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Pattern formation and
coarsening dynamics in
three-dimensional convective
mixing in porous media
Xiaojing Fu, Luis Cueto-Felgueroso and Ruben Juanes

Department of Civil and Environmental Engineering, Massachusetts
Institute of Technology, Cambridge, MA 02139, USA

Geological carbon dioxide (CO2) sequestration entails
capturing and injecting CO2 into deep saline aquifers
for long-term storage. The injected CO2 partially
dissolves in groundwater to form a mixture that
is denser than the initial groundwater. The local
increase in density triggers a gravitational instability
at the boundary layer that further develops into
columnar plumes of CO2-rich brine, a process
that greatly accelerates solubility trapping of the
CO2. Here, we investigate the pattern-formation
aspects of convective mixing during geological CO2
sequestration by means of high-resolution three-
dimensional simulation. We find that the CO2
concentration field self-organizes as a cellular network
structure in the diffusive boundary layer at the
top boundary. By studying the statistics of the
cellular network, we identify various regimes of
finger coarsening over time, the existence of a non-
equilibrium stationary state, and a universal scaling
of three-dimensional convective mixing.

1. Introduction
Geological carbon sequestration refers to the capture
of carbon dioxide (CO2) from the flue stream of large
stationary sources such as coal- or gas-fired power plants,
and the compression and injection of the captured CO2
into deep geological strata such as deep saline aquifers
for long-term storage [1]. It has been proposed as a
promising technology for reducing atmospheric CO2
emissions and mitigating climate change [2–4]. While
CO2 is less dense than water for all depths in onshore
geological reservoirs, when CO2 dissolves into water,
the density of water increases. This phenomenon leads

2013 The Author(s) Published by the Royal Society. All rights reserved.
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naturally to a Rayleigh–Bénard-type, gravity-driven hydrodynamic instability that greatly
enhances the rate of dissolution of the CO2: the mixing of water and CO2 is controlled by
convection and diffusion rather than diffusion alone [5–8]. This process of CO2 sinking away
as it dissolves in brine—known as solubility trapping—increases the security of geological CO2
storage in deep saline aquifers [4,9]. Convective mixing may also play a role in the dissolution of
halites or other soluble low-permeability rocks overlying groundwater aquifers [10,11], leading to
high dissolution rates that can exert a powerful control on pore-water salinity in deep geological
formations [12,13].

Gravity-driven convection in porous media has been studied extensively [14] and has received
renewed attention in the context of CO2 sequestration, including linear and nonlinear stability
analysis of the onset of convection [8,15–17], nonlinear simulations of the unstable flow in two
dimensions [8,18–20] and three dimensions [21], and experimental systems reproducing the
conditions for convective mixing in a stationary horizontal layer [20,22–24]. Much of the previous
work has focused on upscaling the dissolution flux [20–23,25]. Here, we focus, instead, on the
formation of intricate patterns in the diffusion boundary layer as a result of the gravitational
instability [21,24]. We describe the entire evolution of the convective-mixing instability in three
dimensions, and the two-dimensional emerging patterns in this boundary layer. We identify
and characterize several regimes. We pay special attention to the emergence of a cellular
network structure, and address fundamental questions on the morphology and dynamics of this
pattern: What is the evolution that leads to this pattern morphology? Does this pattern reach
a pseudo-steady state characterized by a universal length scale? If so, how does this length
scale depend on the system parameters? What are the mechanisms responsible for this non-
equilibrium stationary state? Are the coarsening dynamics also universal? Here, we address these
questions using three-dimensional high-resolution simulation of convective mixing in porous
media, which—in addition to important visual observations—enables quantitative analysis of the
pattern-forming process.

