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This paper presents a complete finite volume method for the Cahn–Hilliard and Kuramoto–
Sivashinsky type of equations. The spatial discretization is high-order accurate and suitable
for general unstructured grids. The time integration is addressed by means of implicit an
implicit–explicit fourth order Runge–Kutta schemes, with error control and adaptive
time-stepping. The outcome is a practical, accurate and efficient simulation tool which
has been successfully applied to accuracy tests and representative simulations.

The use of adaptive time-stepping is of paramount importance in problems governed by
the Cahn–Hilliard model; an adaptive method may be several orders of magnitude more
efficient than schemes using constant or heuristic time steps. In addition to driving the
simulations efficiently, the time-adaptive procedure provides a quantitative (not just qual-
itative) characterization of the rich temporal scales present in phase separation processes
governed by the Cahn–Hilliard phase-field model.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Originally arisen in the context of phase separation after quenching of binary alloys [10], chemical phase turbulence [34]
and flame front instabilities [43], the rich dynamical behaviour of the solutions of the Cahn–Hilliard and Kuramoto–Sivashin-
sky equations has inspired their use as a more general framework to model systems displaying complex spatiotemporal fea-
tures, such as phase-ordering and coarsening [48,39,47], and pattern formation [42,18]. Under certain conditions, some of
these equations may exhibit a chaotic behaviour, or weak turbulence [40,19,50,44]. From the simulation perspective, the chal-
lenge stems from the fact that non-trivial problems based on this type of equations are potentially very stiff and rich in spa-
tial and temporal scales. The crucial consequence of this multiscale nature is that suitable numerical schemes must address
the spatial and temporal discretizations specifically, since critical sources of stiffness may arise from either of them, thus
compromising the accuracy and efficiency of the simulations.

For the Cahn–Hilliard equation, a number of finite element formulations have been proposed [20–22,6,7,23], in addition
to finite difference schemes [46,25], spectral methods [28] and, more recently, discontinuous Galerkin schemes [49,12,51]
and multigrid procedures [31,33]. The analysis of the Kuramoto–Sivashinsky equations has been mostly focused on the char-
acterization of its dynamical properties, rather than on practical numerical simulation aspects, and thus most authors have
used finite differences and spectral methods [40,19,42,18,50,44,1,30]. More recently, a discontinuous Galerkin method has
been proposed for the one-dimensional KS equation [52]. To the authors’ knowledge, there is no previous work on finite vol-
ume methods on general grids for these equations.
. All rights reserved.
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This paper presents a complete numerical method for the Cahn–Hilliard and Kuramoto–Sivashinsky type of equations.
These equations are nonlinear, fourth order PDE’s, and their solutions inherently unsteady. The spatial discretization is car-
ried out using a high-order finite volume method, suitable for general, unstructured grids. The time integration is addressed
by means of implicit an implicit–explicit fourth order Runge–Kutta schemes, with error control and adaptive time-stepping.
The outcome is a practical, accurate and efficient simulation tool, which has been successfully applied to convergence tests
and representative simulations.

The proposed spatial discretization is an extension of a high-order unstructured-grid finite volume method for convec-
tion-dominated flows developed by the authors [15–17]. The key ingredient of this scheme is a high-order global approxi-
mation framework, constructed using Moving Least-Squares (MLS) [36,37], which provides a continuous representation of
the solution. The reconstructed solution possesses high regularity, which allows a simple and efficient discretization of non-
linear equations with high-order terms.

A suitable time integrator is required to address two distinctive sources of stiffness in the numerical solution of these
equations. Firstly, the presence of high-order terms, and in particular the fourth order ones, which induce a very severe
OðDx4Þ stability restriction over the explicit time step, thus precluding the use of explicit integrators for representative sim-
ulations. Secondly, phase separation processes governed by the Cahn–Hilliard model include another challenging source of
stiffness, which stems from their complex dynamical behaviour, and in particular from the fact that the solutions are very
rich in temporal scales. Starting from a homogeneous, disordered state, and after an initial transient of intense phase sepa-
ration, it is easy to identify cycles of short periods of time when the solution changes abruptly, followed by long periods of
slow grain coarsening. The severity of this characteristic phenomenology varies with time and the number of spatial dimen-
sions, and can be exacerbated by some model parameters.

The important practical consequence is the efficiency collapse of any time integration strategy that lacks quality error con-
trol and time step adaptivity. Surprisingly, error control has been almost absent in the literature about numerical methods for
the Cahn–Hilliard equation. Most of the existing schemes address the stiffness induced by the high-order terms through the
use of implicit or semi-implicit integrators but, to the extent of our knowledge, there is no previous work on a systematic
approach for error control and adaptive time-stepping in this context. Actually, most schemes assume constant time steps
or use heuristic procedures whereby the time step is modified a few times during the simulation. Some authors have pro-
posed to use time integration methods with enhanced stability properties, which may allow larger time steps. This approach,
on the other hand, compromises the accuracy and the efficiency of the scheme, due to the lack of error control and to the fact
that very long time steps may lead to slow/no convergence of the Newton iterations. The use of adaptive time-stepping is of
paramount importance in this context, since an adaptive method may be several orders of magnitude more efficient than
other schemes using constant or heuristic time steps.

An interesting feature of the proposed spatial discretization is that the semi-discretized problem reduces to a system of
ODE’s, and therefore the application of standard implicit an implicit–explicit Runge–Kutta integrators [8,32] is straightfor-
ward, which allows systematic and rigorous error control and adaptive time-stepping. In addition, the time-adaptive proce-
dure provides a quantitative characterization of the different time scales present in phase separation processes.

The outline of the paper is as follows: Section 2 presents the one- and two-dimensional model equations. Section 3 is a
general introduction to the proposed finite volume method, which is particularized for the Cahn–Hilliard and Kuramoto–
Sivashinsky equations in Section 4. Section 5 is devoted to the time integration techniques used in this study, as well as
to their practical implementation in the present context. Accuracy tests and ‘‘canonical” characterizations of the solutions
are presented in Section 6, whereas Section 7 presents more representative, two-dimensional simulations. Finally, our main
conclusions are drawn in Section 8.
2. Model equations

2.1. The Cahn–Hilliard equation

The Cahn–Hilliard equation was originally proposed as a model for phase separation after quenching of binary alloys [10],
and nowadays constitutes a more general framework in the study of phase-ordering and coarsening phenomena. Transport
of mass in a binary mixture seems to behave as if it was governed by the parabolic equation [10]
oc
ot
¼ r � ðBðcÞrð�cDc þW0ðcÞÞÞ ð1Þ
where c 2 ½0;1�, or c 2 ½�1;þ1�, depending on the interpretation given to the state variable, c. In the above equation, BðcÞP 0
is the diffusion mobility, and c is a positive constant. This problem statement is supplemented with suitable initial and
boundary conditions. The model of Cahn and Hilliard is based on a Ginzburg–Landau free energy functional of the form
EðcÞ ¼
Z

X

c
2
jrcj2 þWðcÞ

� �
dx ð2Þ
The first term in (2) penalizes large gradients and models capillary effects, while the second term is the homogeneous free
energy. Two common expressions for W are [10]
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WðcÞ ¼ 1
4
ð1� cÞ2c2

WðcÞ ¼ h
2
ðc ln c þ ð1� cÞ lnð1� cÞÞ þ F0ðcÞ ð3Þ
with a smooth function F0ðcÞ; typically F0ðcÞ ¼ h0cð1� cÞ. Thermodynamical considerations suggest mobilities of the form
BðcÞ ¼ cð1� cÞ ð4Þ
The above definitions correspond to c 2 ½0;1�. Phenomenologically, the Cahn–Hilliard equation is a model for nucleation and
growth of droplets of the minority phase in a binary mixture (Ostwald ripening), under cooling from a homogeneous, high-
temperature state, to a point within the coexistence region [47].

2.2. Kuramoto–Sivashinsky-type equations

2.2.1. One-dimensional case
Our model problem in 1D is the Kuramoto–Sivashinsky equation
ou
ot
þ o

ox
1
2

u2

� �
þ o2u

ox2 þ m
o4u
ox4 ¼ 0 ð5Þ
with suitable initial and boundary conditions. Arising in the context of chemical phase turbulence [34] and flame front insta-
bilities [43], this equation has been used as a canonical model to understand the basic features of nonlinear systems display-
ing complex spatiotemporal features and pattern formation. For sufficiently large domains, the solutions of the above
equation display chaotic behaviour, or weak turbulence [40,19,50,44].

2.2.2. Two-dimensional model problem
In two dimensions we focus on the damped Kuramoto–Sivashinsky equation
ou
ot
þr � ðruþrðDuÞÞ ¼ �auþ jruj2 ð6Þ
This equation has been studied as a model for systems characterized by the spontaneous appearance of coherent organized
patterns (cellular states), when the initially unorganized system is driven away from thermodynamic equilibrium [42,18]. An
important finding is the characterization of secondary instabilities that may destroy these organized structures, ultimately
driving the system to spatiotemporal chaos [40,19,42,18].

3. Spatial discretization: a finite volume method based on multiresolution reproducing kernels

3.1. Overview

There has been extensive interest in the numerical simulation of systems governed by nonlinear, fourth order PDE’s. For
the Cahn–Hilliard equation, a number of finite element formulations have been proposed [20–22,6,7,23], in addition to finite
difference schemes [46,25], spectral methods [28] and, more recently, discontinuous Galerkin schemes [49,12,51]. Advanced
topics concerning spatial discretization, such as multigrid approaches, have also been analyzed [31,33]. The analysis of the
Kuramoto–Sivashinsky equation has been mostly focused on the characterization of its dynamical properties, rather than on
numerical simulation aspects, and thus most authors have used finite differences and spectral methods on simple domains
[40,19,42,18,50,44,1,30]. More recently, a discontinuous Galerkin method has been proposed for the one-dimensional KS
equation [52].

The following paragraphs introduce the proposed finite volume discretization, as well as the approximation technique
used to reconstruct the solution. The specific application of this general formulation to the Cahn–Hilliard and Kuramoto–
Sivashinsky equations is subsequently addressed.

