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We propose a continuum model of two-phase flow in a Hele-Shaw cell. The model de-
scribes the multiphase, three-dimensional flow in the cell gap using gap-averaged quan-
tities such as fluid saturations and Darcy fluxes. Viscous and capillary coupling between
the fluids in the gap leads to a nonlinear fractional flow function. Capillarity and wetting
phenomena are modeled within a phase-field framework, designing a heuristic free energy
functional that induces phase segregation at equilibrium. We test the model through the
simulation of bubbles and viscously-unstable displacements (viscous fingering). We ana-
lyze the model’s rich behavior as a function of capillary number, viscosity contrast and
cell geometry. Including the effect of wetting films on the two-phase flow dynamics opens
the door to exploring, with a simple, two-dimensional model, the impact of wetting and
flow rate on the performance of microfluidic devices and geologic flows through fractures.
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1. Introduction

The flow of immiscible fluids in the thin gap between two parallel plates—a Hele-
Shaw cell—has been the focus of vast experimental, theoretical and modeling efforts over
the past five decades (e.g Saffman & Taylor 1958a; Bensimon et al. 1986; Homsy 1987;
McCloud & Maher 1995a; Casademunt 2004). This flow geometry is directly relevant for
a number of applications, from microfluidics (Baroud et al. 2010; Dangla et al. 2011),
to flow in fractured reservoirs (Persoff & Pruess 1995; Glass et al. 2001). In addition
to its direct relevance, Hele-Shaw flow has also been used as an analogue system to
understand flow in complex porous media (Homsy 1987), and some theoretical aspects of
pattern formation in nonlinear systems (Casademunt 2004). The two flow scenarios that
have been thoroughly investigated experimentally and theoretically are the motion and
interaction of bubbles, and the viscously-unstable displacement of one fluid by another.

The motion of bubbles and droplets in a Hele-Shaw cell is a classical problem in
fluid mechanics (Eck & Siekmann 1978; Park & Homsy 1984; Tanveer 1986; Maxwor-
thy 1986; Kopf-Sill & Homsy 1988a; Meiburg 1989; Maruvada & Park 1996), which is
receiving renewed attention due to its role in microfluidic applications (Baroud et al.
2010; Dangla et al. 2011). Experimental studies have shown a wealth of droplet shapes
and flow regimes (Eck & Siekmann 1978; Maxworthy 1986; Kopf-Sill & Homsy 1988a;
Maruvada & Park 1996), but a comprehensive theoretical explanation for the pattern
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selection mechanisms remains elusive (Park & Homsy 1984; Tanveer 1986). The flow
set-up is simple: a volume of a fluid, surrounded by another viscous fluid, translates and
distorts due to the constant flow-rate injection of the ambient fluid. The key questions
then are what shape and velocity will the bubble adopt depending on the different system
parameters, and whether the bubble will undergo breakup instabilities.

The instability of driven fronts in two-phase flow when the invading fluid is less viscous
than the defending fluid is a classical problem in nonlinear pattern formation (Saffman
& Taylor 1958b; Park & Homsy 1984, 1985; Homsy 1987; Kopf-Sill & Homsy 1988b).
Viscous fingering impacts the displacement efficiency in multiphase flow through porous
media, due to channeling and the subsequent creation of preferential flow paths. Because
of these preferential paths, the sweep efficiency can be significantly reduced in the pres-
ence of fingering instabilities. Classical reviews on the subject can be found in Bensimon
et al. (1986); Homsy (1987) and in McCloud & Maher (1995a). For isotropic cells and
Newtonian fluids, detailed experimental observations and theoretical analysis go back
to Saffman & Taylor (1958a). Other classical experiments include Paterson (1981); Park
et al. (1984); Park & Homsy (1985); Maher (1985); Ben-Jacob et al. (1986); Tabeling
et al. (1987); Kopf-Sill & Homsy (1988b); Arnéodo et al. (1989); Ben-Jacob & Garik
(1990). These early experiments already show a rich phase diagram of displacement mor-
phologies depending on viscosity contrast between the invading and defending fluids, and
on the relative balance between viscous, capillary and gravitational forces. More recent
studies include Carrillo et al. (1996, 1999); Lajeunesse & Couder (2000); Carrillo et al.
(2000); Moore et al. (2002); Alvarez-Lacalle et al. (2004a); Miranda & Alvarez-Lacalle
(2005); Alvarez-Lacalle et al. (2006). Variations in the Hele-Shaw geometry to account
for variations in the gap width were considered in Zhao et al. (1992, 1993); Al-Housseiny
et al. (2012), who introduce a gradient in the cell gap, and anisotropic cells were con-
sidered in McCloud & Maher (1995b); Decker et al. (1999); Banpurkar et al. (2000);
Honda et al. (2006). Recently, there has been increased interest in flow control of the
instability Li et al. (2009); Al-Housseiny et al. (2012), and complex fluid rheologies Buka
et al. (1986, 1987); Lemaire et al. (1991); Zhao & Maher (1993); Park & Durian (1994);
Corvera-Poiré & Amar (1998); Kawaguchi et al. (1999); Vlad & Maher (2000); Lind-
ner et al. (2000a,b); Kawaguchi et al. (2001); Yamamoto et al. (2001); Lindner et al.
(2002); Kawaguchi et al. (2004); Nagatsu et al. (2007). A large body of literature ex-
ists that addresses important theoretical aspects of the Saffman-Taylor instability, from
pattern selection mechanisms to the stability of single-finger solutions and the effect of
surface tension and wetting conditions (McLean & Saffman 1981; Park & Homsy 1984;
Combescot et al. 1986; Howison 1986; Sarkar 1990; Weinstein et al. 1990; Casademunt &
Jasnow 1991; Siegel et al. 1996; Siegel & Tanveer 1996; Somfai et al. 1999; Casademunt
& Magdaleno 2000; Tanveer 2000; Ceniceros & Villalobos 2002; Alvarez-Lacalle et al.
2004b; Dias & Miranda 2013; Anjos & Miranda 2013; Nagel & Gallaire 2013).