2. Simulating convective mixing in three dimensions
The equations governing gravity-driven convective mixing are the Darcy–Boussinesq equations
of variable-density flow in porous media, which for a homogeneous porous medium, and in
dimensionless form, are [8,26]

∇ · u = 0, (2.1)

u = −(∇P′ − Cẑ) (2.2)

and
∂C
∂t

+ ∇ ·
(

uC − 1
Ra

∇C
)

= 0. (2.3)

Equation (2.1) is the incompressibility constraint, equation (2.2) is Darcy’s law, and equation (2.3)
is the advection–diffusion equation governing solute transport. The computational domain is
the unit cube [0, 1]3, made dimensionless with respect to a length scale H taken here to be the
depth of the porous layer. In equations (2.1)–(2.3), u is the dimensionless Darcy velocity, C is the
normalized concentration of CO2 dissolved in water, P′ is the dimensionless pressure with respect
to a hydrostatic datum and ẑ is a unit vector pointing in the direction of gravity. The density of
the groundwater–CO2 mixture is a linear function of the CO2 concentration: ρ = ρ0 + �ρC, where
ρ0 is the density of the ambient brine and �ρ is the density difference between CO2-saturated
groundwater and CO2-free groundwater. The only controlling parameter of the system is the
Rayleigh number,

Ra = �ρgkH
φDμ

, (2.4)

where k is the intrinsic permeability, φ is the porosity, g is the gravitational acceleration, μ is the
fluid dynamic viscosity and D is the diffusion–dispersion coefficient.
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The boundary conditions are no-flow in the z-direction and periodic in the x- and y-directions.
We impose a fixed concentration at the top boundary of the cube (z = 0), C(x, y, z = 0, t) = 1, to
simulate contact with buoyant free-phase CO2. Initially, the CO2 concentration is zero almost
everywhere. We trigger the density-driven instability by introducing a small perturbation on
the initial condition. For fixed (x, y) coordinates, concentrations along the vertical axis follow an
error function, quickly approaching C = 1 and C = 0 above and below the front, respectively. We
perturb the front by vertically shifting the isoconcentration contours using a small white-noise
perturbation (an uncorrelated Gaussian random function). We have confirmed that our results
are independent of the precise magnitude of the perturbation.

We solve equations (2.1)–(2.3) sequentially: at each time step, we first update the velocities, and
with fixed velocities, we update the concentration field. We adopt the stream function–vorticity
formulation of equations (2.1) and (2.2) [26,27]. The components of the stream vector are solved for
with an eighth-order finite difference scheme, implemented as a fast Poisson solver [28]. For the
transport equation (2.3), we use sixth-order compact finite differences [29] in the vertical direction,
and a pseudo-spectral (Fourier) discretization along the horizontal directions, which we assume
to be periodic. We integrate in time using a third-order Runge–Kutta scheme with automatic
time-step adaptation [30].

3. Results
We solve the governing equations for Rayleigh numbers up to Ra = 6400 on a grid of 5123, for
which we have approximately 400 million degrees of freedom to be solved at each time step.
We have confirmed that the results from the simulations are converged results, and therefore
independent of grid size. In this section, we describe the three-dimensional dynamics of the
system and, in particular, the two-dimensional emerging patterns at the top boundary layer.

(a) Pattern formation
The fixed concentration C = 1 at the top boundary leads to a Rayleigh–Bénard-type hydrodynamic
instability, in which the initial diffusive boundary layer becomes unstable and gives rise to
gravity-driven convection. In our simulations, we perturb the initial concentration with random
uncorrelated Gaussian noise to accelerate the onset of this instability. This diffusive boundary
layer then reflects a series of patterns that evolve in time.

— Islands. During the very early stages of the instability, the minute perturbations of the
boundary concentrations give rise to protrusions such that a wavy three-dimensional
isoconcentration surface develops. A cut near the top boundary reflects these protrusions
in the form of disconnected islands of higher concentration, surrounded by a sea of near-
zero concentration (figure 1a). Our high-resolution simulations illustrate the columnar
pattern in this initial regime of the instability, with a characteristic length that is in good
agreement with the predictions of a linear stability analysis, lonset ∼ Ra−1 [8].

— Maze. The initial columnar pattern morphs by developing bridges between the islands,
giving rise to an increasingly connected maze structure (figure 1b). The emergence of
the maze pattern observed in three dimensions is not obvious from the two-dimensional
simulations: it is unclear how the bridges between fingers observed in two dimensions
would self-organize in the third dimension. Our three-dimensional simulations show that
the bridges connect to form a maze that later develops into a hexagonal cellular network.

