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1. INTRODUCTION

The behavior of a fluid in 3D may be described by the Navier–Stokes equations, which are a
hyperbolic system of non-linear conservation laws. Their complexity has led to the development
of the shallow water equations (SWE) based on some simplifying hypothesis, the most important
of which is the hydrostatic pressure distribution [1]. The hydrostatic distribution can be assumed
when the vertical length scale is much smaller than the horizontal one. This set of equations
is suitable to describe the fluid behavior in domains with a small ratio of the depth (h) to the
horizontal dimensions (L). It is not easy to establish an exact maximum ratio h/L to consider a
flow to be shallow, but 1

20 can be taken as a reference [1].
There are many flows in which the magnitude of the vertical velocity components is much

smaller than the magnitude of the horizontal velocity components, at the space and time scales of
interest for the resolution of a given problem (e.g. in coastal engineering or waste water treatment).
In these cases, the depth-averaged form of the SWE (2D-SWE) provides a reasonable description
of the velocity field.

The use of the 2D-SWE has increased dramatically during the last few decades and the appli-
cation of finite element and finite volume discretizations to unstructured grids have become very
popular. One of the most successful finite element schemes applied to the 2D-SWE is the Taylor–
Galerkin algorithm proposed by Peraire et al. [2], which has been further developed by Quecedo
and Pastor [3] who applied it to the drying–wetting problem. Ribeiro et al. [4] have formulated a
discontinuity capturing operator to deal with fronts. Sheu and Fang [5] have proposed a generalized
Taylor–Galerkin finite element method to obtain high resolution of discontinuous flows. Hauke [6]
has applied the method to dam-break flood propagation and to irrigation flooding.

Most finite volume formulations for the 2D-SWE take advantage of the analogy between this
system and the gas dynamics equations and have successfully been employed in the flow simu-
lation. Alcrudo and Garcı́a-Navarro [7] developed a Godunov-type MUSCL second-order scheme
based on Roe’s Riemann solver and a similar formulation was used by Chippada et al. [8].
Anastasiou and Chan [9] solved the 2D-SWE on unstructured meshes using a second-order Roe
scheme whereas Zhao et al. [10] constructed their numerical flux using Osher’s method. The finite
volume formulation is probably the most widespread modelling strategy within the shallow water
approximation [11] and it was the method used in our work.

The effects of turbulence are taken into account by 2D-SWE both through the frictional terms
and the diffusion-like term that involves second derivatives. Frictional terms quantify the turbulence
effects in the vertical, whereas the second derivatives term quantifies the turbulent losses produced
by the horizontal mixing of momentum. This last term may not be significant in many practical
problems when we only need an estimate of energy losses. In problems in which recirculation
zones do not appear, thus exhibiting a 1D character, turbulent losses can be globally evaluated
by an adequate choice of the friction coefficient. In tidal flows, the influence of turbulence in
the mean velocity field can be almost negligible [12]. For these reasons, 2D-SWE are frequently
used without considering the second derivatives (turbulent) term [7, 13–17]. However, as it will
be shown in the cavity flow problem, this term may become necessary to properly describe flows
in more general cases in which recirculation zones play a significant role.

An important point when working with the finite volume method (FVM) is to properly calculate
the numerical flux at the cell edges. The upwinding of the flux term has proved to be a useful
technique [7, 13, 15] with the drawback of producing a certain amount of numerical viscosity (or
diffusion), which in some cases may be of similar magnitude to the turbulent viscosity. In order
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to reduce the numerical diffusion, some authors [7–9] use second-order methods. Other solutions
are given by Cea et al. [12], who propose a hybrid algorithm (first order for the depth, second
order for the velocity components), or Brocchini et al. [18], who use a second-order WAF method
with local reduction to first-order near steep fronts. First-order schemes, however, such as the one
described in the present work, are easier to implement and can give quite accurate results on the
condition that the numerical viscosity is reduced.

The aim of the present paper is to show the influence of taking into account the turbulent term
in the 2D-SWE, provided that the numerical viscosity produced by the discretization is reduced,
while maintaining the simplicity of the first-order methods. In this paper, the equations that do
not include the turbulent term and the model obtained from them will be denominated simplified,
whereas the model considering this term will be called hydrodynamic.

The work is distributed as follows. In Section 2, the process to obtain the 2D-SWE from the 3D
Navier–Stokes equations is summarized. In Section 3, the discretization of the simplified equations
is described. Then the turbulent term is discretized (Section 4) and, in Section 5, the effect of its
introduction into the equations and a method to diminish the numerical viscosity are shown. In
Section 6, a comparison is made between the results obtained with two different discretizations of
the turbulent term. Section 7 is devoted to describe and compare two alternative discretizations of
the time derivative, which have proved to be much more efficient than Euler’s.