The first sharp-interface simulations of fingering in Hele-Shaw cells were presented
by Tryggvason & Aref (1983), with results that are qualitatively similar to the experi-
ments of Maher (1985). Other early simulations using boundary integral methods are De-
gregoria & Schwartz (1986); Meiburg & Homsy (1988); Meiburg (1989); Park & Homsy
(1985); a review of these early simulation methods was presented by Whitaker (1994).
An important series of simulations based on boundary element methods was developed
in Hou et al. (1994, 1997, 2001); Li et al. (2007, 2009). A similar approach is used by Alm-
gren et al. (1993); Kondic et al. (1996); Shelley et al. (1997); Kondic et al. (1998); Fast
et al. (2001); Fast & Shelley (2004), and by Sarkar & Jasnow (1989). In Alvarez-Lacalle
et al. (2006) the authors apply one of the above boundary integral methods, imposing a
boundary condition at the interface that models a preexisting wetting film.
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Diffuse-interface theories of multiphase flow have recently emerged as promising tools
to understand and simulate complex processes involving the simultaneous flow of two or
more immiscible fluid phases (Anderson et al. 1998). These models originated in the ma-
terials science community, describing phase separation through the evolution of an order
parameter—or ‘’phase field”—that defines a smooth transition between two phases (Cahn
& Hilliard 1958; Cahn 1961). An overview of the application of phase-field modeling in
condensed-matter physics can be found in Emmerich (2008). The fundamental idea of
tracking and properly capturing interface dynamics thorugh phase-field theories has been
subsequently generalized and adapted to mulitphase fluid flow scenarios. While varia-
tional or thermodynamic theories are perhaps the most common theorerical framework
to rigorously derive these models (Antanovskii 1995; Jasnow & Viñals 1996; Lowengrub
& Truskinovsky 1998; Anderson et al. 1998; Jacqmin 1999; Boyer 2002; Badalassi et al.
2003; Yue et al. 2004; Kim 2005; Ding et al. 2007; Lamorguese & Mauri 2008), diffuse-
interface theories have been obtained from averaging microscale interactions (Sun &
Beckermann 2004, 2007), or rationalized as a microforce balance (Gurtin 1994). The com-
mon goal in these approaches is to formulate thermodynamically consistent stress tensors
and mesoscale balance laws, including the impact of surface tension on the momentum
balance, as well as properly tracking interfacial dynamics (Lowengrub & Truskinovsky
1998).

Several phase-field or diffuse-interface models of Hele-Shaw flow have been proposed,
expressing different modeling assumptions and theoretical approaches. These models are
typically constructed either as particular versions of general multiphase flow theories to
the lubrication-type flow in Hele-Shaw cells, or as continuum approximations to the 2D
free-boundary problem. The model of Lee et al. (2002a,b), which is based on the ther-
modynamic theory for multiphase quasi-incompressible mixtures developed by Lowen-
grub & Truskinovsky (1998), uses a conserved order parameter (a concentration field)
to describe the interface dynamics, and Darcy flow based on a mixture velocity. This
Hele-Shaw-Cahn-Hilliard model has been recently used to study flow in rotating Hele-
Shaw cells (Chen et al. 2011). The model by Sun & Beckermann (2008), based on the
diffuse-interface theory developed by the same authors in a series of previous papers (Sun
& Beckermann 2004, 2007), arises from averaging the microscale interface dynamics and
uses a non-conserved order parameter to maintain the interface thickness. In some ap-
plications the interface dynamics may be described by a single Cahn-Hilliard equation,
stressing the gradient-type nature of Hele-Shaw flows (Hernández-Machado et al. 2003;
Glasner 2003; Lu et al. 2007). Folch et al. (1999a,b) proposed a phase-field model of two-
phase Hele-Shaw flow with arbitrary viscosity contrast between the fluids. The model
reduces to two evolution equations for the stream function and the phase field, converges
to the sharp-interface 2D problem, and captures the multi-finger dynamics in viscous
fingering. Phase-field models of Hele-Shaw flow for fluids with complex rheology have
also been developed, for example (Nguyen et al. 2010) developed a phase-field model to
study viscous fingering of shear-thinning fluids.

Here, we present a diffuse-interface model of two-phase flow in a Hele-Shaw cell.
This model builds on our previous work on two-phase flow in a capillary tube (Cueto-
Felgueroso & Juanes 2012). The main differentiating factor of our model in the vast
literature of Hele-Shaw flow modeling is its ability to capture three-dimensional effects
in a gap-averaged, Darcy-type formulation. The essential requirements to achieve this
goal are the ability to capture the viscous and capillary coupling between fluids in the
gap, and the impact of capillarity and wetting in the equilibrium of the two-phase sys-
tem. The first key ingredient of our model is a non-convex fractional flow formulation
that arises from the use of Darcy’s law generalized to multiphase systems. This approach
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has been traditionally used in the modeling of multiphase flow through porous media.
The second ingredient is its behavior at equilibrium. We derive the capillary flow po-
tentials from a free energy functional that induces fluid segregation in the absence of
flow (Cahn & Hilliard 1958; Cueto-Felgueroso & Juanes 2012). Thus, equilibrium solu-
tions are non-spreading, static bubbles within an ambient fluid. Under pressure-driven
flow, the solutions involve the formation of non-classical shocks, which result in rich dy-
namic behavior. This novel feature captures the dependence of the thickness of wetting
films left attached to the cell walls on the capillary number, in agreement with experimen-
tal observations. We test the properties of the model through one– and two–dimensional
numerical solutions of the proposed model, and elucidate the displacement patterns for
constant flow–rate and constant–volume injection. We analyze the existence and struc-
ture of the traveling wave solutions to our model, which provides important insight into
the existence and structure of traveling bubbles and non–classical shock solutions.

Our model aims at capturing the 3D viscous and capillary coupling between fluids in
the cell gap, in the context of a 2D, gap-averaged formulation. This goal is somehow
different from the classical problem of approximating the 2D sharp-interface problem.
The primary variables in our formulation, the fluid volume fractions, can be understood
as phase fields, because they are used to represent the idea that either fluid may fully
occupy the cell gap. As fluid volume fractions, fluid saturations have a direct physical in-
terpretation, rather than being ad-hoc or auxiliary variables defining a smooth transition
between two phases. Our model equations do not attempt to smooth a sharp-interface
problem either. We should therefore note that we are using the idea of phase-field model-
ing in a generalized or loose sense. We have chosen to adopt the terminology of phase-field
modeling, because we rely on a variational-type derivation of the flow potentials, in the
spirit of phase–field and diffuse–interface models.