The proposed spatial discretization is an extension of a high-order unstructured-grid finite volume method for convec-
tion-dominated flows developed by the authors [15–17]. The key ingredient of this scheme is a high-order global approxi-
mation framework, which provides a continuous representation of the solution. The reconstructed solution possesses high
regularity, which allows a simple and efficient discretization of equations with high-order terms.

The usual approach of high-order finite volume schemes is pragmatic and bottom-up. Starting from an underlying piece-
wise constant representation, a discontinuous reconstruction of the field variables is performed at the cell level. An impor-
tant practical consequence is that the discretization of higher order terms requires some kind of recovery procedure, which is,
almost invariably, inconsistent with the aforementioned reconstruction. Our approach is somewhat the opposite. We start
from a high-order and highly regular representation of the solution, obtained by means of Moving Least-Squares approxima-
tion [36,37], and well suited for general, unstructured grids. This approach is directly suitable for the discretization of ellip-
tic/parabolic equations and high-order spatial terms. For equations with a predominantly hyperbolic character, the global
representation is broken locally, at the cell level, into a piecewise polynomial reconstruction, which allows to use the pow-
erful finite volume technology of Godunov-type schemes for hyperbolic problems (e.g. Riemann solvers, limiters) [16,17].
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The presentation of the scheme will retain this general dual functional representation of the solution, which is fully prac-
tical for convection-dominated problems. In the present context, however, the equations to be solved include powerful dis-
sipative mechanisms which, therefore, suggest the direct and centered reconstruction of the fluxes at the control volume
edges. The proposed discretization of the Cahn–Hilliard and Kuramoto–Sivashinsky equations, which is presented in Section
4, follows this latter approach.

3.2. General formulation

Consider a system of conservation laws of the form
ou
ot
þr � ðFH þFEÞ ¼ S in X ð7Þ
supplemented with suitable initial and boundary conditions. The fluxes have been generically split into a hyperbolic-like
part, FH , and an elliptic-like part, FE. Consider, in addition, a partition of the domain X into a set of non-overlapping control
volumes or cells, T h ¼ I. Furthermore, we define a reference point (node), xI inside each cell (the cell centroid).

The spatial representation of the solution is as follows: consider a function uðxÞ, given by its point values, uI ¼ uðxIÞ, at the
cell centroids, with coordinates xI . The approximate function uhðxÞ belongs to the subspace spanned by a set of basis functions
fNIðxÞg associated to the nodes, such that uhðxÞ is given by
uhðxÞ ¼
Xnx

j¼1

NjðxÞuj ð8Þ
which states that the approximation at a point x is computed using certain nx surrounding nodes. This set of nodes is referred
to as the cloud or stencil associated to the evaluation point x. In particular, the above approximation is constructed using
Moving Least-Squares (MLS) approximation [36,37]. An brief introduction to this technique will be presented below. Note
that, using MLS, the approximate function uhðxÞ is not a polynomial in general. An interesting feature of this MLS approach
is the centered character of the approximation, thus avoiding the spatial bias which is often found in patch-based piecewise
polynomial interpolations.

Consider now the integral form of the system of conservation laws (7) which, for each control volume I, reads
Z
XI

ou
ot

dXþ
Z

CI

ðFH þFEÞ � ndC ¼
Z

XI

S dX ð9Þ
Introducing the component-wise reconstructed function uh, the spatially discretized counterpart of (9) reads
Z
XI

ouh

ot
dXþ

Z
CI

ðFhH þFhEÞ � ndC ¼
Z

XI

Sh dX ð10Þ
A direct evaluation of the fluxes in (10) is possible and efficient when the inherent dissipation mechanism is strong enough
to overpower the convective terms. In convection-dominated problems, where the character of the equations is predomi-
nantly hyperbolic, this centered approach can lead to unstable computations. For this latter type of problems, we introduce
a ‘‘broken” reconstruction, uhb

I , which approximates uhðxÞ (and, therefore, uðxÞ) locally inside each cell I, and is discontinuous
across cell interfaces [17,16]. In general, we require the order of accuracy of the broken reconstruction to be the same as that
of the original continuous reconstruction. One possible choice is to use Taylor series expansions; a quadratic reconstruction
inside cell I, for example, would read
uhb
I ðxÞ ¼ uh

I þruh
I � ðx� xIÞ þ

1
2
ðx� xIÞTHhðx� xIÞ ð11Þ
where the gradientruh
I and the Hessian matrix Hh involve the successive derivatives of the continuous reconstruction uhðxÞ,

which are evaluated at the cell centroids using MLS. This dual continuous/discontinuous reconstruction of the solution is
crucial in order to obtain accurate and efficient numerical schemes for mixed parabolic/hyperbolic problems. The cell-wise
broken reconstruction defined here is actually a piecewise continuous approximation to uh. The advantage is that it allows to
make use of Riemann solvers, limiters, and other standard finite volume technologies, while keeping some consistency in
terms of functional representation. Thus, the general continuous reconstruction is used to evaluate the viscous (elliptic-like)
fluxes, whereas its discontinuous approximation is used to evaluate the inviscid (hyperbolic-like) fluxes.

The final semidiscrete scheme for the continuous/discontinuous approach can be written as
Z
XI

ouh

ot
dXþ

Z
CI

Hðuhbþ;uhb�ÞdCþ
Z

CI

FhE � ndC ¼
Z

XI

Sh dX ð12Þ
where Hðuhbþ;uhb�Þ is a suitable numerical flux. Note that our dual reconstruction procedure induces a non-diagonal mass
matrix. Most existing finite volume schemes recover, in principle, the diagonal structure of the mass matrix by enforcing
reconstructions that preserve the mean. It is not clear whether this argument holds when elliptic terms are present, due to
the ‘‘pragmatic” recovery approach. In our case, the structure of the consistent mass matrix is of the form M ¼ fmijg, where
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mij ¼
Z

Xi

NjðxÞdX ð13Þ
An evaluation of the proposed scheme for convection-dominated problems can be found in [16,17].

3.3. Moving Least-Squares reproducing kernel approximations

This section presents a brief introduction to the theory and implementation of Moving Least-Squares (MLS) approxima-
tions. For a more detailed description of the algorithms, the reader is referred to classical references (e.g. [36,37]) and, within
the present context, to previous works by the authors [15–17].

Moving Least-Squares approximate a function u(x), at a given point x inside a domain X, through a weighted least-squares
fitting of u(x) in a neighborhood of x, as
uðxÞ � ûðxÞ ¼
Xm

i¼1

piðxÞaiðzÞjz¼x ¼ pTðxÞaðzÞjz¼x ð14Þ
where pTðxÞ is an m-dimensional basis of functions (usually polynomials), and aðzÞjz¼x is a set of parameters to be deter-
mined, and such that they minimize the error functional
JðaðzÞjz¼xÞ ¼
Z

y2Xx

Wðz � y; hÞjz¼x½uðyÞ � pTðyÞaðzÞjz¼x�
2 dXx ð15Þ
The kernel or weighting function Wðz � y;hÞjz¼x, with compact support Xx centered at z ¼ x, plays an important role in the
compactness and other characteristics of the approximation. Note that, even if all the basis functions in pTðxÞ are polynomi-
als, the reconstructed function ûðxÞ is not a polynomial in general.

An important parameter in the above approximation framework is the characteristic length of the reconstruction, the so-
called smoothing length, h, which represents a certain characteristic measure of the size of the support Xx (e.g. kernels with
circular supports of radius 2h). We use the cubic spline
Wðx� y;hÞ ¼
1� 3

2 s2 þ 3
4 s3 s 6 1

1
4 ð2� sÞ3 1 < s 6 2
0 s > 2

8><>: ð16Þ
where s ¼ jx�yj
h . The minimization of J with respect to the set of parameters a leads to the expression
Z

y2Xx

pðyÞWðz � y; hÞjz¼xuðyÞdXx ¼MðxÞaðzÞjz¼x ð17Þ
where the moment matrix M(x) is defined as
MðxÞ ¼
Z

y2Xx

pðyÞWðz � y;hÞjz¼xpTðyÞdXx ð18Þ
At the discrete level, the pointwise value of u(x) is given at a number of scattered locations in X, which are often referred to
as particles or nodes. In order to derive a practical approximation method, the above integrals are evaluated using nodal inte-
gration and, given the compact support of the kernel, only those nodes inside Xx are involved as quadrature points. Thus, the
set of parameters a that minimize the functional J are given by
aðzÞjz¼x ¼M�1ðxÞPXx WðxÞuXx ð19Þ
where the vector uXx contains the pointwise values of the function to be reproduced, u(x), at the nx particles inside Xx
uXx ¼ ðuðx1Þ uðx2Þ . . . uðxnxÞ Þ
T ð20Þ
The moment matrix, M, which is an ðm�mÞ matrix, is given by MðxÞ ¼ PXx WðxÞPT
Xx

