tolerance (ε)

ε = 0.001 ε = 0.005 ε = 0.01

Scheme ef ppw κ∗

c
∆x ef ppw κ∗

c
ef ppw κ∗

c
∆x

a 0.02 78.5 0.08 0.05 36.96 0.17 0.08 26.18 0.24

b 0.13 15.32 0.41 0.2 10.13 0.62 0.24 8.37 0.75

c 0.13 15.32 0.41 0.2 10.13 0.62 0.24 8.37 0.75

d 0.52 3.81 1.65 0.56 3.54 1.77 0.59 3.38 1.86

e 0.14 13.96 0.45 0.23 8.73 0.72 0.29 6.90 0.91

Table 1: Resolving efficiency (ef), number of points per wavelength (ppw) and scaled
wavenumber of the shortest well-resolved wave (κ∗

c
∆x) for different numerical schemes

for different tolerances ε. (a) Second-order centered finite differences, (b) fourth-order
centered finite differences, (c) MLS approximation cubic basis and cubic spline k ernel
k = 0.7, (d) fourth-order tridiagonal compact finite differences α = 5/14 (see [2]), (e)
Third-order FV-MLS with exponential k ernel and sx = 5.

6. Influence of the k ernel function on the properties of the FV-MLS

method

In the previous section we have derived the expression (52), for the mod-
ified wavenumber of the third-order FV-MLS method in the case of the 1D
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linear advection equation. This expression depends on the first derivatives
of the MLS shape functions. In this section we examine the influence of
the choice of the parameters of the k ernel on the dispersion and dissipation
properties of a MLS approximation, and then, we analyze the effect in the
FV-MLS method.

6.1. MLS approximation

When we use a direct MLS discretization (for example, in the discretiza-
tion of elliptic-lik e terms) we have seen that the dispersion characteristics of
the MLS approximation are independent of the k ernel parameters (for the
stencil of the figure 1). Moreover, for the cubic spline k ernel, there is no
dissipation. This effect becomes clear if we examine the equation (22). Thus
for the 5-point stencil, we write:

κ∗ = (−i)

Q
∑

l=−P

∂ NI−l

∂ x
eiκ(l∆x) =

= sin (2κ∆x)

(

∂ N(I+2)

∂ x
−

∂ N(I−2)

∂ x

)

+

+ sin (κ∆x)

(

∂ N(I+1)

∂ x
−

∂ N(I−1)

∂ x

)

−

− i

[

cos (2κ∆x)

(

∂ N(I+2)

∂ x
+

∂ N(I−2)

∂ x

)

+

+ cos (κ∆x)

(

∂ N(I+1)

∂ x
+

∂ N(I−1)

∂ x

)

+
∂ NI

∂ x

]

(55)

where (I − 2), (I − 1), I, (I +1), (I +2) are referring to the cells of the stencil
plotted in figure 1.

Recalling that the dispersion is related to the real part of the modified
wavenumber, from equation (55) we see that the dispersion of the numerical
scheme depends on the difference of the derivatives of the shape function
in symmetric cells. If the k ernel function and the stencil are symmetric,
the value of this difference is independent of k ernel parameters, and so the
dispersion of the numerical scheme.

On the other hand, the dissipation is related to the imaginary part of the

modified wavenumber. For the cubic spline k ernel,
∂ NI

∂ x
is null (see figure

3), and for the given stencil
∂ N(I+i)

∂ x
= −

∂ N(I−i)

∂ x
. Then, the imaginary part
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of the modified wavenumber is null and no dissipation is added for the nu-
merical scheme (we remark that this conclusion is valid only for an uniform
distribution of the grid nodes). This is not the situation of the exponential

kernel, since
∂NI

∂x
is not null, as it was shown in figure 8. However, even al-

though the value of the first derivative of the MLS-shape function is different

for each value of sx (see figure 1), the difference
∂N(I+i)

∂x
= −

∂N(I−i)

∂x
remains

constant (for the given stencil), and thus the dispersion for the stencil plotted
in figure 1 is independent of the parameters of the kernel.