2. 2D-SWE

To obtain the 2D-SWE, the Navier–Stokes equations are averaged in time, splitting velocity and
pressure in the time average plus a fluctuation term. Owing to these fluctuating values, several new
terms with stress dimensions appear, which are called Reynolds stresses. Boussinesq hypothesis
relates these stresses to the derivatives of the time-averaged components of the velocity. By using
this hypothesis, the derivatives of the Reynolds stresses become second derivative terms. If one
accepts that the pressure distribution in the vertical direction is hydrostatic, the pressure gradient
terms in the governing equations can be expressed in terms of the horizontal gradients of the water
depth h. Finally, an integration over the depth is performed in which some of the second derivative
terms give rise to the friction terms, whereas the rest of them constitute the so-called turbulent
term. A detailed discussion can be found in [1, 19].

The 2D-SWE system in matrix form is expressed as

�U
�t

+ �F1

�x
+ �F2

�y
=G (1)

the vector of variables and the flux terms being

U=
⎛⎜⎝

h

hu

hv

⎞⎟⎠ , F1=

⎛⎜⎜⎜⎝
hu

hu2+ 1
2gh

2

huv

⎞⎟⎟⎟⎠ , F2=

⎛⎜⎜⎜⎝
hv

huv

hv2+ 1
2gh

2

⎞⎟⎟⎟⎠ (2)

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 58:781–802
DOI: 10.1002/fld



784 J. FE ET AL.

and the source term being

G=

⎛⎜⎜⎜⎜⎜⎝
0

f vh+ �sx
�

+gh(S0x −S f x )+St1

− f uh+ �sy
�

+gh(S0y−S f y)+St2

⎞⎟⎟⎟⎟⎟⎠ (3)

In the above expressions, h is the fluid depth; u and v are the horizontal velocity components; g
is the gravity acceleration; f is the Coriolis coefficient and �sx ,�sy are the wind stresses on the
surface. The geometric slopes S0x , S0y are expressed in terms of H (see Figure 1)

S0x = �H
�x

, S0y = �H
�y

(4)

S f x , S f y are the friction slopes whose values, according to Manning’s formula, are

S f x = n2u
√
u2+v2

R4/3
h

, S f y = n2v
√
u2+v2

R4/3
h

(5)

The hydraulic radius Rh is usually taken equal to h in the shallow water approach. Finally, St is
the turbulent term. Owing to the simplifications made in the deduction process, several slightly
different formulations for this term can be found in literature [2, 9, 20–22]. The expression used in
the present work has been deduced in [19] and it has been compared [19, 22] with other expressions,
achieving good results. The turbulent term, then, is expressed as

St1= �
�x

(
2�t h

�u
�x

)
+ �

�y

(
�t h

[
�v

�x
+ �u

�y

])
(6)

St2= �
�x

(
�t h

[
�v

�x
+ �u

�y

])
+ �

�y

(
2�t h

�v

�y

)
(7)

where the coefficient �t is a variable called eddy viscosity.

Z

X

h(x,y ,t)0

H(x,y0)

Water surface

Bottom surface

zb

Figure 1. Representation of the variables H and h.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 58:781–802
DOI: 10.1002/fld



NUMERICAL VISCOSITY REDUCTION IN THE SWE 785

The expressions (1)–(3) are the 2D-SWE in conservative form. When applied to small domains,
the Coriolis term has little significance and it is usually neglected. The wind term can also be
neglected when its influence is not relevant compared to the effect of the slope or the bottom
friction, specifically in indoor laboratory channels. It is also common not to take into account the
turbulent term [7, 13–17]. In this case, it is assumed that the turbulent energy losses are globally
represented through the effect of S f , provided that the friction coefficient is adequately chosen.

3. DISCRETIZATION OF THE SIMPLIFIED EQUATIONS

Now we are going to describe the discretization of the 2D-SWE without turbulent term to obtain
the simplified model. Most of this section (particularly Sections 3.3 and 3.4) have been taken from
the work of Bermúdez et al. [13], but we shall restate the equations and the solution method for
the sake of completeness.

3.1. Construction of the finite volume mesh

The FVM proposed in this work is based on a triangular discretization of the domains so that the
nodes of the triangular mesh are used as the nodes of the finite volume mesh (see Figure 2).

For each node I, the barycenters of the triangles with I as a common vertex and the mid-points
of the edges that meet at I are taken. The boundary �i of the cell Ci is obtained by joining these
points. �i j =AMB represents the common part of �i and � j . The outward normal vector to �i j

is gi j . The norm of gi j ,‖gi j‖, is the length of the edge and g̃i j = (̃�i j , �̃i j )
T is the corresponding

unit vector. The vector gi j can have different magnitude and direction at AM and at MB, thus

gi j =
{
gAMi j at AM

gMB
i j at MB

(8)

The subcell Ti j is the union of triangles AMI and MBI.