, and the matrices PXx and WðxÞ, whose
dimensions are, respectively, ðm� nxÞ and ðnx � nxÞ, can be obtained as
PXx ¼ ðpðx1Þ pðx2Þ . . . pðxnxÞ Þ ð21Þ
WðxÞ ¼ diagfWiðx� xiÞg; i ¼ 1; . . . ; nx ð22Þ
Introducing (19) in (14), the interpolation structure can be identified as
ûðxÞ ¼
Xnx

j¼1

NjðxÞuj ¼ NTðxÞuXx ¼ pTðxÞM�1ðxÞPXx WðxÞuXx ð23Þ
In analogy to finite elements, the approximation was written in terms of the MLS ‘‘shape functions”
NTðxÞ ¼ pTðxÞM�1ðxÞPXx WðxÞ ð24Þ
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where NjðxÞ can be seen as the shape function associated to node j.
The basis of functions used in this study comprise scaled and locally defined monomials. Thus, in order to reconstruct a

one-dimensional function at a location xI , we use basis of the form
pðxÞ ¼ 1 x�xI
h

x�xI
h

� �2
. . . x�xI

h

� �p
� �T

ð25Þ
The functional basis pðxÞ is strongly related to the accuracy of the MLS fit. For a pth order MLS fit (pth order complete poly-
nomial basis) and general, irregularly spaced points, the nominal order of accuracy for the approximation of an sth order
gradient is roughly ðp� sþ 1Þ. In general, any linear combination of the functions included in the basis is exactly reproduced
by the MLS approximation. In multidimensions we follow the same idea of p-complete basis, constructed using products of
scaled and locally defined monomials. The resulting MLS shape functions read
NTðxIÞ ¼ pTð0ÞCðxIÞ ¼ pTð0ÞM�1ðxIÞPXxI
WðxIÞ ð26Þ
where C(x) is defined as
CðxÞ ¼M�1ðxÞPXx WðxÞ ð27Þ
The approximate derivatives of u(x) can be expressed in terms of the derivatives of the MLS shape functions, which are func-
tions of the derivatives of the polynomial basis p x�xI

h

� �
and the derivatives of C(x) [15–17]. For example, the first and second

order derivatives of u(x), evaluated at xI , are given by
ouðxÞ
oxa

����
x¼xI

�
XnxI

j¼1

uj
oNjðxÞ
oxa

�����
x¼xI

o2uðxÞ
oxaoxb

�����
x¼xI

�
XnxI

j¼1

uj
o2NjðxÞ
oxaoxb

�����
x¼xI

ð28Þ
The MLS shape functions are data independent and, therefore, for fixed grids they need to be computed only once at the pre-
processing phase. In order to prevent the moment matrix M from being singular or ill-conditioned, the cloud of neighbors
must fulfill certain ‘‘good neighborhood” requirements. The definition of the cloud (the MLS stencil) for each evaluation point
is a crucial issue that requires careful attention. The selection process must be suitable for general unstructured grids, and
the stencil should be as compact as possible for the sake of computational efficiency and physical meaning. Note that these
stencils are typically centered around the node, and thus the MLS approximation avoids the spatial bias which is often found
in patch-based piecewise polynomial approximations.

Once the cloud of neighbor centroids has been determined, the smoothing length h for isotropic kernels (radial weighting)
is set to be proportional to the maximum distance between the evaluation point xI and its neighbors, as
h ¼ k maxðkxj � xIkÞ ð29Þ
where typically k � 0:6 (recall that, using radial weighting, the support of the kernel expands over a circle of radius 2h). For
anisotropic or highly irregular grids it is more convenient to use anisotropic (tensor-product) kernels [17].

3.4. Stencils

The definition of the clouds or approximation stencils for the different evaluation points is probably the most prominent
practical issue in the implementation of the proposed scheme, as it has a direct impact on the full stencil of the finite volume
method; i.e. how many couplings a given cell will have or, from a more practical perspective, the number of non-zero entries
in each row of the Jacobian matrix.

We shall consider two aspects of the stencil definition: firstly, the MLS stencils, or which neighbor nodes are used to com-
pute the MLS shape functions at a given location (centroid or edge quadrature point); and, secondly, the full stencil of the
finite volume scheme which, in the present context, comprises the union of the stencils associated to all the quadrature
points on a given control volume.

The one-dimensional case does not require special attention. Whenever a cloud of n nodes is mentioned, we refer to the n
nearest nodes. In multidimensions the choice is not straightforward, and the most reasonable strategy is to design the stencil
for each MLS order p separately. In the examples presented below we use cubic approximation, and therefore the present
analysis is restricted to p ¼ 3. The trivial choice is to look for the n nearest neighbors, with n is slightly higher than the min-
imum to construct a p-complete polynomial basis (10 for p ¼ 3 in 2D). Another option, and the one chosen here, is to con-
struct the clouds using grid-based vicinity arguments.

3.4.1. p ¼ 3 MLS stencils: I. Centroids
Fig. 1 presents the stencil used to compute the p ¼ 3 MLS shape functions at the cell centroids. For and interior cell I, the

stencil comprises its first and second neighbors (by neighbors we mean cells that share an edge). This gives a 13-point sten-
cil. For boundary cells the stencil comprises those cells that share a vertex with the cell and their first neighbors. A stronger
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enforcement of the boundary conditions is achieved through the introduction of a set of ‘‘zero area” cells attached to the
boundary (an approach analogous to the use of so-called ghost cells). Note that the centroids of these boundary cells, i.e.
the midpoints of those edges lying on the boundary, have been included in the above stencils. During the simulation, the
variables at these locations will be either extrapolated or assigned a certain value, depending on the type of boundary con-
dition to be enforced.

3.4.2. p ¼ 3 MLS stencils: II. Edges
Fig. 2 presents the stencil to compute the p ¼ 3 MLS shape functions at the edge quadrature points. Given a quadrature

point lying in the interface between cells A and B, its stencil comprises those cells sharing the extremum vertices of the edge,
Fig. 2. p ¼ 3 MLS stencil: quadrature points on edges.



Fig. 3. Full stencil of the finite volume scheme (MLS order p ¼ 3).
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and their first neighbors. If both vertices are shared by four cells, this is a 16-point stencil. For boundary cells we also include
the neighbors of the edge opposite to the boundary, and the corresponding ghost cells.

3.4.3. Full stencil of the finite volume scheme
The proposed finite volume scheme for the Cahn–Hilliard and Kuramoto–Sivashinsky equations introduces couplings

only through terms which are computed using quantities evaluated directly at the edge quadrature points. Therefore, the
full stencil of the discretization is obtained as the union of the MLS stencils associated to all the edges of cell I. Fig. 3 depicts
the p ¼ 3 stencil for interior cells, which comprises 21 cells. Note that, quite the opposite to what is usually thought about
finite volume schemes, this stencil is actually quite compact for a cubic reconstruction.

3.5. Accuracy of the finite volume scheme

The MLS technique will be used to approximate the successive derivatives of the solution at the edges of the control vol-
umes. Therefore, we expect that, for fluxes involving derivatives up to nth order, and using MLS approximations or order p
(order of accuracy pþ 1), the truncation error of the resulting finite volume scheme will be of order ðpþ 1Þ � ðn� 1Þ. Thus, in
the present context (fourth order equations and third order fluxes, n ¼ 3), the finite volume schemes are expected to be of
order p� 1. These convergence estimates will be checked and confirmed numerically in Section 6.

4. Proposed finite volume discretization of the Cahn–Hilliard and Kuramoto–Sivashinsky type of equations

4.1. Cahn–Hilliard equation

The integral form of the conservation law (1) reads, for each control volume I,
Z
XI

oc
ot

dX�
Z

CI

BðcÞrð�cDc þW0ðcÞÞ � ndC ¼ 0 ð30Þ
Making use of the general MLS approximation
chðxÞ ¼
Xnx

j¼1

NjðxÞcj ð31Þ
the semidiscrete version of (30) reads
Z
XI

och

ot
dX�

Z
CI

BðchÞrð�cDch þW0ðchÞÞ � ndC ¼ 0 ð32Þ
which can be compactly written as a system of ODE’s of the form
M
dc
dt
þ Rh ¼ 0 ð33Þ
where the components of the residual (associated to each cell i), Rh
i , which arise from the discretization of the line integral in

(32), are given by
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Rh
i ¼

Xne

ie

Xng

ig

f h
ig � nigxig ð34Þ
in terms of the discrete fluxes
f h
ig � nig ¼ �½BðchÞrð�cDch þW0ðchÞÞ�ig � nig ð35Þ
In the above expressions, ne denotes the number of edges of the control volume, and ng is the number of edge quad-
rature points, with weights fxig; ig ¼ 1; . . . ;ngg. Due to the presence of the third order derivatives of the solution, the
challenge for any unstructured-grid finite volume scheme is the approximation of the flux f � n at each quadrature point.
This is precisely the crucial feature of our scheme. Using MLS approximation we can compute the numerical fluxes un-
iquely, and accurately, at the quadrature points, within a quite general geometrical setting which is well suited for
unstructured meshes.

Considering a constant value of c, the two-dimensional discrete flux is given by
f h � n ¼ �BðchÞ
�c o3ch

ox3 þ o3ch

oy2ox

� �
þ oW0ðchÞ

ox

�c o3ch

ox2oyþ
o3ch

oy3

� �
þ oW0ðchÞ

oy

0B@
1CA � n ð36Þ
where the h superscript denotes MLS-approximated value, in the sense provided by (31). Recall that, for a given quadrature
point ig, the general expression (31) particularizes as
cig ¼
Xn

j¼1

NjðxigÞcj ð37Þ
where the summation extends over the stencil associated to the quadrature point, which has coordinates xig. The discrete
mobilities in (36) are directly computed as Big ¼ BðcigÞ. It follows from the MLS approximation (31) that the approximate
third order derivatives of the concentrations can be expressed in terms of the third order derivatives of the MLS shape func-
tions, as
o3ch

oxaoyb

�����
ig

¼
Xn

j¼1

o3Nj

oxaoyb

�����
ig

cj; aþ b ¼ 3; a P 0; b P 0 ð38Þ
We analyzed two different formulations for the free energy terms,rW0ðchÞ. The first one, which is consistent with a weighted
residuals formulation, stems from the fact that
rW0ðcÞ ¼ W00ðcÞrc ð39Þ
Thus, introducing the approximate concentrations ch in the above expression, a suitable consistent discretization reads
rW0ðchÞ ¼ W00ðchÞrch ð40Þ
Another option is to use a group representation, whereby W0 is first computed at the nodes, and then its gradient is evaluated
at the edge quadrature points, according to
oW0ðcÞ
ox

����
ig
¼
Xn

j¼1

oNj

ox

�����
ig

W0ðcjÞ;
oW0ðcÞ

oy

����
ig
¼
Xn

j¼1

oNj

oy

�����
ig

W0ðcjÞ ð41Þ
which implies that we assume rW0ðchÞ � rW0hðcÞ. This fact induces an inconsistency with the weighted residuals formula-
tion, due to the commutation error, but in practice this latter form yields slightly more accurate results.