6.2. FV-MLS method for hyperbolic terms

In this section we examine the effect of the kernel parameters on the
FV-MLS method for hyperbolic terms. In figures 12 and 13 we show the
dispersion-dissipation curves and the phase speed and group velocity for dif-
ferent values of the shape parameter sx of the exponential kernel. The re-
sults for the cubic spline kernel are drawn on figures 14 and 15. As we have
mentioned before, the FV-MLS method is dissipative due to the upwinding.
However, the amount of introduced dissipation depends on the value of the
kernel parameters.

For the exponential kernel, the choice sx = 6 introduce the minimum
amount of dissipation. For the exponential kernel this happens for a value
of the parameter of k = 0.501. These are the practical limits of the kernel
parameter, since a lower value makes the moment matrix MMM singular. On
unstructured grids these values could be unattainable, because they may lead
to a bad conditioning of the moment matrix. It is important to note that it
is possible to develop very similar numerical schemes from different kernels,
by selecting the right value of the parameter. This is important since the
exponential kernel is more robust than the cubic spline on arbitrary meshes.

On the other hand, in tables 2 and 3 we show the resolving efficiency of the
method FV-MLS for several values of the kernel parameters sx and k. The
influence of sx is bigger than the influence of k. The value k = 0.6 yields the
best results in terms of resolving efficiency for the cubic spline kernel. For the
exponential kernel, the best resolving efficiency is obtained for sx = 6, that
also presents the less dissipative behavior. This fact may cause instabilities
in certain problems, overall in Euler equations, where there is no dissipative
terms that help to the stabilization. So, a recommended value for this kind of
problems is sx = 1 or sx = 5. We note that the values for sx = 3 and sx = 4
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are identical. This is due to the effect of the kernel derivatives previously
commented on section 3. We check the change in the tendency of the curves
by comparing the values for sx = 3, sx = 3.5 and sx = 4.

We remark that the dissipation is introduced for the numerical scheme in
the range of bad-resolved waves, so it dims the spurious waves generated by
the numerical scheme. From this point of view, we could consider this as a
low-pass filtering. This implicit filtering acts similarly to the explicit filters
developed for finite difference methods [2, 4].

ε = 0.001 ε = 0.005 ε = 0.008 ε = 0.01

sx ef ppw κ∗

c
∆x ef ppw κ∗

c
∆x ef ppw κ∗

c
∆x ef ppw κ∗

c
∆x

1 0.13 15.32 0.41 0.20 9.82 0.64 0.23 8.61 0.73 0.25 7.95 0.79

2 0.12 16.11 0.39 0.19 10.30 0.61 0.22 8.98 0.70 0.24 8.49 0.74

3 0.12 16.98 0.37 0.18 11.02 0.57 0.21 9.67 0.65 0.22 9.11 0.69

3.5 0.11 17.45 0.36 0.18 11.21 0.56 0.20 9.81 0.64 0.22 9.23 0.68

4 0.12 16.98 0.37 0.18 11.02 0.57 0.21 9.67 0.65 0.22 9.11 0.69

5 0.14 13.96 0.45 0.23 8.73 0.72 0.27 7.48 0.84 0.29 6.90 0.91

6 0.20 10.13 0.62 0.40 5.07 1.24 0.41 4.87 1.29 0.42 4.76 1.32

Table 2: Resolving efficiency of the third-order FV-MLS method for different tolerances ε
and different values of sx.
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κ∆

κ
∆

κ∆

κ
∆

κ∆
π

κ∆

κ
∆

Figure 12: Dispersion and dissipation curv es of the third-order FV-MLS method for dif-
ferent v alues of the k ernel shape parameter sx. On the top, w e plot the real part of the
modified scaled w av enumb er, related to the dispersion of the numerical scheme (left) and
the dispersion error in logarithmic scale (right). On the b ottom, w e plot the imaginary
part of the modified scaled w av enumb er, related to dissipation.
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κ∆
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Figure 13: Phase-speed (left) and group velocity (right) of the third-order FV-MLS method
for different values of the kernel shape parameter sx.

