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SUMMARY

This paper introduces the use of moving least-squares (MLS) approximations for the development of
high-order finite volume discretizations on unstructured grids. The field variables and their successive
derivatives can be accurately reconstructed using this mesh-free technique in a general nodal arrange-
ment. The methodology proposed is used in the construction of two numerical schemes for the shallow
water equations on unstructured grids: a centred Lax–Wendroff method with added shock-capturing
dissipation, and a Godunov-type upwind scheme, with linear and quadratic reconstructions. This class
of mesh-free techniques provides a robust and general approximation framework which represents an
interesting alternative to the existing procedures, allowing, in addition, an accurate computation of the
viscous fluxes. Copyright � 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The development of a general algorithm capable of achieving optimal performance in all flow
problems is one of the most important and challenging areas of research in computational
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mechanics. In the context of shallow water dynamics, finite element and finite volume dis-
cretizations have become very popular in recent years on unstructured grids.

Continuous finite element formulations for fluid dynamics are usually elegant and applicable
to a wide variety of flow conditions. Unfortunately, their frequent centred character hinders
their suitability for problems involving shock waves and transcritical flow, thus requiring the
development and tuning of more or less effective artificial viscosity models. One of the most
successful of these finite element schemes applied to the shallow water equations is the Taylor–
Galerkin FEM algorithm proposed by Peraire [1, 2], which has been further developed by
Quecedo and Pastor [3, 4]. Sheu and Fang [5] have recently proposed a generalized Taylor–
Galerkin finite element method to obtain high resolution of discontinuous flows.

Most finite volume formulations for the set of shallow water equations are reflections of
high-resolution schemes originally devised to solve high-speed compressible flows, and have
been successfully employed in the simulation of flows including the presence of shock waves,
such as breaking dams or hydraulic jumps, almost invariably neglecting viscous and turbulent
effects. Alcrudo and García-Navarro [6] developed a Godunov-type MUSCL high-resolution
scheme based on Roe’s Riemann solver. A similar formulation was used by Chippada et
al. [7], whereas Zhao et al. [8] construct their numerical flux using Osher’s method. Anasta-
siou and Chan [9] solved the full set of shallow water equations on unstructured meshes using
a second-order Roe scheme and reported results for viscous flows at low Reynolds numbers.
Other upwind schemes with shock-capturing capabilities have been proposed by Hu and Ming-
ham [10] and Tseng [11]. Liszka and Wendroff [12] introduced composite methods, which
combine Lax–Wendroff and Lax–Friedrichs schemes into a multistage algorithm, and Wang
and Liu [13] have recently extended the methodology to unstructured triangular meshes. The
concept of high-order method is most frequently used in the literature in reference to formally
second-order methods (i.e. linear reconstruction in those schemes based on the generalized
Godunov method).

The development of higher- (than second-) order methods is of great importance in practice.
Various researchers have reported that first- and even second-order upwind schemes, despite
providing excellent results in the case of discontinuous flows, exhibit excessive numerical dissi-
pation when applied to more general flows (not necessarily including shock wave propagation)
where turbulent effects are of interest [14–16], and several corrections to the original algo-
rithms have been proposed in order to reduce the unnecessary artificial dissipation introduced in
the computations. Unfortunately, these corrections are somewhat ‘heuristic’, and yet remains a
compromise between accuracy and stability: the lesser the dissipation added the more accurate
the results, whereas some amount of artificial viscosity is unavoidably necessary to yield stable
algorithms. A suitable numerical method to solve such problems on unstructured grids should
therefore not introduce excessive numerical dissipation, in order to capture fine viscous fea-
tures of the flow and to avoid interactions with the turbulence model. Furthermore, when shock
wave–turbulence interactions are present in the flow, the numerical method should possess the
low dissipation of high-order methods and the shock-capturing capabilities of Godunov-type
schemes [17].

The endeavour to solve increasingly complex flows has promoted the advent of unstructured
grids as the most efficient approach to discretize highly irregular domains, perform adaptive
refinements and capture small-scale features of the flow. As far as the development of high-order
Godunov-type [18–20] finite volume schemes for unstructured meshes is concerned, the absence
of an underlying spatial approximation framework, which stems from the inherent piecewise
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constant representation, is certainly a most challenging algorithmic issue, since the construction
of high-order polynomials for reconstruction requires the evaluation of high-order derivatives
of the field variables from scattered, pointwise information. As a result, most schemes are at
best second-order and even the required reconstruction of fluxes and gradients is addressed by
using somewhat ‘heuristic’ techniques, which frequently lead to quite complex data processing
when proper accuracy and low grid sensitivity are pursued.