The OðDx4Þ time step stability limit precludes the use of explicit time-stepping for practical purposes. Fully implicit ap-
proaches, as the one adopted in this study, require the linearization of the fluxes (36) The use of MLS approximants, with its
shape function structure, allows a simple definition of the Jacobian. In particular, the components of the Jacobian J ¼ fJijg are
given by
Jij ¼
X

ig

of ig

ocj
� nigxig ð42Þ
where the summation extends over all the quadrature points on all the edges of the control volume. For the consistent fluxes
we have
of ig

ocj
¼ �BðcigÞ

�c o3Nj

ox3 þ
o3Nj

oy2ox

� �
þW000Nj

oc
oxþW00 oNj

ox

�c o3Nj

ox2oyþ
o3Nj

oy3

� �
þW000Nj

oc
oyþW00 oNj

oy

0B@
1CA

ig

� B0ðcigÞNjðxigÞ
�c o3c

ox3 þ o3c
oy2ox

� �
þW00 oc

ox

�c o3c
ox2oyþ

o3c
oy3

� �
þW00 oc

oy

0B@
1CA

ig

ð43Þ
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whereas for the inconsistent ones,
of ig

ocj
¼ �BðcigÞ

�c o3Nj

ox3 þ
o3Nj

oy2ox

� �
þW00ðcjÞ

oNj

ox

�c o3Nj

ox2oyþ
o3Nj

oy3

� �
þW00ðcjÞ

oNj

oy

0B@
1CA

ig

� B0ðcigÞNjðxigÞ
�c o3c

ox3 þ o3c
oy2ox

� �
þ oW0 ðcÞ

ox

�c o3c
ox2oyþ

o3c
oy3

� �
þ oW0ðcÞ

oy

0B@
1CA

ig

ð44Þ
It follows from the compact support of the MLS shape functions that the above derivatives of ig

ocj
are different from zero if,

and only if, the node j belongs to the stencil of the quadrature point ig.

4.2. Kuramoto–Sivashinsky equation

4.2.1. One-dimensional model
Our model problem in 1D is the Kuramoto–Sivashinsky equation
ou
ot
þ o

ox
1
2

u2
� �

þ o2u
ox2 þ m

o4u
ox4 ¼ 0; x 2 ½a; b� ð45Þ
with suitable initial and boundary conditions. The finite volume framework stems from the integral form of the conservation
law (45) over each control volume XI
Z

XI

ou
ot

dxþ
Z

XI

o

ox
1
2

u2
� �

þ o2u
ox2 þ m

o4u
ox4

( )
dx ¼ 0 ð46Þ
Using the divergence theorem, the above expression is equivalent to
Z
XI

ou
ot

dxþ
Z

CI

1
2

u2 þ ou
ox
þ m

o3u
ox3

( )
ndx ¼ 0 ð47Þ
where CI is the boundary of XI . The spatial discretization of (47) is again constructed by means of MLS reconstruction oper-
ators, as
uhðxÞ ¼
Xnx

j¼1

NðxÞuj ð48Þ
Introducing the above discrete representation of the solution uh into (47) yields
Z
XI

ouh

ot
dxþ

Z
CI

1
2
ðuhÞ2 þ ouh

ox
þ m

o3uh

ox3

( )
dx ¼ 0 ð49Þ
Thus, the semi-discretized finite volume equations read
M
du
dt
þ Rh ¼ 0 ð50Þ
where the components of the residual (associated to each control volume) can be written as
Rh
i ¼

1
2
ðuhÞ2 þ ouh

ox
þ m

o3uh

ox3

" #
iþ1

2

� 1
2
ðuhÞ2 þ ouh

ox
þ m

o3uh

ox3

" #
i�1

2

ð51Þ
The discrete derivatives are once more computed in terms of the MLS shape functions and the cell values, as
ouh

ox
¼
Xn

j¼1

oNj

ox
uj;

o3uh

ox3 ¼
Xn

j¼1

o3Nj

ox3 uj ð52Þ
4.2.2. Two-dimensional model
Our model problem in two dimensions is the damped Kuramoto–Sivashinsky equation
ou
ot
þr � ðruþrðDuÞÞ ¼ �auþ jruj2 ð53Þ
which has been extensively analyzed as a paradigm in dissipative systems [42,18]. The integral form of (53) reads, after
applying the divergence theorem,
Z

XI

ou
ot

dxþ
Z

CI

ðruþrðDuÞÞ � nds ¼
Z

XI

ð�auþ jruj2Þdx ð54Þ
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Making use again of the MLS approximation, the spatially discretized problem can be expressed as
Z
XI

ouh

ot
dxþ

Z
CI

ðruh þrðDuhÞÞ � nds ¼
Z

XI

ð�auh þ jruhj2Þdx ð55Þ
which, written in compact notation as a system of ODE’s, reads
M
du
dt
þ Rh ¼ Sh ð56Þ
where the terms arising from the line integrals, Rh
i , are given by
Rh
i ¼

Xne

ie

Xng

ig

o3uh

ox3 þ o3uh

oy2oxþ
ouh

ox

o3uh

ox2oyþ
o3uh

oy3 þ ouh

oy

0@ 1A
ig

� nigxig ð57Þ
and a second order approximation to the source term can be readily computed as
Sh
i ¼ ð�auh þ jruhj2ÞiAi ð58Þ
where Ai is the area of the control volume. For higher order schemes, a more accurate quadrature rule is required.

5. Time integration: Runge–Kutta pairs and error control for stiff ODE’s

5.1. Overview

The numerical solution of the Cahn–Hilliard and Kuramoto–Sivashinsky type of equations leads to very stiff, unsteady prob-
lems. It is interesting to identify two distinctive sources of stiffness, which ultimately determine the characteristics and
requirements of practical time integration approaches. Firstly, the presence of high-order terms, and in particular the fourth
order ones, which induce a very severe OðDx4Þ stability restriction over the explicit time step. This suggests (requires) the use of
implicit or implicit–explicit time-stepping procedures, and precludes the use of explicit integrators for representative simu-
lations. Somewhat included in this first source of stiffness is the grid induced stiffness, which arises from the presence of areas
of intense grid clustering. To a wide extent, all the above can be addressed by means of more or less standard approaches for
stiff ODE’s (e.g. stiffly accurate implicit or semi-implicit schemes), with all their (real or potential) failures and successes.

Phase separation processes governed by the Cahn–Hilliard model include another challenging source of stiffness, which
stems from their complex dynamical behaviour, and in particular from the fact that the solutions are extremely rich in tem-
poral scales. Starting from a homogeneous, disordered state, and after an initial transient of intense phase separation, it is
easy to identify cycles of short periods of time when the solution changes abruptly, followed by long periods of slow grain
coarsening. The severity of this characteristic phenomenology varies with time and the number of spatial dimensions, and
can be exacerbated by some model parameters.

The efficiency and accuracy of any numerical scheme for the Cahn–Hilliard equation can be seriously compromised if its
multiscale nature is not properly addressed. Perhaps the most natural approach, and the one adopted in this study, is to rely
on error control and adaptive time step selection techniques. Surprisingly, error control has been almost absent in the litera-
ture about numerical methods for the Cahn–Hilliard equation. Most of the existing schemes address the stiffness induced by
the high-order terms thorough the use of implicit or semi-implicit integrators but, to the extent of our knowledge, the is no
previous work on a systematic approach for error control and adaptive time-stepping in this context. Actually, most schemes
assume constant time steps or use heuristic procedures whereby the time step is modified a few times during the simulation.
Some authors have proposed to use time integration methods with enhanced stability properties, which may allow larger
time steps. This approach, on the other hand, compromises the accuracy and the efficiency of the scheme, due to the lack
of error control and to the fact that very long time steps may lead to slow/no convergence of the Newton iterations.

High-order Runge–Kutta methods are particularly interesting in this context. Their theoretical foundations are extensive
and sound, allowing the design of stable, high-order accurate, ‘‘complete” schemes, in the sense that, in addition to good
accuracy and stability properties, the designer also provides embedded methods (which allow for accurate error control
and adaptive step size selection), dense output formulas, and stage-value predictors [32]. A key feature for our analysis is
that, being multistage methods, they are naturally suited for variable step sizes.

The straightforward group of candidate schemes is that of implicit Runge–Kutta methods (IRK). For the sake of efficiency,
storage and implementation, we may favor the diagonally implicit (DIRK) subset. Of particular interest is the case when the
stiff terms are linear, which is the case of the Kuramoto–Sivashinsky equation. Under these conditions, it may be extremely
advantageous to split the equations into its stiff and nonstiff components, and treat each of them separately. In particular, the
nonlinear, nonstiff terms are integrated using a suitable explicit scheme, whereas the linear, stiff terms and integrated using
and implicit scheme. The idea of partitioned or additive Runge–Kutta schemes (ARK) [13,14,32,38,3,11,5,9] appears in this con-
text, giving rise to the class of implicit–explicit (IMEX) Runge–Kutta schemes. More precisely, when the stiff part is linear
these methods are oftentimes referred to as linearly implicit Runge–Kutta schemes.
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Multistep methods are also an obvious choice, both for the fully implicit and implicit–explicit cases [4,24]. In this study,
we have only considered Runge–Kutta schemes due to their superior flexibility in terms of error and step size control. The
following sections present an introduction to the aforementioned implicit and additive Runge–Kutta schemes, and their spe-
cific application to the Cahn–Hilliard and Kuramoto–Sivashinsky equations, respectively. Not that a class of multistep impli-
cit–explicit BDF methods has already been proposed for the time integration of the KS equation [1].

5.2. General formulation

Let us consider a system of ODE’s of the form
dU
dt
¼ f ðt;UÞ ð59Þ
One step of an s-stage Runge–Kutta scheme can be written as
Unþ1 ¼ Un þ Dt
Xs

i¼1

biki; ki ¼ f ðtn þ ci Dt;U iÞ ð60Þ
with stage values
U i ¼ Un þ Dt
Xs

j¼1

aijkj ð61Þ
In the above expressions, Dt is the time step, and A ¼ faijg 2 Rs�s; b 2 Rs and c 2 Rs are the characteristic coefficients of each
given Runge–Kutta scheme, which can be compactly written using the so-called Butcher tableau

The consistency vector c defines the points (in time) at which the method computes approximations to the initial value prob-
lem, so that the stage values can be seen as U i � Uðtn þ ci DtÞ. The row sum condition
ci ¼
Xs

j¼1

aij 8i ¼ 1; . . . ; s ð62Þ
is usually adopted to simplify the order conditions for high-order methods. Explicit schemes are characterized by
faij ¼ 0 8j P ig. The second set of coefficients fb̂i; i ¼ 1; . . . ; sg corresponds to the embedded scheme, which is used for error
estimation.