ε = 0.001 ε = 0.005 ε = 0.008 ε = 0.01

k ef ppw κ
∗

c
∆x ef ppw κ

∗

c
∆x ef ppw κ

∗

c
∆x ef ppw κ

∗

c
∆x

0.501 0.23 8.73 0.72 0.38 5.33 1.18 0.40 5.07 1.24 0.40 4.95 1.27

0.52 0.23 8.85 0.71 0.38 5.28 1.19 0.40 5.02 1.25 0.41 4.91 1.28

0.6 0.17 12.08 0.52 0.29 6.98 0.90 0.46 4.39 1.43 0.46 4.33 1.45

0.7 0.15 13.66 0.46 0.23 8.61 0.73 0.27 7.31 0.86 0.30 6.76 0.93

0.8 0.14 14.28 0.44 0.22 8.85 0.71 0.26 7.76 0.81 0.28 7.14 0.88

1 0.14 14.61 0.43 0.22 9.24 0.68 0.25 7.95 0.79 0.27 7.39 0.85

T able 3: Resolving efficiency of the third-order FV-MLS method for different tolerances ε

and different values of k.
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Figure 14: Dispersion and dissipation curves of the third-order FV-MLS method for differ-
ent values of the cubic spline kernel parameter k. On the top, we plot the real part of the
modified scaled wavenumber, related to the dispersion of the numerical scheme (left) and
the dispersion error in logarithmic scale (right). On the bottom, we plot the imaginary
part of the modified scaled wavenumber, related to dissipation
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κ∆ κ∆

Figure 15: Phase-speed (left) and group velocity (right) of the third-order FV-MLS method
for different values of the cubic spline kernel parameter k.

6.2.1. A nalysis of the complete discretization

In previous sections, we have analyzed the behavior of the spatial dis-
cretization for direct approximations with MLS and for the finite volume-
based method FV-MLS. In this section we introduce the effect of the time
integration. We consider an explicit Runge-Kutta time integration.

Equation (30) indicates that the exact solution of (23) may be decom-
posed in both an spatial and a temporal part. With a Runge-Kutta method,
we approximate the temporal part of (23) with a T aylor expansion. Following
to [28, 29] we write the equation (23) as:

∂u

∂t
= qu (56)

where q = −iaκ is complex. We define the amplification factor of a Runge-
Kutta method as

r (z) =
un+1

un
(57)

thus, introducing (29), the exact amplification factor is

re (z) =
un+1

un
=

g(0)eiκ(x−a(t+∆t))

g(0)eiκ(x−at)
= e−iaκ∆t = ez (58)

with z = −iaκ∆t = q∆t.
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on the other hand, if q is a linear operator, a fourth-order Runge-Kutta
method applied to the equation (23) reads as:

u1
j = un

j +
1

4
qun

j ∆t (59)

u2
j = un

j +
1

3
qu1

j∆t (60)

u3
j = un

j +
1

2
qu2

j∆t (61)

un+1
j = un

j + qu3
j∆t (62)

Upper index 1, 2 and 3 refer to intermediate steps in the time marching
process, and n and n + 1 refer to the solution in time n and n + 1.

From equation (62), and knowing that z = q∆t, we write,

un+1
j = un

j

(

1 + z +
1

2
z2 +

1

6
z3 +

1

24
z4

)

(63)

Then, the amplification factor for a fourth-order Runge-Kutta method is

r (z) =

(

1 + z +
1

2
z2 +

1

6
z3 +

1

24
z4

)

(64)

These are the first terms of a Taylor expansion of ez. This result can be
written in a more general form for any Runge-Kutta method [29].

Thus, r (z) is a complex number that we write as:

r (z) = |r (z)| eiα(κ) (65)

Following [30], the numerical dissipation is giv en by the magnitude of the
amplification factor. When |r (z)| ≤ 1 the method is stable. On the other
hand, α (κ) represents the dispersion of the numerical scheme.