2. Mathematical model

2.1. Darcy formulation of two-phase Hele-Shaw flow

We consider incompressible, isothermal two-phase flow in a Hele-Shaw cell, driven by
imposed pressure gradients and capillary forces. The evolution of fluid saturations can
be expressed as conservation of mass of the two fluids:

∂(bρgSg)
∂t +∇ · (bρgug) = 0, (2.1)

∂(bρwSw)
∂t +∇ · (bρwuw) = 0. (2.2)

For convenience, we refer to the two fluids as gas (subscript g) and water (subscript w),
although their physical properties are general. Furthermore, we will assume that the gas
is the non-wetting phase, and the water phase is the wetting phase. The saturation, Sα,
of fluid phase α = g, w, is the fraction of the gap that is occupied by that fluid. The
width of the gap is b, the fluid densities are ρα, and uα is the volumetric flux of phase α.
We adopt a Darcy formulation for the volumetric fluxes, where Darcy’s law is generalized
to multiphase systems (Bear 1972)

ug = −λg∇ (p+ ψg) , (2.3)

uw = −λw∇ (p+ ψw) . (2.4)

These expressions state that the flux of each fluid is proportional to the gradient of a
flow potential. For single-phase flow, the potential is the same for both components—
the fluid pressure. For multiphase systems the flow potentials are different because of
capillary pressure effects. We split the fluid flow potentials into a global pressure p and
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a capillary potential ψα. An analogous split was originally proposed by Otto & E (1997)
and E & Palffy-Muhoray (1997) in the context of phase separation of incompressible
polymer mixtures.

Adopting the classical generalization of Darcy’s law to multiphase systems, we set the
gas and water mobilities as

λg = b2

12µg
krg(Sg), (2.5)

λw = b2

12µw
krw(Sw), (2.6)

where µα is the viscosity of fluid phase α, and krα is the phase relative permeability. For
a Hele-Shaw cell or smooth fracture, Fourar & Lenormand (1998) derived the relative
permeabilities that correspond to viscous coupling between the two fluids, assuming
Stokes flow in the gap and a three-layer configuration with the wetting fluid coating the
walls and the non-wetting fluid inside the cell. The relative permeabilities are given by

krw =
1

2
S2
w (3− Sw) ,

krg = S3
g +

3

2M
Sg (1− Sg) (1 + Sg) , (2.7)

with the viscosity ratio

M =
µw
µg
. (2.8)

Given the relative permeabilities, krg and krw, we define the gas fractional flow func-
tion, fg, as

fg =
λg

λg + λw
=

krg

krg + 1
M krw

. (2.9)

The fractional flow plays an important role in the structure of the displacement patterns,
as it is a non-convex function of saturation (Fig. 1). After algebraic manipulation, as-
suming constant gap width b, density-matched fluids with constant densities, and using
the gas saturation as primary variable, the model equations read

∂tSg +∇ ·
(
fguT +

b2

12

krw
µw

fg∇ (ψw − ψg)
)

= 0, (2.10)

uT = − b
2

12

[(
krg
µg

+
krw
µw

)
∇π +

krw
µw
∇ (ψw − ψg)

]
, (2.11)

∇ · uT = 0, (2.12)

subject to the constraint Sg+Sw=1. In the above model equations, the pressure equation
is written in terms of the total pressure, π=p+ψg. We emphasize that the equations above
describe the evolution of two–dimensional—gap-averaged—fields; that is vector fields are
two-dimensional and saturations, pressures and velocities should be understood as gap-
averaged quantities.

In this model, fluid saturations, Sα, are interpreted as the phase fields or order param-
eters in our formulation. A gas saturation of 1 means that the cell gap is fully occupied by
gas, whereas a saturation of 0 means that it is fully occupied by water. In the following
section, we discuss the modeling framework for the capillary potentials ψα. The above
equations (2.10)–(2.12) provide the basis of a diffuse–interface or phase–field model for
Hele–Shaw flow. An important element of the model that needs to be specified is a free
energy functional from which the capillary potentials are derived. We discuss this topic
in the following section.
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2.2. Design of the free energy functional and capillary potentials

The capillary potentials, ψg and ψw, are defined as the variational derivatives of a heuris-
tic free energy functional with respect to the fluid saturations (Cahn & Hilliard 1958; De
Gennes 1980),

ψα ≡
δF

δSα
=

∂F

∂Sα
−∇ ·

(
∂F

∂(∇Sα)

)
. (2.13)

The free energy F plays a central role in the dynamic and equilibrium properties of the
model. To design the free energy functional, we will focus on capturing fluid segregation
at steady state. We propose a free energy functional of the form

F =− γsw − γsg − γ
b

ω(Sg, Sw) +
γsw − γsg

b
`(Sg, Sw)

+
Γ

4
κ(Sg, Sw)

(
|∇Sg|2 + |∇Sw|2

)
,

(2.14)

where the functions ω and ` are, respectively, a double-well function, and a symmetry-
breaking function describing the difference in surface energies between fluids and the
solid. The surface tensions between the fluids and the solid are γsw and γsg, while
the surface tension between fluids is denoted by γ. The coefficient Γ (units of force),
controls the strength of the gradient-energy terms. The terms in (2.14) that do not
depend explicitly on saturation gradients are collectively referred to as the bulk free
energy, F0,

F0 = −γsw − γsg − γ
b

ω(Sg, Sw) +
γsw − γsg

b
`(Sg, Sw). (2.15)

In the following, we consider strictly non-spreading systems, γsw−γsg−γ<0, for which
the three surface energies are linked through the static contact angle, γsw−γsg=γcos θ.
The structure of the function multiplying the square concentration gradients, κ(Sg, Sw),
is essential to obtain compactons (Benzi et al. 2011; Cueto-Felgueroso & Juanes 2012).
Traditional phase-field models use a constant value of κ, which implies a smooth tran-
sition between 0 and 1 in the order parameter; that is, equilibrium saturation profiles
approach the values 0 and 1 asymptotically on each side of the interface. If κ vanishes
at Sg = 0 and/or Sg = 1, saturation profiles may have compact support, reaching 0
and/or 1 within a finite width.