5.3. Diagonally implicit schemes: application to the Cahn–Hilliard equation

Consider Runge–Kutta schemes with Butcher tableaux of the form [2,8]



These schemes are referred to as explicit first step, single diagonal coefficient, diagonally implicit Runge–Kutta (ESDIRK) meth-
ods. Each stage value of an ESDIRK scheme is at least second-order accurate. The stiffly accurate assumption ðas;j ¼ bj
8j ¼ 1; . . . ; sÞ is frequently adopted, which extends A-stability into L-stability [8]. In this study we use the ESDIRK4 scheme
presented in [8], which allows straightforward error control and adaptivetime-stepping through the embedded scheme. The
efficiency of the integrator for nonlinear problems can be enhanced by the use of good stage value predictors [26,29,35,41].

5.3.1. Implementation
The stage value computation in a DIRK scheme reads
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U i ¼ Un þ Dt
Xi

j¼1

aijkj ð63Þ
Given that the i� 1 previous k’s have been previously computed, (63) can be written as
U i ¼ Ei þ Dtaiiki; Ei ¼ Un þ Dt
Xi�1

j¼1

aijkj ð64Þ
The above equation is, in general, a nonlinear system of equations. The pþ 1 Newton iteration associated to (64) is given by
I � Dtaii
oki

oU

����p� �
DpU i ¼ Ei þ Dtaiik

p
i ð65Þ
where DpU i ¼ Upþ1
i � Up

i . As mentioned above, the convergence of the Newton iterations may be improved by the use of good
stage value predictors.

The embedded scheme uses the same raw information as the original one, but in this case it is ‘‘processed” using the sec-
ond set of weights, fb̂i; i ¼ 1; . . . ; sg. Thus, at the end of each step of the RK integrator, we have
Unþ1 ¼ Un þ Dt
Xs

i¼1

biki; bU nþ1 ¼ Un þ Dt
Xs

i¼1

b̂iki ð66Þ
and the error estimate is given by some suitable norm of the difference between these two solutions, rnþ1 ¼ kUnþ1 � bU nþ1k.
This class of implicit methods has been chosen in this study for the time integration of the Cahn–Hilliard equation. One

may think about the possibility of using semi-implicit techniques (as the one exposed in the next section), due to the fact
that the higher order term in the equations (the fourth order one) is linear. However, the nonlinear term is a second order
one and, in most circumstances, this term poses too stringent stability limitations to be integrated efficiently using explicit
schemes. At least for the examples analyzed in this study, the fully implicit approach proved to be much more efficient than
implicit–explicit integrators.

The application of a DIRK scheme to the Cahn–Hilliard equation, within the proposed finite volume framework, corre-
sponds to identifying k ¼ �Rh, where Rh ¼ fRh

I g was already defined as
Rh
I ¼

Xng

ig

BðcigÞ
�c o3ch

ox3 þ o3ch

oy2ox

� �
þ oW0ðchÞ

ox

�c o3ch

ox2oyþ
o3ch

oy3

� �
þ oW0ðchÞ

oy

0B@
1CA

ig

� nigxig ð67Þ
The above summation extends over all the quadrature points on all the edges of the control volume I. On the other hand, the
Jacobian matrix ok

oU is given by (44) and (45).

5.4. Additive Runge–Kutta schemes: application to the Kuramoto–Sivashinsky equation

Consider systems of ordinary differential equations (59) that can be written in additive form as [5]
dU
dt
¼
XN

m¼1

f ½m�ðt;UÞ ð68Þ
where f ½1�; f ½2�; . . . ; f ½N� denote certain terms or components of f , whose distinctive properties are worth being taken into ac-
count separately. The above expression (68) is in principle quite loose in terms of the considerations that lead to such split-
ting. In general, it may be advantageous to exploit the additive structure of the system (68) when either f or the unknowns U
themselves present components with significantly different time scales. In the present context, in which our intention is the
discretization of PDE’s, typical situations of the former case are stiff–nonstiff a priori decompositions of the equations,
whereas the latter usually refers to grid-induced stiffness. The idea behind additive schemes is to use for each component
the integrator that best suits its particular characteristics.

Let us start with the general, N-component case. The integration of (68) can be carried out through the application of N
different Runge–Kutta methods, one for each of the components. A step of an s-stage, N-part additive ðARKNÞ or partitioned
ðPRKNÞ Runge–Kutta scheme, defined by its generalized Butcher tableau
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is given by
Unþ1 ¼ Un þ Dt
Xs

i¼1

XN

m¼1

b½m�i f ½m�ðt þ ci Dt;U iÞ ð69Þ
with stage values
U i ¼ Un þ Dt
Xs

j¼1

XN

m¼1

a½m�ij f ½m�ðt þ cj Dt;U jÞ ð70Þ
where
cj ¼
Xs

k¼1

a½m�jk 8m ¼ 1; . . . ;N ð71Þ
The Butcher coefficients fa½m�ij g; fb
½m�
i g; fb̂

½m�
i g; m ¼ 1; . . . ;N and fcig are constrained by certain accuracy and stability require-

ments. The order conditions of the combined scheme include those specific to each elemental method, and also certain cou-
pling conditions. The growth of the number of coupling conditions for increasingly higher order and number of components
N is such that the practical design of ARKN methods has been typically restricted to N ¼ 2. Following this ARK2 approach, the
system (68) can be conceptually written as
dU
dt
¼ f sðt;UÞ þ f nsðt;UÞ ð72Þ
where the right hand side of (68) has been generically split into stiff ðf sÞ and nonstiff ðf nsÞ terms. Two different Runge–
Kutta schemes, specifically designed and coupled, are applied to each term, and the important case in our context is
the implicit–explicit (IMEX) approach, which acknowledges the fact that the stiff part is more efficiently dealt with by
means of an implicit integrator, whereas the nonstiff part can be straightforwardly integrated using an explicit scheme.
In particular, many problems of practical interest are modeled by partial differential equations whose semidiscretization
can be expressed in the form of (72), where f sðt;UÞ is linear but stiff, and f nsðt;UÞ is nonlinear but nonstiff. The resulting
system of ODE’s can be very efficiently integrated following the IMEX approach. The combined integrators are referred to
as IMEX ARK2 methods or, when the stiff terms are linear, linearly implicit Runge–Kutta schemes. In our context, the
Kuramoto–Sivashinsky equation falls into this category, and therefore linearly implicit integrators are necessarily among
the most efficient choices.

There are two main families of IMEX ARK2 schemes, depending on the form of the implicit integrator. The method chosen
in this study is one of the schemes introduced by Kennedy and Carpenter [32], which are constructed using stiffly accurate
ESDIRK methods, thus taking the form
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In the above expression, the superscripts [E] and [I] have been used in reference to the explicit and implicit components of the
additive ARK2 integrator, respectively. As mentioned before, the stage order of the implicit integrator is two. On the other
hand, the schemes proposed by Ascher et al. [3] and Calvo et al. [11] are also based on DIRK methods, but padded with a
first row and column of zeroes. They do not possess stage-order of two in the implicit part, but have other interesting prop-
erties [32].

5.4.1. Implementation
One step of an s-stage two-part additive Runge–Kutta scheme, ARK2, defined by its Butcher coefficients

ðA½I�;A½R�;b½I�;b½E�; b̂½I�; b̂½E�; cÞ, is given by
Unþ1 ¼ Un þ Dt
Xs

i¼1

b½I�i k½I�i þ b½E�i k½E�i

� �
ð73Þ
where k½I�i and k½E�i are the discrete counterparts of the stiff and nonstiff operators in (72), f s and f ns,
k½I�i ¼ f h
s ðti;U iÞ; k½E�i ¼ f h

nsðti;U iÞ ð74Þ
and the stage values are defined as
U i ¼ Un þ Dt
Xs

j¼1

a½I�ij k½I�i þ a½E�ij k½E�i

� �
ð75Þ
Restricting our analysis on ARK2 pairs that use DIRK schemes for the implicit part, the above expression can be rearranged to
obtain
U i ¼ Un þ Dt
Xi�1

j¼1

a½I�ij k½I�j þ a½E�ij k½E�j

� �
þ Dta½I�ii k½I�i ð76Þ
We are interested in the linearly implicit case, for which the above expression is a linear system of equations of the form
I � Dta½I�ii K
� �

U i ¼ Un þ Dt
Xi�1

j¼1

a½I�ij k½I�j þ a½E�ij k½E�j

� �
ð77Þ
where k½I�i ¼ KU i. After solving U i from (77), we can compute k½I�i ¼ f sðti;U iÞ, and k½E�i ¼ f nsðti;U iÞ. Similarly to DIRK schemes,
the solution of the above system of equations may be accelerated by using stage value predictors. These can be constructed
Fig. 4. Cahn–Hilliard equation: model problem for the 1D accuracy test. Initial and final solution profiles.
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by means of dense output formulas provided by the designer of the ARK2 scheme [32], or through more general techniques
[26,29,35,41].

The error estimator is constructed again in terms of the solution provided by the embedded scheme,
Table 1
Spatial

Grid

40
120
360

MLS ap

Table 2
Spatial

Grid

40
120
360

MLS ap

Table 3
Spatial

Grid

40
120
360

MLS ap
bU nþ1 ¼ Un þ Dt
Xs

i¼1

b̂½I�i k½I�i þ b̂½E�i k½E�i

� �
ð78Þ
and given by some suitable norm of the difference between the original and embedded solutions, rnþ1 ¼ kUnþ1 � bU nþ1k.
The IMEX ARK2 approach exposed above has been used to integrate in time the Kuramoto–Sivashinsky equations analyzed

in this study. In particular, we choose the ARK4ð3Þ6L½2�SA method of Kennedy and Carpenter [32]. The following paragraphs
present an overview of the specific implementation for the two-dimensional case. Bearing these guidelines in mind, the for-
mulation of the 1D problem is straightforward.