— Cellular network. The maze structure evolves in two ways: making its walls thinner, and
reorganizing itself in space to form a globally connected polygonal network of cells
of near-zero concentration separated by sheets of high concentration (figure 1d). The
thinning process of cellular walls is controlled by the balance between vertical downward
advection through the wall and lateral diffusion within the cell, similar to the diffusion–
advection-controlled boundary layer [8]. A careful analysis indicates that the thickness of
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(a)

(b)

(c)

(e) (d)

Figure 1. Simulation of convectivemixingwith Ra= 6400 on a 5123 grid. (a) Snapshot of the concentration field at a slice near
the top boundary (z = 0.01) at t = 0.5, showing a pattern of disconnected islands of high concentration. (b) Snapshot of the
same slice at t = 1, showing a partially connected maze structure. (c–e) Snapshots of the three-dimensional concentration
field at t = 2: (c) is a complete view of the computational domain; (d) is a view of a partial volume (0.01< z < 0.3) from the
top, illustrating the cellular network structure that emerges at the boundary layer; (e) is a view of the same volume from the
bottom, illustrating the columnar pattern of CO2-rich fingers that sink away from the top boundary. See also movies S1 and S2
in the electronic supplementary material. (Online version in colour.)

the boundary layer and the thickness of the cell wall both scale with ∼ Ra−1. Underneath
the diffusive layer, the nature of this pattern is different. The vertices of the cellular
network are the locations of maximum downward flux of CO2 and this leads to a
columnar pattern of CO2-rich fingers that sink (figure 1e). However, finger roots exhibit
faster temporal dynamics (owing to horizontal zipping and merging) than the long-
lived fingers in the interior. Thus, while the boundary-layer network contributes to the
organization of the interior region, the morphology and the evolution of the characteristic
scale in the interior do not correspond to those of the network structure at the boundary
layer (figure 2) [23,24,31].

(b) Coarsening dynamics
Once it has been formed at t ≈ 2, the cellular network coarsens through merging and collapsing
of small cells, whereas columnar fingers migrate downward (figure 1e). This early-time coarsening
regime persists until t ≈ 8, when the characteristic size of the cells reaches a non-equilibrium
stationary state. This statistical steady state lasts for an extended period of time during which
two mechanisms act to balance the characteristic size of the cells.

— Cell growth. In the first mechanism, small cells in the network progressively shrink and
large cells expand. The shrinking cells eventually vanish from the network, leaving space
for large cells to grow. To understand this coarsening process, one must consider the
velocity field induced by convection. Cell centres correspond to upwelling currents of
fresh fluid that impinge onto the boundary layer and deviate laterally towards the cell
edges, charging themselves with CO2 in the process, and then migrating downwards at
the cell edges. Cell coarsening is due to a positive feedback, in which larger cells promote
larger vertical upward flow, which then tend to push the cell edges outwards, causing the
cell size to increase (figure 3).

— Cell division. The inflating large cells then trigger the second mechanism, in which new cell
boundaries are born in the middle of large cells. The newborn links are often immediately
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(a)

(c) (d)

(b)

Figure 2. Concentration field at t = 10 for the three-dimensional simulation with Ra= 6400, at different depths.
(a) z = 0.001, (b) z = 0.04, (c) z = 0.12 and (d) z = 0.43. (Online version in colour.)

(a)
0.35

t = 13 t = 11.6 t = 11.7
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(b)

Figure 3. (a) Snapshot of the velocity field at a depth z = 0.01 at time t = 13 for Ra= 6400, showing upward flow at the
cell centres (grey) and downward flow at the cell edges (white), and horizontal flow from the centre to the edges of individual
cells (arrows). (b) Zoomed view of a small area of the same slice (square in (a)) at different times, illustrating cell growth and
disappearance of small cells (t = 11.6–11.7), and cell division from the emergence of sheets of high concentration within cells
(t= 11.7–11.8). (Online version in colour.)
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Figure 4. Evolution of the power spectrum density for the concentration field of a horizontal slice (z = 0.01) of the simulation
with Ra= 6400. The onset wavenumber inferred from the numerical simulations is k ≈ 40, corresponding to the maximum
energy content for the solutionat t = 0.2.While this number shouldbeunderstoodas aplausible range rather thanahard value,
it does agree nicely with the result of a linear stability analysis (as extrapolated from fig. 11 in [8]). (Online version in colour.)

pushed sideways towards existing cell boundaries; however, past a certain cell size, some
newly born sheets persist to give rise to cell boundaries and permanently divide the
mother cells (figure 3).