Incorporating the above definitions, the full expression for the free energy reads:

F =
γ (1− cos θ)

b
ω(Sg, Sw) +

γ cos θ

b
`(Sg, Sw) +

Γ

4
κ(Sg, Sw)

(
|∇Sg|2 + |∇Sw|2

)
, (2.16)

and the capillary potentials based on this free energy are

ψg =
γ (1− cos θ)

b

∂ω

∂Sg
+
γ cos θ

b

∂`

∂Sg
− Γ

2

√
κ∇ ·

(√
κ∇Sg

)
, (2.17)

ψw =
γ (1− cos θ)

b

∂ω

∂Sw
+
γ cos θ

b

∂`

∂Sw
− Γ

2

√
κ∇ ·

(√
κ∇Sw

)
. (2.18)

The rationale behind the above expressions is to satisfy the following design objectives:
at steady state, the system must relax towards a segregated state, with saturations 1
and 0 separated by a transition region that does not grow in time, and whose length
scale is consistent with the cell gap and wetting properties of the system (static contact
angle, θ). This requirement translates into the functional form of the bulk free energy,
through the common tangent construction: we require a common tangent at S = 0 and
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S = 1, for all static contact angles. We adopt the following simple functional forms

ω = Cω(1− Sg)β(1− Sw)2, (2.19)

` = 2
[
(1− Sg)2 − (1− Sw)2

]
, (2.20)

where Cω is a normalization constant. It is easy to show that these expressions satisfy
the modeling requirements of having a common tangent at saturations Sg=0 and Sg=1
(Fig. 2 a,b). The exponent β in the double-well plays the role of changing the location
of the inflection points in the double well, which determine the stability properties of
wetting films, that is, the range of constant saturations that are stable under small
perturbations. Different exponents β also introduce asymmetry in the basins associated
with saturations 1 and 0, which changes the relative importance of the gradient energy
terms (equation (2.21)); for large β, the relative strength of the gradient terms increases
near Sg=1, where the bulk free energy becomes flatter, implying that saturations will
approach Sg=1 more slowly than they do for smaller β. Conversely, saturation profiles
approach Sg=0 more abruptly for larger β, because the bulk free energy becomes steeper
(Fig. 2 c,d).

With the above expressions, the free energy functional reads

F =Cω
γ (1− cos θ)

b
(1− Sg)β(1− Sw)2 + 2

γ cos θ

b

[
(1− Sg)2 − (1− Sw)2

]
+

Γ

4
κ(Sg, Sw)

(
|∇Sg|2 + |∇Sw|2

)
.

(2.21)

Based on the above free energy, the common-tangent construction (Witelski 1998) yields,
for arbitrary contact angles 0◦<θ6180◦, and along Sw=1−Sg, the stable states Sg=0,
and Sg=1 (Fig. 2). The capillary potentials are given by

ψg = −Cωβ
γ (1− cos θ)

b
(1− Sg)β−1(1− Sw)2 − 4

γ cos θ

b
(1− Sg)−

Γ

2

√
κ∇ ·

(√
κ∇Sg

)
,

(2.22)
and

ψw = −2Cω
γ (1− cos θ)

b
(1−Sg)β(1−Sw)+4

γ cos θ

b
(1−Sw)−Γ

2

√
κ∇·

(√
κ∇Sw

)
. (2.23)

The difference in capillary potentials, ψw−ψg, whose relaxation drives the saturation
profiles in the static limit of equation (2.10), is given by

ψw−ψg = −4γ cos θ

b
− 2Cωγ (1− cos θ)

b
Sg(1−Sg)β−1(1− β + 2

2
Sg)+Γ

√
κ∇·

(√
κ∇Sg

)
,

(2.24)
where we have used the identity Sw=1−Sg.

In the present model we do not consider the effect of dynamic contact angles or a
dynamic capillary pressures (Park & Homsy 1984; Hassanizadeh & Gray 1993). Dynamic
capillary pressure corrections have been derived from asymptotic analyses of the two-
phase Hele-Shaw problem to account for wetting films (Park & Homsy 1984), and as ra-
tionalizations of the observed rate-dependency of the constitutive relations in multiphase
flow through porous media (Hassanizadeh & Gray 1993). In the present formulation,
these effects could be included in the form of a term in the free energy functional that
depends on the rate of change of fluid saturations. This term has been suggested as a ther-
modynamically consistent extension of the Cahn-Hilliard model (Gurtin 1994), and in
the capillary pressure function in models of multiphase porous media flow (Hassanizadeh
& Gray 1993; Duijn et al. 2007).
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2.3. Dimensional analysis and summary of the model equations

We identify the following dimensionless groups: a capillary number, Ca, which compares
viscous and capillary forces,

Ca =
Uµw
γ

, (2.25)

an anisotropy ratio, ε, which is the ratio of the gap thickness to the reference length, L,

ε =
b

L
, (2.26)

the viscosity ratio, M ,

M =
ηw
ηg
, (2.27)

and a Cahn number, CΓ, controlling the strength of the gradient energy term,

CΓ =
bΓ

γL2
. (2.28)

At equilibrium we impose the balance between second and fourth-order terms in the
static limit of (2.10),

Γ ∼ γL2

b
, (2.29)

so that the characteristic interface thickness is approximately the gap width δ∼b/L. In
dimensionless quantities, the equation for the non-wetting phase saturation reads

∂tSg +∇ ·
(
fguT +

ε

12Ca
krwfg∇

(
F ′0 + CΓ

√
κ∇ ·

(√
κ∇Sg

)))
= 0, (2.30)

where the dimensionless total Darcy velocity of the mixture is

uT = − ε

MCa

[(
krg +

1

M
krw

)
∇π +

1

M
krw∇

(
F ′0 + CΓ

√
κ∇ ·

(√
κ∇Sg

))]
, (2.31)

where π=p+ψg and we require ∇·uT= 0, which yields an elliptic equation that must be
solved to obtain the pressure field, p. In the above equations, F ′0 denotes the dimensionless
derivative of the bulk free energy,

F ′0 = −4 cos θ − 2Cω (1− cos θ)Sg(1− Sg)β−1(1− β + 2

2
Sg). (2.32)

Assuming κ=1, θ=180◦, β=8, Cω=4, and adopting as reference length the gap width L ≡
b, so that the anisotropy ratio and characteristic transition width are equal to one, ε=δ=1,
the saturation equation and total velocity reduce to

∂tSg +∇ ·
(
fguT +

1

12Ca
krwfg∇

(
−16Sg(1− Sg)7(1− 5Sg) + CΓ∇2Sg

))
= 0, (2.33)

and

uT = − 1

MCa

[(
krg +

1

M
krw

)
∇π +

1

M
krw∇

(
−16Sg(1− Sg)7(1− 5Sg) + CΓ∇2Sg

)]
,

(2.34)
respectively. Note that we dropped the constant term in F ′0, and that the pressures p
and ψg were made dimensionless, with characteristic pressure pc = γ/b. In the pressure
equation, we solve for the total pressure, π rather than for p. Once π is solved for, the
pressure p can be recovered using equation (2.22) for the gas capillary potential, which
is a function of saturation and its derivatives.
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In the model equations above, and throughout the analysis and sample simulations
presented in this paper, we set the function κ to be a constant, κ=1, for computational
convenience. While not changing the results qualitatively, this choice implies that, strictly,
solutions do not have compact support at equilibrium or during dynamic displacements;
saturation profiles approach Sg=0 and Sg=1 smoothly. Another consequence for dynamic
displacements is the need for a small, artificial “precursor film” of the invading fluid, in
analogy to the precursor film needed in driven thin films under the standard formulation.