In this paper, the authors would like to propose a mesh-free technique, the so-called moving
least-squares (MLS) approximation, as an accurate and efficient technique to obtain high-
order finite volume algorithms on unstructured grids. This class of approximation methods
is particularly well suited for such purpose, providing a robust and general approximation
framework which represents an interesting alternative to the existing techniques, and allowing,
in addition, an accurate computation of the viscous fluxes. Originally devised for data processing
and surface generation [21], the MLS approximation has become very popular among those
researchers working in the class of the so-called meshless or mesh-free methods, being widely
used both in eulerian and lagrangian formulations. In particular, the authors have recently
proposed an algorithm for lagrangian particle hydrodynamics, where the MLS technique plays
a key role to provide the spatial approximation within an arbitrary cloud of nodes [22].

The spatial approximation framework provided by the MLS approximants will be used as
the basis to construct two different finite volume formulations for the set of shallow water
equations. The first of them corresponds to a Lax–Wendroff-type centred scheme with added
artificial dissipation. The spatial finite volume discretization uses the MLS approximation as
a kind of ‘shape functions’ for unstructured grids. This class of centred schemes requires
the introduction of an artificial dissipation model, in order to deal with shocks and/or steep
gradients in the flow variables. The resulting scheme possesses accuracy and stability properties
very similar to its finite element counterpart, the Taylor–Galerkin FEM.

The second formulation follows the ideas of the generalized Godunov method [18, 19, 23],
with piecewise polynomial reconstructions inside each cell. Both the computation of the suc-
cessive derivates of the flow variables, and the evaluation of the diffusive fluxes, will be
addressed by means of MLS approximations. Second and third-order-reconstruction upwind
schemes, based on Roe’s approximate Riemann solver [24], will be presented and tested for
inviscid and viscous flow applications. In the latter, the approximation framework provided by
these mesh-free techniques is specially interesting in the accurate evaluation of the viscous
fluxes at the cell edges.

The outline of the paper is as follows. Section 2 presents a brief introduction to some
meshless approximation techniques, with special emphasis on MLS and reproducing kernel
methods. The model equations and numerical formulations are discussed in Section 3. Finally,
Section 4 is devoted to present and discuss several numerical examples.

2. MESHLESS APPROXIMATION: MOVING LEAST-SQUARES

2.1. The idea of a mesh-free interpolation

The endeavour to solve the continuum equations in a particle (as opposed to cell or element)
framework, i.e. simply using the information stored at certain nodes or particles without
reference to any underlying mesh, has given rise to a very active area of research: the class
of so-called meshless, mesh-free or particle methods.
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If this particle approach is to be used in combination with classical discretization proce-
dures (e.g. the weighted residuals method), then a spatial approximation is required (some kind
of ‘shape functions’, as in the finite element method). Such an interpolation scheme should
accurately reproduce or reconstruct a certain function and its successive derivatives, using the
nodal (particle) values and some ‘low-level’ geometrical information about the grid, such as
the distance between particles. Furthermore, and in order to achieve some algorithms computa-
tionally efficient, the interpolation should have a local character, i.e. the reconstruction process
should involve only a few ‘neighbour’ nodes.

Even though a ‘perfect’ meshless approximation scheme, capable of achieving high accuracy
for any randomly distributed set of points, is still not available, several powerful interpolation
techniques have been recently proposed, thus enabling the development of increasingly efficient
and accurate meshless formulations. What follows is a brief introduction to a certain class of
such interpolation schemes, namely those based on reproducing kernel and MLS approximations.
Further emphasis is placed on the particular technique used in this study, although the reader
is referred to the classical mesh-free literature to find in-depth descriptions of these algorithms.