3.2. Integration of the equations

Next the FVM is applied to the simplified form of the 2D-SWE, in which only the geometric and
friction terms are considered. The expression of the source term (3) is then reduced to

G=
⎛⎜⎝

0

gh(S0x −S f x )

gh(S0y−S f y)

⎞⎟⎠ (9)

Equation (1) can be expressed as

�U
�t

+∇ ·F=G, F(U)=(F1(U),F2(U)) (10)
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Figure 2. Finite volumes construction.

where ∇ is the operator (�/�x,�/�y) and ∇ ·F is the divergence of F. After the surface integral
over the cell Ci is computed, we obtain∫∫

Ci

�U
�t

dA+
∫∫

Ci

∇·FdA=
∫∫

Ci

GdA (11)

The solution of (10) is now replaced by some values Un
i , constant within each cell Ci and at

each time step tn , ascribed to the cell center I. The time derivative is discretized by the forward
Euler’s method as

�U
�t

∣∣∣∣
Ci ,tn

≈ Un+1
i −Un

i

�t
(12)

whose value is constant over Ci and can be taken out of the corresponding integral in (11).
Now the Gauss theorem is applied to the flux term, dividing the boundary �i into a sum of cell

interfaces �i j , j ∈Ki ∫∫
Ci

∇·FdA= ∑
j∈Ki

∫
�i j

F· g̃dl (13)

Ki being the set of neighboring nodes of I. We also split the integral source term in a sum of
integrals over the subcells Ti j , j ∈Ki∫∫

Ci

GdA= ∑
j∈Ki

∫∫
Ti j

GdA (14)

3.3. Numerical flux definition

In order to evaluate the integral flux (13) at the cell boundary, the upwind Van Leer Q-scheme
[23] is used, in the form proposed by Bermúdez et al. [13].

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 58:781–802
DOI: 10.1002/fld



NUMERICAL VISCOSITY REDUCTION IN THE SWE 787

The scalar product Z=F· g̃, on �i j , j ∈Ki at t= tn , is then approximated as

/ni j =
Z(Un

i , g̃i j )+Z(Un
j , g̃i j )

2
− 1

2
|Q(Un

Q, g̃i j )|(Un
j −Un

i ) (15)

In the above equation, Un
i and Un

j represent the variables values at I and J; Q is the jacobian matrix
of Z

Q= dZ
dU

= �̃
dF1

dU
+ �̃

dF2

dU
(16)

�̃ and �̃ being the components of g̃i j (the subscripts i, j are implied); |Q| is defined as

|Q|=X |K|X−1 (17)

|K| being the diagonal matrix given by the absolute values of the eigenvalues of Q and X being
the eigenvectors matrix of Q. As the eigenvalues of Q are

�1= �̃u+ �̃v, �2=�1+c, �3=�1−c (18)

c being the wave celerity c=√
gh, the matrices X and X−1 take the form

X=

⎛⎜⎜⎝
0 1 1

−�̃c u+ �̃c u− �̃c

�̃c v+ �̃c v− �̃c

⎞⎟⎟⎠ , X−1= 1

2c

⎛⎜⎜⎝
2̃�u− 2̃�v −2̃� 2̃�

c− �̃u− �̃v �̃ �̃

c+ �̃u+ �̃v −̃� −�̃

⎞⎟⎟⎠ (19)

|Q| is evaluated at Un
Q , defined by

Un
Q = Un

i +Un
j

2
(20)

The second member of (14) is then expressed as

∑
j∈Ki

∫
�i j

F· g̃dl≈ ∑
j∈Ki

‖gi j‖/ni j (21)

3.4. Numerical source definition

Now the part of the source term that contains the geometrical slope is upwinded [13] by multiplying
the contribution of each subcell by an upwinding factor. The friction slope has been treated in
both ways, finding no substantial differences. Therefore, here it is calculated at the cell center. The
numerical source, at each subcell Ti j and at each time step t= tn , is then expressed as

wni j =(I−|Q|Q−1)Ĝ0+Ĝf (22)
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where the numerical geometric slope Ĝ0 and the numerical friction slope Ĝf are

Ĝ0=

⎛⎜⎜⎜⎜⎜⎜⎝

0

g
hni +hnj

2

Hj −Hi

di j
�̃

g
hni +hnj

2

Hj −Hi

di j
�̃

⎞⎟⎟⎟⎟⎟⎟⎠ , Ĝf=
⎛⎜⎝

0

ghni (−S f x )
n
i

ghni (−S f y)
n
i

⎞⎟⎠ (23)

di j being the normal distance from I to �i j that has different values at the two subcell triangles
AMI and MBI. The second member of (14) becomes∑

j∈Ki

∫∫
Ti j

GdA≈ ∑
j∈Ki

Ai jw
n
i j (24)

Ai j being the area of each subcell.