3. Simulation results

3.1. One-dimensional displacements.

To illustrate the structure of the displacement patterns, we start by considering, in a 1D
setting, a constant-rate injection case. In this flow scenario, the total velocity is uniform
and constant in time. In dimensionless quantities, gas saturations evolve according to the
nonlinear, fourth-order scalar conservation law

∂tS + ∂xfg + ∂x

(
1

12Ca
krwfg∂x (F ′0 + CΓ∂xxS)

)
= 0, (3.1)

where S≡Sg is the gas saturation. In the equation above we take the gap width as
reference length, L=b, and therefore the anisotropy ratio equals one, ε=1. With the
relative permeabilities of equations (2.7), the gas fractional flow is

fg =
krg

krg + 1
M krw

=
S3 + 3

2M S (1− S) (1 + S)

S3 + 3
2M S (1− S) (1 + S) + 1

2M (1− S)
2

(2 + S)
. (3.2)

We further set β=8 in the double-well function (2.19) and cos θ=−1, so that the derivative
of the dimensionless bulk free energy is simply

F ′0 = −16S(1− S)7(1− 5S). (3.3)

Finally, we set κ=1 and CΓ=1/80, which yield interface widths in the order of the gap
width, δ≈1. We solve the above equation using finite differences and a fully implicit
time-stepping. Explicit time-stepping is essentially precluded in PDEs with with term
of order larger than second, because of the extremely restrictive stability condition; for
a fourth-order equation like (3.1) the time step for an explicit method scales like ∆x4,
where ∆x is the grid size.

A salient feature of the solutions to our model of flow in a Hele-Shaw cell is the
presence of non-classical shocks, and that the structure of the solution and displacement
pattern depends strongly on the capillary number (Fig. 3). Mathematically, this feature
is due to the presence of the fourth-order spatial term in equation (3.1), which combined
with the free energy inducing phase segregation at equilibrium leads to undercompressive
shock solutions —a plateau whose height depends on the capillary number (Fig. 3). Non-
classical shocks also arise in thin film flows with Marangoni effects (Bertozzi et al. 1998,
1999; Bertozzi & Shearer 2000), and in theories of multiphase flow in porous media with
dynamic capillary pressure (Duijn et al. 2007; Fan & Pop 2011).

The physical interpretation of rate-dependent incomplete displacements in the gap
is well-established. When a viscous fluid is displaced by another one at constant injec-
tion rate in a capillary tube or narrow channel, the displacement pattern and efficiency
depend strongly on the capillary number and viscosity ratio Bretherton (1961). In our
simulations, the domain is initially saturated with the wetting fluid (water, S=0), and we
inject the non-wetting fluid (gas, S=1) from the left boundary. The solution comprises
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an undercompressive shock and a rarefaction wave (Fig. 3 a,c,e). For this flow set-up,
the classical Lax shock (Lax 1957) —the solution in the hyperbolic limit— is given by a
shock with speed obtained from the tangent construction. In our model shocks are un-
dercompressive, and given by secant lines whose slope decreases with decreasing capillary
numbers (Fig. 3 b,d,f). The discontinuity in wave speed leads to a constant saturation
state, that is a plateau in the saturation profile. The presence of the plateau indicates an
incomplete fluid displacement, and determines the amount of viscous fluid that is left be-
hind in a well-developed flow under constant flow rate.The height of the plateau increases
with decreasing capillary number, in accordance with experimental evidence. For a given
capillary number, the height of the plateau increases with decreasing viscosity contrast,
since the Lax shock would already yield a larger shock amplitude. This behavior is due
to the structure of the fractional flow; the slope of the tangent from the origin decreases
with decreasing viscosity contrast.

3.2. Traveling wave analysis. Traveling bubbles

An important practical and theoretical issue is whether our model can predict traveling
bubbles and, if so, under what conditions these bubbles are stable. Experimental obser-
vations show that a bubble that is transported under constant flow rate of the ambient
fluid flow in a Hele-Shaw cell will reach an equilibrium shape and travel downstream at
constant speed (Kopf-Sill & Homsy 1988a). Mathematically, traveling bubbles imply the
existence of traveling wave solutions with undercompressive shocks (Bertozzi et al. 1999;
Bertozzi & Shearer 2000; Strait et al. 2013). In the context of multiphase flow in porous
media, undercompressive traveling waves have been recently analyzed by Strait et al.
(2013) for two-phase flow in capillaries, showing the existence of compactly-supported
traveling waves when κ vanishes at Sg= 0. Here we investigate numerically whether our
model can predict this behavior, and perform a study of the traveling wave solutions to
the 1D model equation (3.1) to rationalize the behavior observed when solving the full
PDE.

To illustrate the difficulty of achieving traveling bubbles within a fractional flow for-
mulation, we illustrate the set-up in the context of the hyperbolic limit of equation (3.1)
(Ca→∞). In that case, the model reduces to

∂tS + ∂xfg = 0. (3.4)

For simplicity, we study the displacement of a square gas saturation profile, representing
a bubble, by the constant-rate injection of a viscous fluid (Fig. 4). At early times, the
solution comprises two shocks and rarefaction waves. Since the rear shock is faster than
the leading-front shock, the solution at late times is a shock at the leading edge, and a
rarefaction wave. Clearly, this type of solutions does not describe a traveling bubble.