From (58) and (65) we obtain α = aκ∗∆t. We represent the dispersion
with the parameter α∗ = α

C F L
, where CFL is the Courant-Friedrichs-Lewy

number C F L = a∆t
∆x

, since

α∗ =
α

C F L
=

aκ∗∆t∆x

a∆t
= κ∗∆x (66)

We remark that in r (z) is also included the spatial discretization. Thus,
the dispersion and dissipation curv es obtained in this section represent the
complete discretization.
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For the FV-MLS method, from (36) and (49), we know that:

∂ũI

∂t
=

−ag (t)

iκ∆x

(

eiκxR − eiκxL

)

Z∗ (67)

and recalling from (33) that:

∂ũI

∂t
= −aZ∗ũI (68)

we obtain from (56) and from the relation z = q∆t:

z = −aZ∗∆t (69)

Figures 16, 17, 18 and 19 show the influence of temporal discretization
on the dispersion and dissipation curves of the third-order FV-MLS scheme,
for a fourth-order (RK4) and a third-order (RK3) Runge-Kutta method. In
figure 20 we compare the dispersion error for different values of the kernel
parameters.

The choice of kernel parameters affects greatly to the stability of the
numerical method. Moreover, the choice of the time step and the order of
the RK method affect to the spectral resolution of the method.

For a RK4 time integration scheme we obtain the following criteria for
the stability of the third-order FV-MLS method: For the exponential kernel,

CFL < 1.4 sx = 1

CFL < 1.6 sx = 6

(70)

whereas for the cubic spline kernel, CFL < 1.6.
For a RK3 time integration method: For the exponential kernel,

CFL < 1.2 sx = 1

CFL < 1.6 sx = 6

(71)

whereas for the cubic spline kernel.

CFL < 1.6 k = 0.52

CFL < 1.4 k = 0.6

(72)
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Figure 16: Dispersion error ||α∗|−α|
π

(top), and dissipation (b ottom) for the third-order
FV-MLS method, exponential k ernel sx = 1 (left column) and sx = 6 (right column), with
a fourth-order Runge-Kutta method for different CFL.
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Figure 17: Dispersion error ||α∗|−α|
π

(top), and dissipation (bottom) for the third-order
FV-MLS method, cubic spline k ernel k = 0.52 (left column) and k = 0.6 (right column),
with a fourth-order Runge-Kutta method for different CFL.
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Figure 18: Dispersion error ||α∗|−α|
π

(top), and dissipation (bottom) for the third-order
FV-MLS method, exponential kernel sx = 1 (left column) and sx = 6 (right column), with
a third-order Runge-Kutta method for different CFL.
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Figure 19: Dispersion error ||α∗|−α|
π

(top), and dissipation (bottom) for the third-order
FV-MLS method, cubic spline kernel k = 0.52 (left column) and k = 0.6 (right column),
with a third-order Runge-Kutta method for different CFL.
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Figure 20: Comparison between the dispersion error ||α∗|−α|
π

for the third-order FV-MLS
scheme with RK4 for CFL=0.4: (a) exponential kernel sx = 6, (b) exponential kernel
sx = 1, (c) cubic spline kernel k = 0.52, (d) cubic spline kernel k = 0.6.

Howev er, the accuracy of the method is greatly affected for CFL > 0.8.
We note that dispersion errors for the wav enumber region between [1, 1.5]
are bigger with the RK3 scheme. For such wav enumbers the dissipation for
these wav enumbers may be not enough to completely dissipate the spurious
wav es. Thus, it is recommended the use of CFL numbers lower than 0.8 with
the Runge-Kutta schemes tested. This restriction becomes more important
if the RK3 scheme is used.

With this choice of CFL, the wav enumber region [0, π

2
] suffers from lit-

tle dispersiv e error, for both, exponential and cubic k ernels with RK4 and
RK3 time integration schemes. The dispersion error is lower when the RK4
scheme is used, for a giv en k ernel parameter. This is shown in figure 21.
The dissipation introduced for the numerical scheme is similar for low CFL
numbers, but the trend is better when RK4 scheme is used, in the sense that
the amount of dissipation introduced is bigger for the highest wav enumbers.
Thus, RK4 scheme seems to be the best choice.