3.5. Time step

To estimate the time step we have used the expression proposed by Brufau and Garcı́a-Navarro [16]

�t�0.5 ·min

(
Di j

(
√
u2+v2+c)i j

)
(25)

where Di j are the distances between each node I and its neighboring nodes and 0.5 is a coefficient
to ensure stability.

3.6. Algorithm

Using the above described method, a discretization of Equation (11) has been obtained, which
takes the form

Un+1
i −Un

i

�t
Ai + ∑

j∈Ki

‖gi j‖/ni j =
∑
j∈Ki

Ai jw
n
i j (26)

then

Un+1
i =Un

i + �t

Ai

( ∑
j∈Ki

Ai jw
n
i j −

∑
j∈Ki

‖gi j‖/ni j
)

(27)

Equation (27) provides a time explicit method to calculate the variables value at every node I
and at every time step from the previous time step values at node I and its neighboring nodes.

4. THE TURBULENT SOURCE TERM

In Sections 1 and 2, we emphasized that when using the 2D-SWE, it is common not to take into
account the term that contains the second derivatives of u and v. This assumption works well
in many cases such as in practical problems when we only need to estimate energy losses or
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in problems without recirculation zones. However, the consideration of the spatial variation of u
and v may prove to be necessary for the description of flows in which recirculation zones play a
significant role.

In this section, the addends St1 and St2 of the source term given by (6) and (7) will be considered.
Their surface integral over each cell Ci can be expressed as⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0∫∫
Ci

St1 dA∫∫
Ci

St2 dA

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0∫∫
Ci

∇·
(
2�t h

�u
�x

,�t h

[
�v

�x
+ �u

�y

])
dA∫∫

Ci

∇·
(

�t h

[
�v

�x
+ �u

�y

]
,2�t h

�v

�y

)
dA

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(28)

As already done in Section 3.2, the Gauss theorem is applied in every cell, splitting the line
integral over �i in a sum of integrals over the cell sides �i j , j ∈Ki . It results in⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0∑
j∈Ki

∫
�i j

(
2�t h

�u
�x

,�t h

[
�v

�x
+ �u

�y

])
· (̃�, �̃)dl

∑
j∈Ki

∫
�i j

(
�t h

[
�v

�x
+ �u

�y

]
,2�t h

�v

�y

)
· (̃�, �̃)dl

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(29)

In expression (29) we need to estimate the partial derivatives values at every cell side. Two
methods have been used: (a) from the derivatives of u and v with respect to � (normal direction
to �) and (b) from the mean values of ∇u and ∇v at the adjacent cells.

4.1. From the directional derivatives

Let �,� be two normal directions and g̃, s̃ the corresponding unit vectors. We have

�u
��

=∇u · g̃= �u
�x

�̃1+ �u
�y

�̃2 (30)

�u
��

=∇u ·̃s= �u
�x

�̃1+ �u
�y

�̃2 (31)

or, in matrix form, ⎧⎪⎪⎪⎨⎪⎪⎪⎩
�u
��

�u
��

⎫⎪⎪⎪⎬⎪⎪⎪⎭=
(

�̃1 �̃2

�̃1 �̃2

)⎧⎪⎪⎪⎨⎪⎪⎪⎩
�u
�x
�u
�y

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (32)
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As s̃ is normal to g̃, calculating the inverse matrix⎧⎪⎪⎪⎨⎪⎪⎪⎩
�u
�x
�u
�y

⎫⎪⎪⎪⎬⎪⎪⎪⎭=
(

�1 −�2

�2 �1

)⎧⎪⎪⎪⎨⎪⎪⎪⎩
�u
��

�u
��

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (33)

Now, let � be the direction of the cell side and � the normal to it, with (̃�1, �̃2)
T= (̃�, �̃)T as unit

vector. The velocity component u is assumed to be constant within Ci . Then, if the value of u
does not change along the side, its derivative with respect to � is zero and we obtain⎧⎪⎪⎪⎨⎪⎪⎪⎩

�u
�x
�u
�y

⎫⎪⎪⎪⎬⎪⎪⎪⎭=
(

�̃ −�̃

�̃ �̃

)⎧⎪⎨⎪⎩
�u
��

0

⎫⎪⎬⎪⎭=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
�̃
�u
��

�̃
�u
��

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (34)

likewise ⎧⎪⎪⎪⎨⎪⎪⎪⎩
�v

�x
�v

�y

⎫⎪⎪⎪⎬⎪⎪⎪⎭=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
�̃
�v

��

�̃
�v

��

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (35)

These directional derivatives can be discretized as

�u
��

= u j −ui
2di j

(36)

�v

��
= v j −vi

2di j
(37)