The first mechanism promotes cell growth, whereas the second mechanism penalizes oversized
cells. These two mechanisms emphasize the non-equilibrium nature of the convective mixing
process. At late-enough times (t ≈ 20), the domain starts to become saturated with CO2, and the
influence of the bottom boundary is felt at the top boundary. After this time, the cellular network
can no longer sustain its characteristic size and enters a regime of late-time coarsening.

To demonstrate quantitatively the existence of these three periods (early-time coarsening, non-
equilibrium stationarity and late-time coarsening), we plot the power spectrum density E(k) of
the concentration field at a slice near the top boundary (z = 0.01) for the system with Ra = 6400, at
various times (figure 4). We confirm that the network patterns are isotropic by analysing the two-
dimensional Fourier transform of the network images, which indeed exhibit concentric circular
isocontours in all cases. Thus, we define the two-dimensional isotropic horizontal wavenumber k
as k2 = k2

x + k2
y, where kx and ky are the wavenumbers in x- and y-directions, respectively. Note that

from our definition of the wavenumber, the corresponding length scale is 1/k (and not 2π/k). The
power spectrum density is calculated using the square of the two-dimensional Fourier transform
of the concentration field. Initially, there is a shift in the maximum of the power spectrum towards
lower wavenumbers, indicating an increase in the characteristic length (red curves, corresponding
to t = 0.2 and t = 1). Later, for a wide range of times, the power spectra at different times exhibit
perfect overlap, strongly suggesting a statistically stationary state (blue curves, t = 10 and t = 14).
At later times, the power spectrum decays more rapidly at higher wavenumbers, indicating that
the smaller cells are removed from the system (black curves, t = 16 and t = 22).

We confirm the transition from an early-time coarsening to a statistical steady state by
evaluating the representative cell length of a network,

lcell = 1√
Nfing

, (3.1)

where Nfing is the number of fingers that root within the network, which corresponds to the
number of network joints (figure 5a). We assume that the number of joints is directly proportional
to the number of cells in the network—an assumption that must hold during the statistical
steady state, because during that period there are no topological changes (in a statistical sense)
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Figure 5. (a) Snapshot of the concentration field at t = 10, z ≈ 0.01 for a three-dimensional simulation with Ra= 6400. (b)
The linesmark the binary skeleton representation of the same network shown in (a). The circles are the network joints identified
by the image processing tool. (c) Snapshot of the concentration field near the top boundary of a two-dimensional simulation
with Ra= 10 000 at t = 10. The black dotted line indicates z ≈ 0.005, the depth at which we extract the one-dimensional
concentration. (d) The black solid line is the one-dimensional concentration signal obtained from (c); the circles are the peaks
identified by the peak-finding tool. (Online version in colour.)

to the network. From this observation, we propose to estimate the average cell area Acell ∼ l2cell
as proportional to the total area of the network (1 × 1 square) divided by the number of joints
(Nfing).

A plot of lcell as a function of time illustrates the growth of the characteristic length scale during
an initial period (t < 8), and a fluctuating, mean-reverting length scale during the quasi-steady
period (8 < t < 20) (figure 6). The details of this analysis are discussed in §3c.

The characteristic length in the system exhibits three dynamic regimes: early-time coarsening,
non-equilibrium steady state and late-time coarsening. It is natural to ask whether the coarsening
regimes of the length scale near the boundary layer are reflected in the time evolution of
dissolution flux. Indeed, the dissolution flux exhibits three dynamic regimes as well: diffusive,
convection-dominated and saturation [21,24,25,32]. Here we compare these two quantities—
characteristic length scale and dissolution flux—for both a three-dimensional simulation with
Ra = 6400 and a two-dimensional simulation with Ra = 25 000 (figure 7). The dynamics of
these two quantities appear to be highly correlated in time. The magnitude of the dissolution
flux, however, is uninformative with respect to the length scale. The non-dimensional flux is
independent of Ra [25] and clearly this is not the case for the characteristic length scale (figure 6).