We hav e also tested an optimized RK method (Low Dispersion and Dis-
sipation RK LDDRK) [31] but there is no any substantial difference in com-
parison with a standard RK method. A similar effect has been reported for
Dispersion-R elation Preserving (DRP) schemes [3]. In these methods the
increase in the accuracy of the solution is reported from a six-order spa-
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Figure 21: Comparison between the dispersion error ||α∗|−α|
π

for the third-order FV-MLS
scheme with RK4 and RK3 for CFL=0.8. On the left exponential k ernel: (a) RK4 sx = 1,
(b) RK4 sx = 6, (c) RK3 sx = 1, (d) RK3 sx = 6. On the right, cubic k ernel: (a) RK4
k = 0.52, (b) RK4 k = 0.6, (c) RK3 k = 0.52, (d) RK3 k = 0.6.

tial discretization [32]. This fact suggests the possibility of dev eloping an
optimized RK algorithm for the FV-MLS method.

7. Numerical Examples

7.1. One-dimensional linear wave equation

In this section we solv e the first problem presented in the First ICASE/L aR C
Workshop on Benchmark Problems in Computational Aeroacoustics [33]. W e
solv e the equation (23) with the following initial condition:

u(x, 0) = 0.5e

[

−ln(2)(x

3
)
2
]

(73)

The transported wav e may be considered as the addition of a number of
harmonic wav es with different frequencies and amplitudes. If the numerical
scheme is not able to solv e wav es with v ery different frequencies the numerical
solution will be a v ery distorted wav e. The computational domain is −20 ≤

x ≤ 450 and we plot the results at non-dimensional times t = 100, t = 400.
In figures 22, 23, 24, 25 we plot the results for the third-order FV-MLS

method. For ∆x = 1 the solution is somewhat dissipativ e, and the wav e
shape presents a certain amount of distortion for t = 400 (see figure 22 and
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Figure 22: Third-order FV-MLS solution for the first problem presented in [33] at different
non-dimensional times, with CFL = 0.6, ∆x = 1, exponential kernel (15) sx = 6.

Figure 23: Third-order FV-MLS solution for the first problem presented in [33] at different
non-dimensional times, with CFL = 0.6, ∆x = 1, exponential k ernel (15) and sev eral
v alues of the shape parameter sx.

23 for the exponential k ernel results and figure 24 for the cubic spline k ernel).
Howev er, the dispersion and dissipation errors of the wav e are smaller than
other higher-order methods as the as the fourth-order MacCormac method
presented in [34], or fourth-order centered finite differences [35]. As it is
expected, the solution improv es as we decrease the grid spacing. Figure 25
shows the results for ∆x = 0.25. In figure 26 we also show the results for the
second order FV-MLS method. It is clear the benefit of using the third-order
FV-MLS method.
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Figure 24: Third-order FV-MLS solution for the first problem presented in [33] at different
non-dimensional times, with CFL = 0.6, ∆x = 1, cubic spline kernel (13) k = 0.6.

Figure 25: Third-order FV-MLS solution for the first problem presented in [33] at different
non-dimensional times, with CFL = 0.6, ∆x = 0.25, exponential kernel (15) and sx = 6.

7.2. One-dimensional nonlinear wave equation

In this section we solve the 1D non-linear equation:

∂u

∂t
+ u

∂u

∂x
= 0 (74)

that, written in conservative form reads:

∂u

∂t
+

1

2

∂u2

∂x
= 0 (75)
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Figure 26: Second-order FV-MLS solution for the first problem presented in [33] at a
non-dimensional time t = 400, with CFL = 0.6, exponential kernel (15) sx = 6, ∆x = 1
(left) and ∆x = 0.25 (right).

on the domain −4 ≤ x ≤ 10, with initial condition:

u(x, 0) =

{

0, x ≤ 0
1, x > 0

(76)

The exact solution for this problem is:

u(x, t) =











0, x ≤ 0
x

t
, 0 < x < t

1, x > t

(77)

In figure 27 we plot the results for the third-order FV-MLS method and
several grid sizes with the exponential kernel and sx = 1, at t = 3. The
results improve as the grid size is decreased. This results agree with those of
the compact finite volume DRP and OPC (Optimized Prefactored Compact)
schemes [19]. The results of the FV-MLS method are noticeably better than
the results obtained by DRP and OPC finite difference schemes [19, 36].
This example shows the availability of the FV-MLS method to handle strong
gradients.