2di j being the length of the projection of IJ over �.
In Section 3.4, a numerical source term has been defined. Multiplied by each subcell area, it

approximates the surface integral of the geometric and friction source terms (24). Now a line
integral is calculated; then the discretized integral of the turbulent source term corresponding to a
unit side length at t= tn takes the form

Ĝt=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0

�ti +�t j
2

hni +hnj
2

[
2
unj −uni
2di j

�̃2+ vnj −vni

2di j
�̃̃�+ unj −uni

2di j
�̃
2

]
�ti +�t j

2

hni +hnj
2

[
vnj −vni

2di j
�̃2+ unj −uni

2di j
�̃̃�+2

vnj −vni

2di j
�̃
2

]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(38)

In this expression, the viscosity has no time index since it is assumed that its values can vary at
every node, but they are not time dependent. Obviously this is an assumption, since eddy viscosity
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could also vary in time. However, taking into account this effect is beyond the scope of this work
since it would require the use of a turbulence model. This issue will be addressed in forthcoming
papers.

4.2. From the gradient mean values

Here the partial derivatives of u and v at �i j are obtained as the components of their gradient. To
approximate the gradient of a scalar magnitude m at �i j , the mean value of its gradients at cells
Ci and C j is used. The gradient of m within Ci is estimated as

(∇m)Ci =
1

Ai

∫∫
Ci

∇m dA (39)

and the surface integral of ∇m over Ci is calculated as [19]∫∫
Ci

∇m dA=
∫

�i

mndl (40)

n being the unit vector normal to �i . Since

n= g̃= �̃i+ �̃j (41)

and

(∇m
)
Ci

=
(

�m
�x

)
Ci

i+
(

�m
�y

)
Ci

j (42)

where i is the x-axis unit vector and i is the cell index, the average values of the partial derivatives
of m within Ci become(

�m
�x

)
Ci

= 1

Ai

∫
�i

m�̃dl= 1

Ai

∑
j∈Ki

∫
�i j

m�̃dl (43)

(
�m
�y

)
Ci

= 1

Ai

∫
�i

m�̃dl= 1

Ai

∑
j∈Ki

∫
�i j

m�̃dl (44)

Then the process is summarized as follows. First, the values of u,v at �i j are estimated as
their mean value at nodes I and J. Then the partial derivatives of u and v within each cell Ci are
obtained from the estimated values of u,v at �i j by(

�u
�x

)
Ci

= 1

Ai

∑
j∈Ki

ui +u j

2
�̃‖gi j‖,

(
�v

�x

)
Ci

= 1

Ai

∑
j∈Ki

vi +v j

2
�̃‖gi j‖ (45)

(
�u
�y

)
Ci

= 1

Ai

∑
j∈Ki

ui +u j

2
�̃‖gi j‖,

(
�v

�y

)
Ci

= 1

Ai

∑
j∈Ki

vi +v j

2
�̃‖gi j‖ (46)
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and we can finally obtain the partial derivatives at �i j as the mean value of the derivatives at Ci
and C j . By expressing the values of the partial derivatives of u and v within Ci at time t= tn as

unxi =
(

�u
�x

)
Ci ,tn

, vnxi =
(

�v

�x

)
Ci ,tn

(47)

unyi =
(

�u
�y

)
Ci ,tn

, vnyi =
(

�v

�y

)
Ci ,tn

(48)

the discretized integral of the turbulent source term at �i j and at t= tn is

Ĝt=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0

�ti +�t j
2

hni +hnj
2

(
2
unxi +unx j

2
�̃+ vnxi +vnx j

2
�̃+ unyi +unyj

2
�̃

)
�ti +�t j

2

hni +hnj
2

(
vnxi +vnx j

2
�̃+ unyi +unyj

2
�̃+2

vnyi +vny j

2
�̃

)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(49)

where again it is assumed that the values of �t can vary at every node, but they are not time
dependent.

4.3. The numerical turbulent source

Finally, the surface integral of the turbulent term (28) is approximated by an expression similar
to (24) ∑

j∈Ki

∫∫
Ti j

GdA≈ ∑
j∈Ki

‖gi j‖wn�i j (50)

where wn�i j is the numerical turbulent source that takes either the form (38) or (49). Then including
the turbulent term, algorithm (27) changes to

Un+1
i =Un

i + �t

Ai

( ∑
j∈Ki

(Ai jw
n
i j +‖gi j‖wn�i j )−

∑
j∈Ki

‖gi j‖/ni j
)

(51)