In contrast to the classical hyperbolic model, our model yields two types of solu-
tion profiles depending on the capillary number (Fig. 5). For small capillary numbers
(Fig. 5 a,c), the slope of the secant to the fractional flow is smaller than the slope of the
fractional flow at the origin. A traveling bubble thus arises from front and rear shocks
that have the same speed. At high capillary numbers (Fig. 5 b,d), the slope of the secant
line is significantly larger than the slope of the fractional flow at the origin. The rear
shock does not return back to the origin, and another plateau appears also at the back of
the bubble. This behavior may be consistent with shedding bubbles at the trailing edge
observed in experiments (Kopf-Sill & Homsy 1988a). The shape of displaced bubbles
varies with capillary number, as in the case of constant-rate gas injection, consistently
with the overall trend of smaller plateau heights and less efficient displacements for larger
capillary numbers (Fig. 6).
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The particular conditions leading to the existence of traveling bubbles, as well as their
structure, can be rationalized by computing the traveling wave solutions to our model
equation (3.1). Traveling wave analysis also helps understand the structure of the un-
dercompressive shocks obtained in the previous section by solving the PDE problem.
We therefore seek solutions to (3.1) in a moving reference frame, defining the coordi-
nate ξ=x−V t, where V is the characteristic wave speed. Expressing space and time
derivatives as derivatives with respect to ξ,

∂x (·) = ∂ξ (·) , ∂t (·) = −V ∂ξ (·) , (3.5)

and integrating once, equation (3.1) becomes a third-order ordinary differential equation
for s(ξ) ≡ S(x− V t),

V (sL − s) + (fg − fLg ) +
krwfgF

′′
0

12Ca
sξ +

CΓ

12Ca
krwfgsξξξ = 0, (3.6)

where the left state is defined as sL = s(ξ → −∞), we assumed vanishing derivatives
as ξ → −∞, and the characteristic speed V is given by the jump condition

V =
fL − fR

sL − sR
. (3.7)

For convenience, we write the above third-order ODE as a system of first-order ODEs in
the variables (s, u, v) ≡ (s, sξ, sξξ), as

sξ = u,
uξ = v,

vξ = −12Ca

CΓ

fg − fLg − V (s− sL)

krwfg
− F ′′0
CΓ

u (3.8)

We compute the traveling waves by integrating forward in ξ using a standard explicit
Runge-Kutta solver, with the initial condition (sL, 0, 0) plus a small perturbation to
start the orbits. Note that obtaining traveling waves requires iterating to find the correct
pairs (sL,Ca) or (Ca, V ). That is, for each capillary number there is a corresponding
left state, or plateau height, sL, for the Riemann problem, or a characteristic speed in
the case of homoclinic orbits. For constant κ, we need to assume a non-zero precursor,
because (s, u, v)=(0, 0, 0) is not a stable equilibrium of the above dynamical system. To
understand the behavior near s=0, we note that fg(s→ 0)∼ 3

2s and krw(s→ 0)∼1. This
implies that, if we take sR=0 and near s=0, the dynamical system behaves like

sξ = u,
uξ = v,

vξ = −12Ca

CΓ

(
3

2
− V

)
− F ′′0
CΓ

u. (3.9)

Analogously to driven thin film problems, this precursor films becomes a numerical pa-
rameter. We set this precursor to be sR=10−4 in the calculation of the characteristic
speeds (3.7).

We identify three families of traveling wave solutions, depending on the left state, sL,
and on whether we seek for heteroclinic or homoclinic orbits (Fig. 7, top row). Type I
traveling waves correspond to the solution of the Riemann problem with varying left state
and fixed, small right state, sR=10−4 in the present case. These traveling waves can be
compared with the plateau of the constant-flux displacements computed by solving the
PDE (Fig. 3). Type II waves are homoclinic orbits, connecting sL=sR. Type III waves,



12 L. Cueto-Felgueroso and R. Juanes

which may be interpreted as rear fronts in the water-gas displacements, connect a small
left state, sL, with an asymptotic right state sR.

Using these three families of traveling waves, we may elucidate the structure of constant-
volume gas displacements, and the conditions leading to the existence of traveling bub-
bles, that is, local structures that travel at constant speed preserving their shape. When
a finite volume of gas is displaced by water (as in Figs. 5–6), two fronts will form at the
front and rear of the bubble. If the speed of the front shock is larger than that of the rear
shock, conservation of mass implies that traveling bubbles may not exist, and a trailing
fluid film is left behind. The crossover corresponds to the critical capillary number, Cac,
beyond which Type I waves are faster that Type II and Type III waves (Fig. 7, bottom).
The critical capillary number depends on the viscosity contrast, M , and on the shape of
the relative permeabilities and bulk free energy (through the parameter β). For M=200
and β=8, the crossover criterion predicts Cac≈0.01, which is similar to the capillary
number beyond which a secondary plateau is found when solving the PDE (Fig. 6).

This rear plateau may be interpreted as a trailing “film” of the bubble fluid that is
left behind. In the case of a gas bubble this film would be unphysical, pointing to the
limits of applicability of the present model, or may be interpreted as a breakup instability
of the bubbles, which could be contrasted with experiments. To understand the height
of the rear plateau as a function of the capillary number, we note that its appearance
is explained by the fact that the leading front of the bubble is faster than the rear
front. The plateau height may therefore be determined by the need to connect a suitable
Type III rear wave with a Type I wave corresponding to the leading front. For a given
capillary number, the speed of Type III traveling waves increases with increasing left
states sL (Fig. 8 a, b). Therefore the way to connect to a faster Type I front wave is to
develop a rear plateau such that the speed of the corresponding Type III wave matches
that of the front wave. The set of crossing points between the curve of Type I speeds as
a function of capillary number, and curves of Type III waves for different Ca and left
state sL (Fig. 8 a) determines the increasing heights of the rear plateau as Ca increases,
in accordance with the PDE simulation results.

The shape of the double-well function (2.19) determines the range of capillary numbers
for which traveling waves can be found. While a complete analysis is beyond the scope
of the present study, we note that smaller values of the exponent β lead to a reduced
range of capillary numbers for which traveling waves exist. As the value of β decreases,
the height of the plateau for a given Ca increases (Fig. 9). The viscosity contrast between
the two fluids, M, also impacts the structure of the traveling wave solutions (Fig. 10).
For a given capillary number, the speed of the traveling waves increases with M, which
is consistent with the higher plateau, as observed in the PDE solutions (Fig. 3 a,c,e).

3.3. Two-dimensional bubble motion

In this section, we extend the one-dimensional results of the previous section to full two-
dimensional examples of bubble motion. To compute numerical solutions of the model
equations (2.10)–(2.12), we adopt a sequential solution approach where we first advance
the fluid saturations, and then update the pressures and velocities by solving the elliptic
problem (2.11)–(2.12). For the transport problem (2.10), we use high-order finite dif-
ferences in space and the biharmonic-modified time-stepping method of Bertozzi et al.
(2011) for fourth-order nonlinear diffusion equations. For the pressure problem, (2.11)–
(2.12), we use a finite volume formulation with simple two-point flux approximations.