7.3. Wave scattering by a complex geometry.

The objectiv e of this example is to v erify the generalization of the conclu-

sions obtained from the one-dimensional analysis of the adv ection equation

to the analysis of a more complex problem. Here w e propose to solv e the 2D
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Figure 27: Third-order FV-MLS solution for the fi rst problem presented in [33] at t = 3,
with C F L = 0.6, and diff erent grid spacing, exponential k ernel (equation (15)), sx = 1.

Linearized Euler Equations (LEE) in complex geometry using the proposed
formulation (the whole set of these commonly used equations can be found
in [37]). A previous work has been done by the authors [38] and [39] con-
cerning the application of FV-MLS to CAA problems on unstructured grids.
W e have shown that FV-MLS is very well adapted to solve LEE with a very
good accuracy. Here, among several examples presenting acoustic wave prop-
agation in complex geometries, we choose the test case of wave scattering by
the NASAs 30P30N airfoil [40].

The main acoustic noise source for this airfoil is the one generated by
the vortex shedding at the trailing edge of the upstream part, called slat
noise. To simulate the slat noise we place an artificial acoustic source at
(xsc, ysc) = (−0.012, 0.01) defined as: S = exp(−((x−xsc)

2 + (y−ysc)
2)/b2)×

sin(ωt) × [0, 0, 0, 1]T where the angular frequency is ω = 6π, b = 0.003
and t is the time coordinate. The source term is made dimensionless with
[ρ0c0/∆x, 0, 0, ρ0c

3

0
/∆x]T . In this expression, ρ0 is the mean value of the den-

sity of the stationary solution and c0 is the mean value of the speed of sound.
For seek of simplicity we choose an angular frequency (ω = 6π). This value
permits us to use a moderate grid size, since the objective here is only to
compare two configurations with two diff erent k ernel function parameters s.
The leading edge of the main part of the airfoil is placed at (0, 0).

The discretization has been performed in order to guarantee a minimum
number of 6 cells per wavelength around the airfoil. A detail of the grid is
shown in figure 28.

The exponential k ernel has been selected for this example, and the CFL
number for the computations is 0.2. The results are presented at t = 3 units
in figure (29) for sx = sy = 1. W e observe that pressure waves originated at
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Figure 28: Detail of the unstructured grid used for the wav e scattering problem.

the source point propagate radially without any appreciable dispersion error
in the directions free of obstacles. On the other hand, waves propagating in
the direction of the airfoil are scattered.

In figure (30) we show the time variation of the acoustic pressure at
points A(0,0.3), B(0,-0.3), C(1.23,0.07) and D(1.15,-0.48) for sx = sy = 1
and sx = sy = 5.

Note that the results for s = sx = sy = 5 are clearly more dissipative
than those obtained for s = sx = sy = 1. Moreover, we observe a slight
difference in the phase of the pressure waves. This is related with the different
dispersion curves of the numerical scheme for each value of the parameter s.
We also note that even though the 2D Linearized Euler Equations are not
the simple 2D extension of the 1D advection equation and an unstructured
grid has used, the conclusions obtained from the 1D advection equation still
hold for this more complex case.