5. VALIDATION OF THE HYDRODYNAMIC MODEL FOR UNIFORM VALUES
OF THE VISCOSITY

The discretization of the turbulent term (Sections 4.1 and 4.2) has been done to admit different
viscosity values at every node, which is usually the case in real turbulent flows. However, we
are going to test the model for uniform values of the viscosity. Using a non-uniform viscosity
throughout the domain would require to obtain the viscosity values from a turbulence model, which
is beyond the scope of the present work. In any case, it would not pose any numerical problem
because we would only need to make an average of the viscosity values—see expressions (38)
and (49)—at every two nodes to obtain the value at the edge between them.
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5.1. Cavity flow: first results
To check the effectiveness of introducing the turbulent term in the 2D-SWE, as well as to compare
two discretizations of it (that will be described in Section 6), the cavity flow problem has been
chosen. It is a classical benchmark for the 2D Navier–Stokes equations with a maximum Reynolds
number of 10 000, over which value the steady solution becomes unstable [21]. In the cavity flow,
the form of the streamlines, the u-velocity at the central section and the position of the circulation
center, depend completely on the imposed value of the viscosity.

This test is not common in the shallow water literature and experimental results have not been
found as it might be expected. However, there are many numerical results and comparisons between
them [21, 24–27].

From the 3D form of the Navier–Stokes equations 2D-SWE are obtained through a process
summarized in Section 2. They are different from the 2D Navier–Stokes equations. The latter
do not take into account the third dimension in space but only the velocities and pressures of a
theoretical planar flow, whereas 2D-SWE consider the third dimension by means of the variable
depth and the pressure is expressed as a function of the depth. However, as it will be shown, both
systems produce very similar results with uniform viscosity values and only slight differences must
be expected between the corresponding solutions to these problems. For this reason, the analysis
of these test results may be very useful to assess the ability of the proposed numerical scheme to
capture fine viscous features of the flow.

The problem consists of obtaining the velocity field in a square domain of 1×1m2. A regular
mesh of 81×81 nodes is employed (its central part is represented in Figure 3). The boundary
conditions of Dirichlet type are: u=1,v=0 at the upper side; u=v=0 (no-slip condition) at the
other three. The variables used are h,hu and hv; thus the actual imposed conditions at the upper
side are h=1,hu=1,hv=0.

X

Y

0.3 0.4 0.5 0.6 0.7
0.3

0.4

0.5

0.6

0.7

Figure 3. Cavity flow: mesh.
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Results must depend on the Reynolds number used. Taking the values V =1 and L=1 for the
velocity and length scales, the resulting Re values are

Re= V L

�
= 1

�
(52)

which allows us to simulate different Reynolds numbers by varying the viscosity value.
In the first place, a case without viscosity was examined. Then two other cases with a � value

of 0.0025 and 0.01m2/s, corresponding to Reynolds numbers of 400 and 100, respectively, were
solved. The streamlines in the three cases can be seen in Figure 4. Figure 5 shows the comparison
of the velocity components u, at x=0.5m, for the three cases. As it can be observed, the resulting
difference between the three cases is much smaller than the expected, and the reason must be
found in the high numerical viscosity (or diffusion) inherent in first-order methods, which does

(a) (b) (c)

Figure 4. Streamlines: (a) �=0; (b) �=0.025; and (c) �=0.01.

Figure 5. u velocities at x=0.5 for different viscosities.
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not allow us to appreciate the effect of a viscosity value difference of 0.01. This numerical viscosity
is known to depend on the mesh size [19] and, even with a reasonably fine mesh such as the one
used here, its effects are unacceptable.

5.2. Reduction of the numerical viscosity

In Section 3.3, the Q-scheme of Van Leer was used to calculate the flux values at every cell
boundary. This approximation can be interpreted stating that the flux at a cell boundary is the sum
of a centered average of the fluxes on both sides of the boundary plus an upwinding term. This
term stabilizes the system at the expense of introducing a certain amount of numerical diffusion.
Therefore, in order to make the model less diffusive, the upwinding term needs to be reduced as
much as possible, while the stability is kept. This can be achieved [28] by using an upwinding
coefficient cd , so that expression (15) becomes

/ni j =
Z(Un

i , g̃i j )+Z(Un
j , g̃i j )

2
−cd

1

2
|Q(Un

Q, g̃i j )|(Un
j −Un

i ), 0�cd�1 (53)

The suitable value of this coefficient is the smallest that can provide stable calculations. If cd =0,
the scheme is a centered one. If cd =1, there is no upwinding term reduction. Lin et al. [29]
have successfully used a cd value of 0.1 in acoustic computations. In the large eddy simulation
model described by Bui [28], smaller values (0.03–0.05) were needed to obtain good results.
Diminishing the cd value increases the computational cost because the minimum value of this
coefficient necessary for stability decreases with the mesh size [28]; that is to say, to diminish the
cd acceptable values, finer grids have to be used.

After a trial-and-error process, the most appropriate value was found to be cd =0.03, with the
81×81 nodes mesh. In this case, the streamlines corresponding to four viscosity values (Figure 6)
and the velocities at the central section corresponding to three viscosity values (Figure 7) are
shown.