Recall the 2D damped Kuramoto–Sivashinsky equation
ou
ot
þr � ðruþrðDuÞÞ ¼ �auþ jruj2 ð79Þ
A natural splitting into stiff and nonstiff terms, at the continuous level, can be conceptually expressed as
ou
ot
¼ fnsðuÞ þ fsðuÞ ð80Þ
where the linear, stiff terms, are
fsðuÞ ¼ �r � ðruþrðDuÞÞ ð81Þ
while the nonlinear, nonstiff terms, are
fnsðuÞ ¼ �auþ jruj2 ð82Þ
Following the proposed finite volume discretization, the above splitting can be retained at the semidiscrete level. Specifi-
cally, we can write
convergence for a Cahn–Hilliard model problem (91)–(94)

L2 error Slope L1 error Slope

2:55� 10�2 8:68� 10�2

9:22� 10�4 3.02 3:14� 10�3 3.02
1:01� 10�4 2.01 3:45� 10�4 2.01

proximation of order p ¼ 3.

convergence for a Cahn–Hilliard model problem (91)–(94)

L2 error Slope L1 error Slope

2:40� 10�2 8:44� 10�2

5:12� 10�5 5.60 1:89� 10�4 5.55
6:77� 10�7 3.94 2:51� 10�6 3.93

proximation of order p ¼ 5.

convergence for a Cahn–Hilliard model problem (91)–(94)

L2 error Slope L1 error Slope

2:38� 10�2 8:40� 10�2

4:79� 10�6 7.75 1:83� 10�5 7.67
7:67� 10�9 5.86 3:05� 10�8 5.82

proximation of order p ¼ 7.



Table 5
Spatial convergence for a Kuramoto–Sivashinsky model problem (95) and (96)

Grid L2 error Slope L1 error Slope

100 4:20� 10�2 2:22� 10�1

200 3:20� 10�3 3.71 1:76� 10�2 3.66
400 2:12� 10�4 3.92 1:17� 10�3 3.91

MLS approximation of order p ¼ 5.

Table 6
Spatial convergence for a Kuramoto–Sivashinsky model problem (95) and (96)

Grid L2 error Slope L1 error Slope

100 1:18� 10�2 5:68� 10�2

200 2:71� 10�4 5.44 1:36� 10�3 5.38
400 4:24� 10�6 6.00 2:13� 10�5 6.00

MLS approximation of order p ¼ 7.

Fig. 5. Snapshots of a coarsening problem governed by the Cahn–Hilliard equation (98). Solution profiles at t ¼ 0:168 (top left), t ¼ 7:15 (top right), t ¼ 855
(bottom left) and t ¼ 10;000 (bottom right) time units.

Table 4
Spatial convergence for a Kuramoto–Sivashinsky model problem (95) and (96)

Grid L2 error Slope L1 error Slope

100 3:06� 10�1 1:63� 100

200 8:18� 10�2 1.90 4:35� 10�1 1.91
400 2:08� 10�2 1.98 1:10� 10�1 1.98

MLS approximation of order p ¼ 3.
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M
du
dt
¼ f h

s ðuhÞ þ f h
nsðuhÞ ð83Þ
where the h superscripts denote discrete values. Following the notation introduced in Eqs. (56)–(58), the above discrete com-
ponents, f h

s and f h
ns, correspond to
f h
s ðuhÞ ¼ �Rh; f h

nsðuhÞ ¼ Sh ð84Þ
In order to make the implementation of the above ARK2 scheme more clear, we can identify
k½I� ¼ f h
s ðuhÞ ¼ �Rh; k½E� ¼ f h

nsðuhÞ ¼ Sh ð85Þ
As for the system matrix K, recall that the linear stiff term can be written as
Rh ¼ KU ð86Þ
and the matrix K ¼ fKijg is given by
Kij ¼
Xngi

ig

o3Nj

ox3 þ
o3Nj

oy2oxþ
oNj

ox

o3Nj

ox2oyþ
o3Nj

oy3 þ
oNj

oy

0@ 1A
ig

� nigxig ð87Þ
where the summation extends over all the quadrature points ngi on the edges of the control volume i. The above general
expression does not include the boundary conditions, which are specific to each problem set up.
Dynamics of a phase separation problem governed by the Cahn–Hilliard equation (98). The error tolerance for the time integrator is / ¼ 10�3. Time
e and predicted error against accepted steps (top left and right, respectively), time step size against time (bottom left), and energy against time

right).
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5.5. Step size control

5.5.1. Controller for the implicit ESDIRK scheme
Probably the most basic control rule is to compute the next time step size, Dtnþ1, as
Fig. 7.
step siz
(bottom
Dtnþ1 ¼ jDtn �
rnþ1

� �1=k

ð88Þ
where � is a fraction of the local error tolerance /, r is a suitable estimation of the time integration error, and k a function of
the order of the integration scheme. The idea is to keep the error close to a certain specified tolerance /. Whenever an inte-
gration step leads to an estimated error r > m/, where typically m ¼ 1:2 the step is rejected, and a new step is made with a
smaller step size. An efficient step size control strategy aims, of course, at predicting the new step sizes in such a way that
their values are maximized, while honoring the error constraints, and avoiding an excessive number of rejected steps.

For the ESDIRK4 scheme we have used the above formula with j ¼ 1; � ¼ 0:5/ and k ¼ 4. More sophisticated controllers
for implicit Runge–Kutta methods have been proposed [27], although for the analyzed examples we did not find a significant
increase in the efficiency of the scheme.

5.5.2. Controller for the implicit–explicit ARK2 scheme
For IMEX time-stepping we use the PID controller [32,45]
Dtnþ1 ¼ jDtn �
rnþ1

� �a rn

�

� �b �
rn�1

� �c

ð89Þ
Dynamics of a phase separation problem governed by the Cahn–Hilliard equation (98). The error tolerance for the time integrator is / ¼ 10�4. Time
e and predicted error against accepted steps (top left and right, respectively), time step size against time (bottom left), and energy against time

right).
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where r ¼ kdk1; d ¼ U � bU , j ¼ 1; m ¼ 1:2 and � ¼ 0:8/. For the remaining parameters we follow [32] and, defining
Xn ¼ Dtn=Dtn�1 and
Fig. 8.
step siz
(bottom
ka ¼ kI þ kP þ
2xn

1þxn

� �
kD

	 

; kb ¼ ðkP þ 2xnkDÞ; kc ¼ 2x2n

1þxn

� �
kD ð90Þ
we set kI ¼ 0:25; kP ¼ 0:14 and kD ¼ 0:10, which provide the values of a; b and c. In this case k is the order of the embedded
scheme, k ¼ 3.

6. Preliminary 1D analysis: accuracy and error control

6.1. Convergence tests

6.1.1. Cahn–Hilliard
The model problem for the first accuracy test is the Cahn–Hilliard equation
ct ¼ ðBðcÞð�ccxxx þ ðW0ðcÞÞxÞÞx; c 2 ½0;1� ð91Þ
with periodic boundary conditions in ½0;1�, and initial condition
cðx;0Þ ¼ 0:2þ 0:6e�100ðx�0:5Þ2 ð92Þ
The energy potential is given by
WðcÞ ¼ 1000ðc ln c þ ð1� cÞ lnð1� cÞÞ þ 3000cð1� cÞ ð93Þ
Dynamics of a phase separation problem governed by the Cahn–Hilliard equation (98). The error tolerance for the time integrator is / ¼ 10�5. Time
e and predicted error against accepted steps (top left and right, respectively), time step size against time (bottom left), and energy against time

right).
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while the mobility is set as the degenerate case
Fig. 9.
/ ¼ 5�
accepte
BðcÞ ¼ cð1� cÞ ð94Þ
and c ¼ 1. The models adopted for the free energy and the mobility make this problem a representative one in terms of the
assessment of the spatial performance of the proposed finite volume method. Its accuracy is evaluated at t ¼ 5� 10�4; the
initial and final concentration profiles are depicted in Fig. 4. The solution is advanced in time using the ESDIRK4 scheme with
constant time step, Dt ¼ 10�5. A reference solution was computed using a very fine grid (1080 cells), and the sixth-order
scheme (MLS of order 7). All the errors are referred to this solution. Tables 1–3 show the computed errors on a series of suc-
cessively refined grids, with 40, 120 and 360 cells, respectively. The schemes constructed using MLS approximations of or-
ders p ¼ 3, 5 and 7 have orders of converge two, four and six, as expected. It is apparent that the first level of refinement is
still far from the asymptotic region.

6.1.2. Kuramoto–Sivashinsky
The second accuracy test is based on the following model problem, extracted from Xu and Shu [52]
ut þ
1
2

u2
� �

x

þ uxx þ ruxxx þ uxxxx ¼ 0 ð95Þ
with periodic boundary conditions in ½�30;þ30�, and r ¼ 4. The exact solution is
uðx; tÞ ¼ c þ 9� 15ðtanhðzÞ þ tanh2ðzÞ � tanh3ðzÞÞ ð96Þ
where z ¼ kðx� ct � x0Þ, with c ¼ 6; k ¼ 1
2, and x0 ¼ �10. The errors are reported at t ¼ 1. The solution is advanced in time

with the ARK4ð3Þ6L½2�SA method of Kennedy and Carpenter [32], and constant time step, Dt ¼ 0:005. The proposed schemes
achieve again the correct orders of the truncation error (Tables 4–6).
Dynamical behaviour of the 1D Kuramoto–Sivashinsky, for the model problem (100) and (101). The error tolerance for the time integrator is
10�3. Finite volume solution using 600 cells and MLS approximation of order p ¼ 5 (fourth order scheme). Time step size and predicted error against

d steps (top left and right, respectively), computed solution in space–time (bottom left) and reference spectral solution (bottom right).
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6.2. Dynamical tests: the error control strategy

Once the accuracy properties of the spatial discretization have been assessed, we turn our attention to more interesting
one-dimensional dynamical examples. They are intended to evaluate the performance, and necessity, of the proposed error
control and adaptive time-stepping approach.

The first example corresponds to a Cahn–Hilliard problem, and the dynamics of the solution may be regarded as a canon-
ical model for phase separation processes. The solution exhibits extreme time scale variations, with cycles of short periods of
time when the solution changes abruptly, followed by long periods of slow grain coarsening, until a final equilibrium is
reached. The error-control based adaptive time-stepping procedure plays a crucial role in the efficient simulation of this type
of problems.