(c) Universality of coarsening dynamics
The fact that the characteristic length scale of the process reaches a stationary value during an
extended period of time raises the question of what sets that length scale. Our hypothesis is that,
in the absence of any external length scale in the problem, this characteristic length is set by a
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0.005

0.010

0.015

0.020

0.025

0.030

0 5 10 15 20 25
0.005

0.010

0.015

0.020

0.025

0.030

0

0.01

0.02

0.03

0.02

0.04

0.06

0.08

flux

flu
x

flu
x

flux

time

cell length (lcell) ce
ll 

le
ng

th
 (

l ce
ll)

ce
ll 

le
ng

th
 (

l ce
ll)

finger spacing (lcell)

(b)

(a)

Figure 7. Time evolution of non-dimensional flux (dashed line) and cell length near the boundary (solid line). (a) Three-
dimensional simulation with Ra= 6400. (b) Two-dimensional simulation with Ra= 25 000.

balance between advection and diffusion, ldiff ∼ D/U, where U = (�ρgk)/(φμ) is the characteristic
density-driven fluid velocity. From the definition of the Rayleigh number, equation (2.4), we have
that ldiff ∼ H/Ra. This suggests a linear scaling of cell size with the inverse of Ra,

lcell ∼ Ra−1. (3.2)
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Figure 8. Characteristic length l̄ plotted against Rayleigh number. (a) Three-dimensional simulations; (b) two-dimensional
simulations. This characteristic length scale exhibits a power-law dependence with Rayleigh number l̄ ∼ Ra−1. (Online version
in colour.)

To test this hypothesis, we perform a study of the evolution of cell sizes of the network. We
threshold the concentration field to obtain a binary image that can then be reduced to a skeleton
representation of the network (figure 5b), using open source image processing software [33]. We
count the number of vertices, or joints, in the skeleton network using a commercially available
image processing tool [34], and then estimate the cell length lcell defined in equation (3.1).

In figure 6, we plot the time evolution of lcell for nine different Rayleigh numbers, ranging
from 1600 to 6400. We identify the three coarsening regimes described in §3b, although finite-size
effects prevent achieving the pseudo-steady state for the smaller values of Ra (1600 and 2000).
We choose the overall characteristic length, denoted l̄, as the time average of lcell during the
non-equilibrium stationary state, taken here as 10 < t < 15. This average length scale l̄ exhibits a
power-law dependence with Rayleigh number, with exponent −1 (figure 8a), supporting the
scaling relation in equation (3.2).

We recognize that it would be useful to extend the study of three-dimensional convective
mixing to higher Rayleigh numbers. However, the computational cost would be significant.
Instead, we confirm the proposed scaling l̄ ∼ Ra−1 with two-dimensional simulations, where it
is computationally tractable to perform simulations with Ra = 40 000. In two dimensions, the
domain is the unit square (1 × 1), Nfing is the number of finger roots in the boundary layer
(figure 5c), and the characteristic length is the average finger root spacing: lcell = 1/Nfing. We use
a robust peak-finding tool [35] to identify the number of finger roots, which are the peaks in a
one-dimensional concentration signal (figure 5d) taken near the boundary (figure 5c). In figure 8b,
we plot the time-averaged two-dimensional characteristic length l̄ with Ra in log–log scale, and
again observe the same −1 exponent. This strongly suggests that the scaling relation lcell ∼ Ra−1

is universal, both in two and three dimensions, in the regime of large Rayleigh numbers.

4. Discussion
In this paper, we have studied the pattern-formation aspects of convective mixing in porous
media, a phenomenon of relevance in CO2 sequestration in deep saline aquifers. We have
analysed the process by means of high-resolution simulations in a simplified geometry. Our key
observation is the emergence of a cellular network structure in the diffusive boundary layer at the
top boundary. Theoretical arguments and statistical analysis of the evolving pattern allowed us
to discern the fundamental scaling properties of this pattern in space and time. In particular, we
have identified a period of coarsening followed by a non-equilibrium steady state and explained
the detailed mechanisms—cell growth and cell division—responsible for this behaviour.
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We are currently investigating how the detailed three-dimensional simulations and theory
presented here may guide the development of non-equilibrium two-dimensional models of the
pattern-forming process, in the spirit of surface-growth models [36,37]. This will inform our
ability to model and predict the properties of other pattern-forming processes that lead to cellular
structures [38], such as foams [39], elastocapillary assembly [40], desiccation cracks [41], columnar
jointing [42,43] and mantle dynamics [44].
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