5.3. Comparison of the positions of the centers

To test the effectiveness of the described method to reduce the numerical viscosity, a comparison
is made (Table I) between the main eddy center coordinates obtained with the model and some
references [21, 24, 26]. The main eddy centers are plotted in Figure 8. Several conclusions can be
drawn as follows:

• For Re=100, the results are in an intermediate position among the references.
• For Re=400, the x-coordinate of the eddy center is displaced slightly rightwards with respect

to the references. The y-coordinate is in an intermediate position.
• For Re=1000, the y-coordinate of the eddy center is displaced slightly over the other results.

The x-coordinate is in an intermediate position.
• For Re=10000, the eddy center is slightly over and on the right of the reference result.

We can see that the results match very well with the reference values for low Reynolds numbers.
However, as the Reynolds number increases, the main eddy center moves slightly upwards and
rightwards with respect to the reference results. On the other hand, we observe in Figure 6 that
the main eddy center moves upwards and rightwards with a rise of the viscosity value. Also,
Figure 9 represents the evolution of the main eddy center coordinates, for seven Reynolds number
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(a) (b)

(c) (d)

Figure 6. cd =0.03. Streamlines (from left to right and top to bottom): (a) �=0.0001 (Re=10000);
(b) �=0.001 (Re=1000); (c) �=0.0025 (Re=400); and (d) �=0.01 (Re=100).

values from 100 to 10 000. It can be seen that both coordinates increase as the Reynolds number
decreases, which corresponds to an increase in the viscosity value. These last results have been
obtained using a very fine 257×257 mesh [27].

The described phenomenon explains the slight change in the relative position of the main
eddy center with respect to the references: the part of numerical viscosity that the upwinding
coefficient is not able to eliminate becomes more important when the imposed viscosity value
decreases.

It can be concluded that the introduction of the turbulent term in the 2D-SWE improves their
ability to represent 2D flows with recirculation zones. It is also noted that the numerical viscosity
introduced by the upwinding, although reduced by the use of cd , has a fixed value which is more
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Figure 7. cd =0.03. u velocities at x=0.5 for different viscosities.

Table I. Coordinates of the main eddy center.

Reynolds number References xc yc

Burggraff [24] 0.62 0.74
Re=100 Donea and Huerta [26] 0.62 0.74
(�=0.01) Vellando et al. [21] 0.610 0.735

Present 0.615 0.737

Burggraff [24] 0.560 0.620
Re=400 Donea and Huerta [26] 0.568 0.606
(�=0.0025) Present 0.569 0.615

Donea and Huerta [26] 0.540 0.573
Re=1000 Vellando et al. [21] 0.545 0.565
(�=0.001) Present 0.541 0.577

Re=10000 Vellando et al. [21] 0.520 0.530
(�=0.0001) Present 0.523 0.533

significant when the imposed � value decreases; that is to say, the behavior of the model is more
diffusive for lesser values of the viscosity.

6. COMPARISON OF THE DISCRETIZATIONS OF THE TURBULENT TERM

We have seen the influence of including the turbulent term in the 2D-SWE on representing flows
accurately with uniform distributions of the viscosity. Now we shall take advantage of this fact to
compare two discretizations of the turbulent term.

The first discretization uses the directional derivatives and it has been described in Section 4.1.
The second one is obtained from the gradient mean values and it has been described in Section 4.2.
The streamlines obtained with both discretizations for a Reynolds number of 1000 are similar in
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Figure 8. Main eddy center positions (results in red; references in blue).

Figure 9. Main eddy center. Evolution of the position with Re.

aspect; the second one has been represented in Figure 6(b). Yet, there is a remarkable difference
between the center coordinates, which in the second case are smaller and closer to the reference
values (Table I) than in the first one. These values are:

• Directional derivatives: xc=0.556, yc=0.597.
• Gradient mean values: xc=0.541, yc=0.577.

Moreover, the horizontal velocities at the central section are compared in Figure 10, taking the
results of [26] as a reference. It may be seen that the second method matches the reference values
much better than the first one, producing a sharper and more adequate profile. We can conclude
that the turbulent term discretization that uses the gradient mean values has yielded more accurate
and less diffusive results.
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Figure 10. �=0.001. u velocities at x=0.5 for different discretizations.

7. ALTERNATIVE DISCRETIZATIONS OF THE TIME DERIVATIVE

The time step for the simplified model is calculated from expression (25), usually posing no stability
problems. It has been observed, however, that the numerical viscosity reduction produces a drastic
decrease in the acceptable time step, thus making the process very expensive from a computational
point of view. To solve this problem, two alternative time derivative discretizations have been
implemented and compared: the fourth-order predictor–corrector Adams–Moulton method and the
fourth-order Runge–Kutta method.