For non-trivial simulations of the Kuramoto–Sivashinsky equation, the ability to control time integration errors, rather
than the efficiency gains arising from the adaptive time-stepping strategy, is the crucial feature of our approach. The dynam-
ics of the problem exhibit such sensitivity to small scale perturbations, that even relatively small errors incurred by the spa-
tial or temporal discretizations have a significant impact on the large scale evolution of the system.

6.2.1. A one-dimensional phase separation problem
Consider the Cahn–Hilliard equation
Fig. 10
/ ¼ 5�
accepte
ct ¼ ðBðcÞð�ccxxx þ ðW0ðcÞÞxÞÞx; c 2 ½�1;þ1� ð97Þ
where WðcÞ ¼ 1
4 ðc2 � 1Þ2 and BðcÞ ¼ 1, i.e.
ct ¼ ð�ccxxx þ ðc3 � cÞxÞx; c 2 ½�1;þ1� ð98Þ
. Dynamical behaviour of the 1D Kuramoto–Sivashinsky, for the model problem (100) and (101). The error tolerance for the time integrator is
10�4. Finite volume solution using 600 cells and MLS approximation of order p ¼ 5 (fourth order scheme). Time step size and predicted error against

d steps (top left and right, respectively), computed solution in space–time (bottom left) and reference spectral solution (bottom right).
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Furthermore, assume periodic boundary conditions in ½0;2p�, and c ¼ 0:01. The initial state is a random perturbation of max-
imum amplitude 0.05 around c ¼ 0. Fig. 5 shows several snapshots of a realization of the above simulation conditions, com-
puted on a grid comprising 300 cells. The dynamics of the solution reveal the aforementioned cycles of slow/fast coarsening.
The crucial observation is that, as the simulation advances, the separation of time scales between the slow and fast phenom-
ena increases dramatically, both in terms of consecutive slow-fast cycles, and with respect to the initial, fast transient.

The important practical consequence is the efficiency collapse of any time integration strategy that lacks quality error
control and time step adaptivity. Leaving aside stability considerations, capturing the initial transients with reasonable accu-
racy requires a time step that is about eight orders of magnitude smaller than the characteristic time scale of the late grain
coarsening evolution. Most existing simulation methods for the Cahn–Hilliard equation would require several million (im-
plicit) time steps to complete this simple simulation with acceptable time accuracy. Some authors have tried to develop spe-
cific time integrators with enhanced stability properties, which may allow larger time steps. This approach, on the other
hand, compromises the accuracy and the efficiency of the scheme, due to the lack of error control and to the fact that very
long time steps may lead to slow/no convergence of the Newton iterations.

Note that time step modifications based on more or less heuristic coarsening laws are also likely to fail in this problem, as
there is not one single time scale, but at least two distinctive time scales living in the same process, and both appear alter-
natively as the simulation advances: a macroscale, that governs the slow coarsening stages, and a microscale, which drives the
fast ones. At the late stages of the coarsening simulation these macro–micro scales differ by about three orders of magnitude.
In multidimensions the interaction of time scales is even richer, due to the existence of simultaneous aggregation processes
at different locations, and therefore a systematic and rigorous approach to time step selection is of paramount importance.

We conduct simulations with 160 cells, the fourth order scheme (MLS order 5), and integrate in time using the fully im-
plicit ESDIRK4 scheme. The error controller (88) was used for step size selection, with error tolerances /1 ¼ 10�3; /2 ¼ 10�4

and /3 ¼ 10�5, and f�j ¼ 0:5/j; j ¼ 1;2;3g. The time step size and predicted error are plotted against the accepted (real) time
Fig. 11. Dynamical behaviour of the 1D Kuramoto–Sivashinsky, for the model problem (100) and (101). The error tolerance for the time integrator is
/ ¼ 5� 10�5. Finite volume solution using 600 cells and MLS approximation of order p ¼ 5 (fourth order scheme). Time step size and predicted error against
accepted steps (top left and right, respectively), computed solution in space–time (bottom left) and reference spectral solution (bottom right).
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steps, i.e., the plotted quantities correspond to steps at which the predicted error was lower than 1:2/. We also plot the time
step size and energy as a function of time. Note that the time step plot also includes the rejected steps. The energy is com-
puted from the functional (2), which is evaluated numerically as
Fig. 12.
volume
t ¼ 100
Eh ¼
XN

i¼1

c
2
jrch

i j
2 þ 1

4
ðc2

i � 1Þ2
� �

Ai ð99Þ
Figs. 6–8 show the results associated to the three error tolerances. Note that the initial state is different in each simulation,
and although the equilibrium state should be statistically identical, the dynamics of the solution may differ significantly. The
simulations are run until the equilibrium configuration is reached (around t ¼ 104). The maximum allowed time step was
arbitrarily restricted to Dt ¼ 200. Note that this example was simulated in [28] using a modified semi-implicit scheme with
improved stability properties, and constant time steps up to Dt ¼ 0:01.

The plots of time step size against time (bottom left) show that several rejected time steps occur when the solution
changes abruptly. The relative number of rejected steps is bigger for the larger error tolerance (about 20%), and reduces
Dynamical behaviour of the 1D Kuramoto–Sivashinsky, for the model problem (100) and (101). Influence of the time errors on the solution. Finite
solution using 600 cells and MLS approximation of order p ¼ 5 (fourth order scheme). Comparison of the computed profiles at t ¼ 150 (top) and
(bottom) with the reference solution, for different error tolerances.
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to about 10% for the lower error tolerances. It would be interesting to analyze more sophisticated controllers, capable of min-
imizing the number of rejected time steps.

We should remark that very small energy increases (about 0.1%) were observed at some point in the simulations. This was
the case for the larger error tolerance /1, and also for the smaller one, /3. This fact indicates that the proposed time integra-
tion strategy does not possess strict gradient stability. Of course, the lack of strict gradient stability does not mean that the
scheme is unstable, but rather suggests a conditional stability. As a matter of fact, our experience shows that instabilities
may occur, but only at error tolerances that are unacceptably large for practical purposes.

6.2.2. One-dimensional Kuramoto–Sivashinsky equation
Consider the problem
Fig. 13
Compu
(bottom
ut þ
1
2

u2
� �

x
þ uxx þ uxxxx ¼ 0 ð100Þ
with periodic boundary conditions in ½0;32p�, and initial solution
uðx;0Þ ¼ cos
x

16

� �
1þ sin

x
16

� �� �
ð101Þ
This example was taken from Kassam and Trefethen [30], where the authors demonstrate the convenience of high-order
time integration schemes for this kind of problems. They find a modified exponential time differencing (ETD) scheme to
be the most efficient one. Their spatial discretization is carried out by means of a spectral method. In our case, however,
a finite volume method with general boundary conditions and the requirement of error control and adaptive time-stepping,
that choice would not be competitive or even feasible, due to the necessity of computing the exponential of the matrix asso-
. Dynamical behaviour of the 1D Kuramoto–Sivashinsky, for the model problem (100) and (101). Influence of the spatial errors on the solution.
ted and reference solutions in space–time. The finite volume schemes use 150 cells and MLS approximations of orders p ¼ 15 (top right), p ¼ 9

left), and p ¼ 5 (bottom right), respectively. The spectral solution uses N ¼ 512 modes (top left).
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ciated to the discretization of the linear high-order terms multiplied by each Dt. Our choice is the ARK4ð3Þ6L½2�SA implicit–
explicit method of Kennedy and Carpenter [32] in combination with the time step controller (89).

In order to assess the accuracy and efficiency of the proposed methodology, we run two sets of simulations of (100) and
(101). In the first set of experiments we analyze the influence of time integration errors into the dynamics of the system. In
order to focus on time errors, we use a grid of 600 cells, and the fourth order scheme (MLS with p ¼ 5). We run three sim-
ulations, with error tolerances /1 ¼ 5� 10�3;/2 ¼ 5� 10�4 and /3 ¼ 5� 10�5. The solution is advanced up to t ¼ 150 units.
For practical reasons, but rather arbitrarily, the time step size was limited to Dt 6 1. Note that we did not impose stability
restrictions on the time step; therefore, the time step selection is entirely left to the controller, and it is done solely in terms
of error control.

For comparison purposes, a reference solution was computed using the spectral method with ETD time integration pre-
sented in [30]. We used N ¼ 512 Fourier modes and Dt ¼ 1=20. Figs. 9–11 show the results for the different error tolerances.
We plot the evolution of the time step size and the predicted error as functions of the time step number, and the computed
solution in space–time. The reference solution is also shown. In all cases the controller does a good job in keeping the pre-
dicted error close to the error tolerance (note that in the controller we aim at � ¼ 0:8/). Also note that, as the error tolerance
becomes smaller, the time step tends to be constant.
Fig. 14. Dynamical behaviour of the 1D Kuramoto–Sivashinsky, for the model problem (100) and (101). Influence of the spatial errors on the solution.
Comparison of the computed profiles at t ¼ 150 (top) and t ¼ 100 (bottom) with the reference solution. The finite volume schemes use 150 cells and MLS
approximations of orders p ¼ 15, 9 and 9, respectively. The spectral solution uses N ¼ 512 modes.
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An important practical observation is that high error tolerances may result into sudden, important deviations from the
reference solution. This fact is clearly present in the /1 solution (Fig. 9). Until around t ¼ 110 units the solution is practically
identical to the spectral one. Suddenly, some regions of the solution seem to follow a different path, and the final picture
retains the basic features, but others are completely lost. This is much less pronounced for the intermediate error tolerance
/2, and for /3 the solution is practically identical to the reference one. A comparison of the solution profiles at t ¼ 150 (top)
and t ¼ 100 (bottom) is presented in Fig. 12.

We would also like to make some comments about the importance of the spatial discretization in problems which, as this
one, exhibit a very complex dynamical behaviour. In particular, and in spite of the obvious differences in terms of the degree
of complexity of the solutions, our conclusions will be somewhat extendable to turbulent flows modelled by the Navier–
Stokes equations.