8. Conclusions

In this work we perform an analysis of the influence of the kernel param-
eters on the behavior of a high-order finite volume method based on Moving
Least squares approximations. First, we obtain an analytical expression of
the modified wavenumber of the numerical scheme, and then we examine the
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Figure 29: Acoustic pressure distribution at t = 3 for the wave scattering problem. General
view and detail of the profile, with the points A, B, C and D where the acoustic pressure
is measured continuously (figure 30).

influence of the parameters of the kernel function on the dispersion and dis-
sipation characteristics of the third-order FV-MLS method. We examine the
discretization of elliptic-like terms with a direct MLS approximation. The
discretization of hyperbolic terms is performed by examination of the 1D
linear advection equation. We have focused our attention in two kernel func-
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Figure 30: Time variation of the acoustic pressure at points A(0,0.3), B(0,-0.3),
C(1.23,0.07) and D(1.15,-0.48) for s = sx = sy = 1 and s = sx = sy = 5.

tions: the exponential kernel and the cubic spline kernel. The third-order
FV-MLS method, presents a more dissipative behavior when used with the
exponential kernel than when the cubic spline kernel is chosen. However, it is
possible to obtain methods with very similar characteristics by choosing the
adequate kernel parameter. This feature is important since the shape vari-
ation as we change the value of the parameter is bigger for the exponential
kernel than for the cubic spline kernel. This characteristic of the exponential
kernel represents an advantage in terms of robustness in arbitrary meshes.
In this kind of meshes, and for the same spatial resolution, the FV-MLS
method presents a similar accuracy than other higher-order methods as for
example, the Discontinuous Galerkin method [22], but without the addition
of new degrees of freedom.

We have also examined the influence of time integration when explicit
Runge-Kutta methods are used. We present the result for a RK4 and a RK3
explicit method. The FV-MLS method is more stable when a fourth-order
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Runge-Kutta method is used. The results clearly show a significant improve-
ment of dispersion and dissipation properties of the numerical method if the
third-order FV-MLS scheme is used compared with the second-order one.
Moreover, with the explicit fourth-order Runge-Kutta scheme the dispersion
error is lower than with the third-order Runge-Kutta scheme, whereas the
dissipation error is similar for both time-integration schemes. A value of the
CFL number lower than 0.8 is required in order to obtain a low dispersion
error. CFL numbers higher than 0.8 lead to unacceptable dispersion errors,
especially with the RK3 scheme. The use of optimized RK schemes as the
LDDRK does not improve the results.

It is clear than the present analysis only holds for uniform nodal dis-
tribution. Thus, in non-uniform nodal distributions the dispersion and dis-
sipation curves will be different for each distribution of nodes. However,
the dependency of the characteristics of the numerical method with the ker-
nel parameter opens the possibility of a local optimization on unstructured
grids, to compute the value of the kernel parameter for a given distribution
of the points of the stencil that obtains the best possible characteristics of
the numerical scheme.

We have applied the method to the resolution of the one-dimensional lin-
ear and non-linear wave equation. The results shows the availability of the
FV-MLS method to deal with wave propagation problems when large gra-
dients are involved. For the test case of the 1D non-linear wave equation,
results of the third-order FV-MLS method are noticeably better than the
results obtained by DRP and OPC finite difference schemes. The results for
the 1D linear wave equation are more accurate than other higher-order meth-
ods commonly used in literature, as the fourth-order MacCormac method or
fourth-order centered finite differences. In order to enlarge the validity of the
present analysis to more dimensions and more general grids we have solved
the 2D Linearized Euler Equations in a complex domain using a triangular
grid. The results keep the trend observed in 1D. The dissipation is increased
when the kernel parameter changes from sx = sy = 5 to sx = sy = 1 and
there is a slight phase difference. This example also shows the promising
capabilities of the FV-MLS method for its application to aeroacoustics.

The present study only holds for the third-order FV-MLS. However, in our
opinion the conclusions obtained remain for higher-order FV-MLS discretiza-
tions, provided the kernel function is the same. However, at the present
time we cannot affirm this conclusion categorically, and more research is in
progress. Moreover, the author’s opinion is that the present analysis also
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holds for other 1D models governed by different equations if the nature of
the equations is the same than the ones examined here. Thus for elliptic
equations the conclusions of the MLS approximations holds, and for hyper-
bolic equations the conclusions obtained for the FV-MLS method will be
valid.
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