Both discretizations have proved to be much more efficient than the forward Euler method; the
Adams–Moulton method is almost seven times faster than Euler’s and the Runge–Kutta method
is almost ten times faster, in one of the tests carried out. We shall describe both methods and
compare them for two viscosity values.

In the fourth-order predictor–corrector Adams–Moulton, the predictor formula [30] is

Un+1=Un+ �t

24
(55un−59un−1+37un−2−9un−3) (54)

and the corrector

Un+1=Un+ �t

24
(9un+1+19un−5un−1+un−2) (55)

The fourth-order Runge–Kutta formula is [30]
Un+1=Un+�tU(tn,Un) (56)

where

U(tn,Un)= k0+2k1+2k2+k3
6

(57)
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with

k0=u(tn,Un) (58)

k1=u(tn+ �t

2
,Un+k0

�t

2
) (59)

k2=u(tn+ �t

2
,Un+k1

�t

2
) (60)

k3=u(tn+�t,Un+k2�t) (61)

To estimate the efficiency improvement, the computation times have been compared in several
cases. We consider that convergence has been achieved when the increment of all the variables
(h,hu,hv) is smaller than a certain tolerance ε. We usually take the tolerance value ε=10−6 when
using the forward Euler method.

The time step �t used with the Adams–Moulton method is about nine times bigger than the
one used with the Euler method. For the Runge–Kutta method this ratio increases up to 25. This
means that the variables change at every time step is much greater than the one from the Euler
method. To properly compare the efficiency, the tolerance k×10−6 in the conducted tests was
used, k being the ratio between the time step of each one of the two methods and that of Euler’s.
In this way, when the process stops, the variation of the variables per unit time is approximately
the same for the three methods.

For both methods the steady state is achieved in a much smaller number of iterations than using
the Euler method. On the other hand, the computational time for one time step is greater in both
methods than in Euler’s: it was about four times greater using the Runge–Kutta method and two
times using the Adams–Moulton method.

Next, two examples of the computational time saving are shown. Both have been calculated
with a regular mesh of 41×41 nodes and for two different viscosities and upwinding coefficient
values. The results obtained are

(1) �=0.01,cd =0.05.

• Euler. Number of iterations: 12 965.
• Runge–Kutta. Number of iterations: 518.
• Adams–Moulton. Number of iterations: 1439.

The approximate computation time percentages are:

• Runge–Kutta/Euler: %Tc= 518·4
12965100=15.98%.

• Adams–Moulton/Euler: %Tc= 1439·2
12965 100=22.20%.

• Runge–Kutta/Adams–Moulton: %Tc= 518·4
1439·2100=71.99%.

(2) �=0.0001,cd =0.06.

• Euler. Number of iterations: 81 755.
• Runge–Kutta. Number of iterations: 2172.
• Adams–Moulton. Number of iterations: 6033.

The approximate computation time percentages are:

• Runge–Kutta/Euler: %Tc= 2172·4
81755 100=10.62%.

• Adams–Moulton/Euler: %Tc= 6033·2
81755 100=14.76%.

• Runge–Kutta/Adams–Moulton: %Tc= 2172·4
6033·2100=72.00%.
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It can be noted that the computational savings with respect to Euler’s, attained by using
each method, are different: the ratios vary, in the two described cases, from 10.62 to 15.98%
(Runge–Kutta/Euler) and from 14.76 to 22.20% (Adams–Moulton/Euler). However, the ratio of
computation times between the two of them stays the same (72%, in favor of Runge–Kutta).

It is interesting to remark that this saving has been obtained when the numerical viscosity is
reduced by the upwinding coefficient. If there is no reduction, then no computation time saving is
achieved using the Runge–Kutta or the Adams–Moulton method. It may also be pointed out that
the smaller the viscosity, the greater the efficiency improvement observed.

8. CONCLUSIONS

A first-order finite volume model for the resolution of the shallow water equations with turbulent
term was presented, showing that the consideration of this term greatly improves the accuracy in the
representation of 2D recirculating viscous flows. However, the numerical viscosity (or diffusion)
produced by the upwinding of the flux term hinders the appreciation of the effect of using different
viscosity values. It is thus important to diminish the numerical viscosity, which distorts the results,
so that it does not interfere with the imposed viscosity. The use of a coefficient in the upwinding
term has proved to effectively reduce this numerical viscosity.

In order to discretize the turbulent term, two methods were described and compared. It is shown
that the method that uses gradient mean values gives better results than the one that makes use of
directional derivatives.

Finally, the fourth-order Adams–Moulton and Runge–Kutta discretizations of the time derivative
were tested and both of them were proved to be much more efficient than the forward Euler
method, provided the numerical viscosity is reduced. Otherwise no improvement is achieved. The
Runge–Kutta method has shown more efficiency than the Adams–Moulton method.
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