The influence of the spatial discretization on the solution dynamics is analyzed by setting / ¼ 5� 10�5 and running the
simulation with 150 cells and MLS approximations of orders 15, 9 and 5 (the orders of convergence of the resulting schemes
are, therefore, 14, 8 and 4, respectively). Of course, a method of order as high as 14 is not viable in multidimensions and gen-
eral grids, due to the difficulties of defining appropriate stencils.

Fig. 13 presents a comparison of the computed solutions with the reference, spectral one (top left). The 14th order scheme
provides a quite accurate solution, whose main features are perfectly captured by the finite volume method. On the other
hand, the eighth and fourth order schemes yield solutions that, at some point, deviate from the spectral computation. In par-
ticular, the fourth order solution is reasonably accurate up to around t ¼ 80 units, and then most features of the solution
follow paths that are quite different from the correct ones. A comparison of the solution profiles at t ¼ 150 (top) and
t ¼ 100 (bottom) is presented in Fig. 14.
Fig. 15. Dynamics of a 2D phase separation problem governed by the Cahn–Hilliard model (102)–(104), with A ¼ 3000. The error tolerance for the time
integrator is / ¼ 10�4. Time step size against time and accepted steps (top left and right, respectively), and energy against time (bottom left). Detail of the
rich energy cascade (bottom right).
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7. Two-dimensional simulations

7.1. Phase separation and grain coarsening. A potential stiffness leakage

Consider the Cahn–Hilliard equation
Fig. 16
/ ¼ 10�

5.70e�
oc
ot
¼ r � ðBðcÞrð�cDc þW0ðcÞÞÞ; c 2 ½0;1� ð102Þ
. A 2D phase separation problem governed by the Cahn–Hilliard model (102)–(104), with A ¼ 3000. The error tolerance for the time integrator is
4. Snapshots of the solution at different times: from top to bottom and from left to right, t = 6.52e�06, 1.91e�05, 6.39e�05, 2.63e�04, 4.70e�03 and

02.
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particularized for c ¼ 1, logarithmic free energy
Fig. 17.
integra
rich en
WðcÞ ¼ Aðc ln c þ ð1� cÞ lnð1� cÞÞ þ 3Acð1� cÞ ð103Þ
parametrized in terms of a coefficient A, and degenerate mobilities
BðcÞ ¼ cð1� cÞ ð104Þ
The dynamics of the solutions to this model problem are somewhat similar to those of the 1D ‘‘canonical” example shown
above, although the complexity of these systems is significantly higher in multidimensions, due to the presence of multiple
droplets that compete in the coarsening phase. As a consequence, the solutions are very rich in spatial and temporal scales,
which challenges the efficiency of any numerical scheme.

In our first simulation, we take A ¼ 3000. We use an 80� 80 grid on ½�0:5;þ0:5� � ½�0:5;þ0:5�, and the second order
scheme (cubic MLS approximation). The initial state of Wells et al. [49] is reproduced here: a random perturbation around
c ¼ 0:63, with zero mean and maximum fluctuation of 0.05. At the boundary we impose rð�cDc þW0ðcÞÞ � n ¼ 0. The time
integration was carried out using the ESDIRK4 scheme, with error tolerance / ¼ 10�4.

The results are presented in Figs. 15 and 16. The simulation runs up to t ¼ 0:057, when the solution has already reached
its final stage. The evolution of the time step size as a function of time and time step (Fig. 15, top left and top right, respec-
tively) exhibits a pattern that is somewhat similar to the 1D canonical problem. The higher complexity of the 2D simulation
is also apparent from these plots. Note the extremely wide range of time scales, which vary from Dt � 10�8 at the beginning
of the simulation, to Dt � 10�2 at the final stages. The adaptive nature of the time-stepping strategy has a clear impact in the
richness of the computed energy cascade (Fig. 15, bottom left and right). While one may identify a single time scale in the
initial nucleation process, there is a clear separation of scales in the grain coarsening phase. The bifurcation takes place
around t ¼ 10�5, and at least two distinctive time scales can be characterized. The microscale, which is of order 10�6, seems
to grow very slowly in time, whereas the macroscale exhibits a much faster growth, to the point that the difference between
Dynamics of a 2D phase separation problem governed by the Cahn–Hilliard model (102)–(104), with A ¼ 10;000. The error tolerance for the time
tor is / ¼ 10�4. Time step size against time and accepted steps (top left and right, respectively), and energy against time (bottom left). Detail of the
ergy cascade (bottom right).



Fig. 18. A 2D phase separation problem governed by the Cahn–Hilliard model (102)–(104), with A ¼ 10;000. The error tolerance for the time integrator is
/ ¼ 10�4. Snapshots of the solution at different times: from top to bottom and from left to right, t = 4.30e�06, 1.87e�05, 6.59e�05, 2.94e�04, 4.70e�03 and
2.04e�02.
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the micro- and macroscales is about four orders of magnitude at the end of the simulation. Several snapshots of the solution
are plotted in Fig. 16.

Note that about 30% of the steps were rejected. More than a half of this amount corresponds to unsuccessful or early dis-
carded steps, by which we mean steps where slow/no convergence of the Newton or Krylov solvers was found. These unsuc-
cessful steps are usually detected within the first stage of the Runge–Kutta step, and therefore their associated cost is small
compared to that of the rejected steps. It is quite likely that the number of rejected steps can be significantly reduced with a
more careful design of the controller.
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Increasing the model parameter A in the free energy (103) results in a reduction of the thickness of the interfaces, and in
the increase of the global stiffness of the problem. In our second example, we take A ¼ 10;000 and a finer grid of 120� 120
cells. The results are presented in Figs. 17 and 18. The simulation runs up to t ¼ 0:0204, when the solution has already
reached its final stage. The evolution of the time step size (Fig. 17, top left and right) reveals the increased complexity of
the dynamics of the system, and its multiscale nature. Note that, compared to the A ¼ 3000 case, we require about three
times more time steps to complete the simulation, and that the time step evolution is quite rough. Several snapshots of
the solution are plotted in Fig. 18.

An important remark is that, under increasingly stiffer conditions, the adaptive time-stepping strategy may suffer from a
reduction in its efficiency. Thus, the time step size would be constantly ‘‘pulled” by the small scales, slowing down the ad-
vance of the simulation, and increasing the risk of producing rejected steps. This arises the possibility of a stiffness leakage of
the adaptive procedure, in the limit of stiffness of the free energy model. This stiffness leakage is independent from other
stiffness issues arising from the time integrator itself.

7.2. States of the damped Kuramoto–Sivashinsky equation

Recall the 2D damped Kuramoto–Sivashinsky equation
Fig. 19.
state (a
ou
ot
þr � ðruþrðDuÞÞ ¼ �auþ jruj2 ð105Þ
This equation has been studied as a model for systems characterized by the spontaneous appearance of coherent organized
patterns (cellular states), when the initially unorganized system is driven away from thermodynamic equilibrium [42,18]. An
States of the 2D damped Kuramoto–Sivashinsky equation as a function of the damping parameter a. Hexagonal state (a ¼ 0:24, top left), chaotic
¼ 0:17, top right) and two configurations of the oscillating, breathing hexagonal state (a ¼ 0:19, bottom left and right).
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important observation is that there exist secondary instabilities that can destroy the organized structure. A one-dimensional
analysis of these secondary instabilities was presented in [40,19], whereas two-dimensional phenomenological and statis-
tical studies can be found in [42,18].

The important finding in [42] is the characterization of an asymptotic state, at intermediate values of the damping param-
eter a, which exhibits a marked hexagonal structure, and oscillates or breathes in time. For larger values of a an hexagonal
state is found, whereas smaller values lead to spatiotemporal chaotic solutions. In their numerical simulations they use a
second order finite difference discretization with backward Euler time integration. They focus on the large aspect ratio limit,
and therefore simulate large domains ðL ¼ 512Þ. As mentioned before, they characterize three distinct states in the late time
limit, depending on the value of the damping parameter a. At large values of a ð0:2176 < a < 0:25Þ, a periodic hexagonal
morphology dominates, with clear defects in the pattern. As a is decreased ð0:207 < a < 0:2176Þ, the hexagonal state begins
to oscillate and breathe. Each cell oscillates out of phase with its nearest neighbors. When a is decreased further, the breath-
ing eventually drives the system to a spatiotemporal chaotic state.

The proposed finite volume scheme was used to reproduce these phenomena, but the set up is different from that of Pani-
coni and Elder [42]. Thus, the DKS problem (105) was solved in ½0;100�withrðuþ DuÞ � n ¼ 0 on the boundary, and a grid of
120� 120 cells. The implicit–explicit ARK4ð3Þ6L½2�SA scheme was used for time integration, with error tolerance / ¼ 10�4.
The simulations are run up to t ¼ 15;000.

The aforementioned states were also found in the present simulations, but at lower values of the damping parameter a.
The results are presented in Fig. 19. For a ¼ 0:24 (top left) the hexagonal state is clearly observed. For low values of a, such as
a ¼ 0:17 (top right), a characteristic spatiotemporal chaotic state is found. The breathing hexagonal state, on the other hand,
appears already for a ¼ 0:19, while in [42] it is not found until a ¼ 0:207. This difference can be due to the fact that we use a
smaller domain and different boundary conditions, which may result in a more constrained problem, thus increasing the sta-
bility of the solutions.

8. Conclusions

This paper presented a complete numerical method for the Cahn–Hilliard and Kuramoto–Sivashinsky type of equations.
The spatial discretization is carried out using a high-order finite volume method, suitable for general, unstructured grids. The
key ingredient of this scheme is a high-order global approximation framework, constructed using Moving Least-Squares
(MLS). The reconstructed solution possesses high regularity, which allows a simple and efficient discretization of nonlinear
equations with high order terms. The time integration is addressed by means of implicit an implicit–explicit Runge–Kutta
schemes, with error control and adaptive time-stepping. The outcome is a practical, accurate and efficient tool which has
been successfully applied to accuracy tests and representative simulations.

The use of adaptive time-stepping is of paramount importance in problems governed by the Cahn–Hilliard model, since
an adaptive method may be several orders of magnitude more efficient than other schemes using constant or heuristic time
steps. In addition, the time-adaptive procedure provides a quantitative characterization of the different time scales present in
phase separation processes, which is another contribution of this study.
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