We simulate the motion of bubbles driven by constant-rate injection of a more viscous
ambient fluid. We study the impact of capillary number and viscosity contrast, as well as
the impact of confinement, by varying the cell width and bubble size. For small capillary
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numbers, the bubbles adopt a nearly circular shape, which is distorted as the capillary
number increases. The gas saturation inside the bubbles is also larger for smaller capillary
numbers, indicating thinner films of the ambient wetting fluid adhered to the cell walls
(Fig. 11). Larger viscosity ratios yield more elongated bubbles, which are thinner and
thus travel at higher speeds (Figs. 12). In the absence of confinement, high capillary
numbers lead to bubble breakup, splitting into two or more smaller bubbles (Fig. 13).
The initial gas volume is important to understand the impact of boundary confinement
and stability of the bubbles (Fig. 14). For the explored system parameters, we do not
observe the flattened or “Tanveer” bubbles (Kopf-Sill & Homsy 1988a), but a more
thorough analysis of the model is needed to fully understand the dependence of bubble
shape and speed on viscosity contrast, wetting properties of the system, bubble size, and
pressure-driven versus gravity-driven displacements.

3.4. Viscous fingering

The instability of driven fronts in two-phase flow when the invading fluid is less viscous
than the defending one is a classical problem in fluid mechanics (Saffman & Taylor
1958b; Park & Homsy 1984, 1985; Homsy 1987; Kopf-Sill & Homsy 1988b; Arnéodo et al.
1989). The instability that ensues, often called viscous fingering, is a paradigmatic case
of pattern formation in nonlinear systems. Viscous fingering impacts the displacement
efficiency in multiphase flow through porous media, due to channeling and the subsequent
creation of preferential flow paths. Because of these preferential paths, the sweep efficiency
is significantly reduced in the presence of fingering instabilities.

We simulate viscous fingering in two-phase displacements in a Hele-Shaw cell (Figs. 15–
18, see also Supplementary Movie 1). For viscosity-matched fluids the displacement front
is stable, and initial perturbations of the fluid-fluid front decay exponentially (Fig. 15).
At low capillary numbers, a single finger—the Saffman-Taylor finger—dominates the
flow (Saffman & Taylor 1958b). The problem of finger width selection as a functional
of system parameters is still a fascinating open problem (Moore et al. 2002). The clas-
sical ramified structures arise for large viscosity ratios and capillary numbers Kopf-Sill
& Homsy (1988b); Arnéodo et al. (1989) (Fig. 17). Geometric confinement plays an im-
portant role in the structure of the displacement and characteristic finger size. Thus, a
narrower cell imposes a constraint of the pressure dissipation, leading to finger shielding
and thicker fingers. As the cell width increases, more ramified structures appear and fin-
ger widths decrease. Our model can reproduce pinch-off and reconnection events, which
are typically observed in experiments of viscous fingering (Fig. 18, see Supplementary
Movie 1).

4. Conclusions

We have proposed a phase-field model of two-phase flow in Hele-Shaw cells. The dis-
tinctive feature of our model is that it is a gap-averaged formulation that is designed to
capture 3D effects. The model is derived within the framework of the generalized Darcy’s
law, with relative permeabilities that incorporate the viscous coupling (Stokes flow) in
the gap. This leads to a non-convex fractional flow function that depends on the viscos-
ity contrast. The local capillary coupling between the fluids, resulting from fluid-fluid
surface tension and the wetting properties of the system, is modeled with an extension
of the classical Cahn-Hilliard approach to the free energy of non-uniform systems. We
design the bulk free energy to induce fluid segregation at equilibrium, and the gradi-
ent free energy leads to fourth-order spatial terms. The solutions to our model exhibit
rich behavior, with displacement patterns that depend strongly on the capillary number
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Figure 1. Relative permeabilities and fractional flow function for two-phase flow in a Hele-Shaw
cell, assuming Stokes flow in the gap (Fourar & Lenormand 1998). These functions depend on
the viscosity contrast between the fluids, M = µw/µg. a, M = 5 and b, M = 200. The shape
of the fractional flow function controls the behavior of the model in the limit of large flow rates
(or high capillary numbers).

and viscosity contrast, in agreement with experimental observations. As future exten-
sions, we anticipate the application of the present modeling approach to multiphase flow
through porous media (Cueto-Felgueroso & Juanes 2008) and rough fractures, which can
be conceptualized as Hele-Shaw cells with variable gap width, and the consideration of
buoyancy due to non-horizontal fracture orientation and density differences between the
fluids. Our model naturally allows us to explore the impact of the wetting properties of
the system on the displacement patterns.
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Figure 2. Structure of the bulk free energy in our phase-field model of two-phase flow in a
Hele-Shaw cell, and its impact on the equilibrium saturation profiles. a, b, Bulk free energies
for β=2 and β=8, respectively, for various static contact angles θ (from equation (2.15)). These
energies satisfy that the common-tangent construction yields the correct stable states, Sg=0
and Sg=1 (dashed lines). c, Double-well component of the free energy, ω=(1 − Sg)β(1 − Sw)2,
normalized with respect to the maxima, ω̃ = ω/max(ω). As the power β increases, the spin-
odal region (the range of saturations between inflection points, marked with gray dots), moves
towards Sg=0, allowing stable, relatively thick wetting films. Another consequence of differ-
ent exponents is the behavior of the solution near Sg=1. Since the bulk free energy is flatter
near Sg=1 and steepper near Sg=0 for larger β, the relative impact of the gradient energy terms
in equation (2.21) becomes asymmetric, that is for large β the relative strength of the gradient
energy terms is much larger near Sg=1, implying that saturations will approach Sg=1 more
slowly than they approach Sg=0. d, One-dimensional, steady-state saturation profiles for gas
bubbles at equilibrium, showing the impact of the exponent β on the structure of the transi-
tion from Sg=1 to Sg=0. Saturation profiles approach Sg=0 more abruptly for larger β, and
approach Sg=1 more smoothly.
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Figure 3. Gas saturation profiles at dimensionless time t=6.5 and capillary num-
bers Ca = 1/3, 1/12, 1/60, 1/300, 1/2000 (with increasing plateau heights). The viscosity con-
trast is M=200 (a–b), M=20, (c–d), and M=5 (e–f). Right column. Schematic representation
of the structure of the displacement profile. For each viscosity contrast, we plot the fractional
flow function and secant lines describing the undercompressive shocks. The slope of the secant
lines decreases with decreasing capillary number, corresponding to increasing plateau heights.
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Figure 4. Displacement of a gas bubble in the hyperbolic limit (first-order terms only in
eq. (3.1)), for M=200 and the relative permeabilities (2.7). a, saturation profiles at times t =0, 10
and 48. b, fractional flow interpretation of the saturation profile at time t=10. c, fractional flow
interpretation of the saturation profile at time t=48.
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Figure 5. Displacement of a gas bubble for finite capillary numbers (the full model, eq. (3.1)).
a–c, gas saturation profile for Ca=0.001 and M=200. b–d, gas saturation profile for Ca=0.5
and M=200. These results suggest that traveling bubbles exist for low capillary numbers.
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Figure 6. Traveling bubbles in 1D. a, For small capillary numbers, our model allows for traveling
bubbles, that is, saturation profiles that are advected with constant speed without altering their
shape. Here we show gas saturation profiles for viscosity contrast M=200 and capillary num-
bers Ca=4×10−3, 8×10−4, 2×10−4, 4×10−5 (increasing plateau heights). b, At high capillary
numbers, the solutions are not traveling bubbles, and the profile exhibits a complex structure.
Here we show saturation profiles for capillary numbers Ca=1, 0.4, 0.15, 0.04 (increasing plateau
heights). The rear front exhibits another plateau and a rarefaction wave, according to the de-
scription of Fig. 5.
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Figure 7. Traveling wave solutions to the one-dimensional model eq. (3.1), and their relationship
with the existence of traveling bubble solutions. These results correspond to β=8 and M=200.
Type I waves connect a left state (sL) with a right state (sR=10−4). These traveling waves
correspond the plateau observed in the PDE solutions of Fig. 3. Type II waves are homoclinic
orbits. Type III waves connect a left state (sL=10−4) with a right state sR. For a given capillary
number, traveling bubbles are possible if the speed of the corresponding Type I wave is smaller
that that of the Type II and II waves. Bottom, wave speed as a function of the capillary number.
The critical capillary number is Cac≈0.104. Beyond this Ca the leading front would be faster
that the rear front, and traveling bubbles do not exist: the solution will develop a secondary
plateau of the bubble.
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Figure 8. Relationship between the capillary number and the structure of the rear front for β=8
and M=200. Beyond a critical capillary number Cac, the leading front of the bubble is faster
than the rear front, and the solution will develop a secondary plateau at the rear of the bubble
(Figs. 6 and 7). a, The height of this plateau is determined by the need to connect with the
Type I wave corresponding to the leading front. The speed of Type III traveling waves increases
with increasing left states sL. For a given capillary number, the height of the rear plateau is
given by the Type III wave with the same speed as the Type I wave, i.e. by the crossing point
of the lines in (a). This leads to increasing heights of the secondary plateau as Ca increases (b),
in accordance with the PDE simulation results (Fig. 6).
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Figure 9. Influence of the shape of the double-well energy function on the traveling wave
solutions (through the exponent β in equation (2.19)), for M=200. As the inflection points move
towards Sg=0 (increasing β), the height of the plateau decreases for the same capillary number.
Larger β also corresponds to a wider range of capillary numbers for which stable traveling waves
exist. Sample traveling waves for a, Ca=10−4, and b, Ca=10−3.
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Figure 10. Influence of the viscosity contrast, M=µw/µg, on the speed of the Type I traveling
waves, as a function of capillary number, Ca. We set β = 8. This plot elucidates the structure
of the constant flux displacements obtained by solving the PDE (Fig. 3). For a given capillary
number, the speed of the plateau increases with viscosity contrast. In terms of displacement
pattern, this corresponds to lower plateau heights.
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Figure 11. Two-dimensional simulations of a bubble flowing in a Hele-Shaw cell at low Ca. The
width of the cell is W = 6, the viscosity contrast is M = 5 and the dimensionless time is t = 7.
a, Initial condition; b, Ca = 0.0001; c, Ca = 0.001; d, Ca = 0.005; and e, Ca = 0.01.
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Figure 12. Two-dimensional simulations of a bubble flowing in a Hele-Shaw cell at low Ca. The
width of the cell is W=6, the viscosity contrast is M=200 and the dimensionless time is t=7.
a, Initial condition; b, Ca=0.0001; c, Ca=0.001; d, Ca=0.005; and e, Ca=0.01.
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Figure 13. Two-dimensional simulations of bubbles flowing in a Hele-Shaw cell at low Ca. The
width of the cell is W=12, the viscosity contrast is M=200 and the dimensionless time is t=7.
a, Initial condition; b, Ca=0.0001; c, Ca=0.001; and d, Ca=0.01.
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Figure 14. Two-dimensional simulations of bubbles flowing in a Hele-Shaw cell at low Ca. The
width of the cell is W=12, the viscosity contrast is M=200 and the dimensionless time is t=7.
a, Initial condition; b, Ca=0.0001; c, Ca=0.001; and d, Ca=0.005.



A phase-field model of two-phase Hele-Shaw flow 27

Figure 15. Two-dimensional simulation of constant flow rate, two-phase displacements in
Hele-Shaw cells. For viscosity-matched fluids, the displacement front is stable. Here we show
the saturation field for capillary number Ca=0.01. The initial perturbations in the fluid-fluid
interface decay in time, and the interface is stable.

b

c

Figure 16. Unstable displacement in a Hele-Shaw cell: the Saffman-Taylor finger. For two
cases of unfavorable viscosity contrast—a, M=20, and b, M=500—and low capillary num-
ber, Ca=0.001, the displacement front evolves into a single finger that occupies roughly one
half of the cell width, W=12.
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Figure 17. Two-dimensional simulation of constant flow rate, two-phase displacements in
Hele-Shaw cells. When the invading fluid is less viscous than the defending fluid, the displace-
ment front is unstable. Here, we show the saturation fields for constant-flux injection of gas with
viscosity ratio M=500, and Ca=0.01. Varying the cell width, W , we investigate the impact of
confinement on the displacement pattern. a, For W=12, the formation of fingers is constrained
by the presence of the no-flow boundaries, implying relatively thick fingers. The finger size
decreases as the boundary effect is eliminated with wider cells (b, W=24 and c, W=36. See
Supplementary Movie 1).
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Figure 18. Pinchoff and reconnection in unstable displacements at large Ca and M . Here
we show a snapshot of the simulation for M=500 and Ca=0.01 (Fig. 17c) at late times. The
interaction between fingers results in pinch off and reconnection of fingers, and isolated bubbles
that arise due to Rayleigh-Plateau instabilities (see Supplementary Movie 1).
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