2.2. Meshless approximants

The origin of modern meshless methods could be dated back to the 1970s with the pioneering
works in generalized finite differences and vortex particle methods [25, 26]. However, the
strongest influence upon the present trends is commonly attributed to early smoothed particle
hydrodynamics (SPH) formulations [27–29], where a lagrangian particle tracking is used to
describe the motion of a fluid. Although this general feature is shared with vortex particle
methods, SPH includes a spatial approximation framework (some kind of ‘mesh-free shape
functions’), developed using the concept of kernel estimate, which is inspired by the following
property of the Dirac � function

u(x) =
∫

y∈�
u(y)�(x − y) d� (1)

The kernel estimate 〈u(x)〉 of a given function u(x) is defined as

〈u(x)〉 =
∫

y∈�
u(y)W(x − y, �) d� (2)

and its discrete SPH counterpart û(x) is

û(x) =
n∑

j=1
ujW(x − xj , �)Vj (3)

where � is the problem domain, which is assumed to be represented by a set of n nodes or
particles (used as quadrature points in (2)), W(x −xj , �) is a kernel (smoothing) function with
compact support centred at particle j , and Vj is the tributary or statistical ‘volume’ associated to
particle j . The parameter �, usually called smoothing length or dilation parameter, is a certain
characteristic measure of the size of the support of Wj (e.g. kernels with circular supports of ra-
dius 2�). Exponential and spline functions are most frequent kernels. In analogy with the finite
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element method, the approximation (3) could be cast in terms of ‘SPH shape functions’, as

û(x) =
n∑

j=1
ujNj (x), Nj (x) = W(x − xj , �)Vj (4)

Using standard kernels, the approximation given by (4) is poor near boundaries, and lacks even
zeroth order completeness, i.e.

n∑
j=1

Nj(x) �= 1 (5)

The gradient of û(x) is evaluated as

∇xû(x) =
n∑

j=1
uj∇xNj(x) =

n∑
j=1

uj∇xWj(x)Vj (6)

In practice, alternative expressions for ∇xû(x) are frequent in the SPH literature to enforce
conservation properties in the discrete equations. Higher-order derivatives could be computed in
a similar way. Note that the reconstructed values of u(x) and its derivatives at a certain location
are obtained using the information from neighbouring nodes and weightings that are functions
of distances between nodes, with no reference to any grid-based data structure (Figure 1).

This basic approximation structure is retained in other improved interpolation schemes. In
this study only MLS and reproducing kernel particle methods (RKPM) are considered. Although
different in their formulation, the resulting numerics are almost identical for both methods, and
they can be presented within a common framework.

Let us consider a function u(x) defined in a domain �. The basic idea of the MLS approach
is to approximate u(x), at a given point x, through a weighted least-squares fitting of u(x) in
a neighbourhood of x as

u(x) ≈ û(x) =
m∑

i=1
pi(x)�i (z)

∣∣∣∣
z=x

= pT(x)�(z)
∣∣
z=x (7)

Figure 1. Mesh-free approximation: general scheme. Support for reconstruction at P.
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where pT(x) is an m-dimensional polynomial basis and �(z)|z=x is a set of parameters to be
determined, such that they minimize the following error functional

J (�(z)|z=x) =
∫

y∈�x

W(z − y, �)

∣∣∣∣
z=x

[
u(y) − pT(y)�(z)

∣∣∣∣
z=x

]2

d�x (8)

being W(z−y, �)|z=x a kernel with compact support (denoted by �x) centred at z = x, frequently
chosen among the kernels used in standard SPH. As mentioned before, � is the smoothing
length, which measures the size of �x. The stationary conditions of J with respect to �

lead to ∫
y∈�x

p(y)W(z − y, �)

∣∣∣∣
z=x

u(y) d�x = M(x)�(z)|z=x (9)

where the moment matrix M(x) is

M(x) =
∫

y∈�x

p(y)W(z − y, �)

∣∣∣∣
z=x

pT(y) d�x (10)

In numerical computations, the global domain � is represented by a set of n particles. We
can then evaluate the integrals in (9) and (10) using those particles inside �x as quadrature
points (nodal integration) to obtain, after rearranging,

�(z)|z=x = M−1(x)P�x WV (x)u�x (11)

where the vector u�x contains the pointwise nodal values of u(x) at the nx nodes within �x
(Figure 1)

u�x = (u(x1) u(x2) · · · u(xnx))
T (12)

The discrete version of the moment matrix is M(x) = P�x WV(x)PT
�x

, where matrices P�x and
WV(x), whose dimensions are, respectively, (m × nx) and (nx × nx), can be obtained as

P�x = (p(x1) p(x2) · · · p(xnx)) (13)

WV(x) = diag{Wi(x − xi )Vi}, i = 1, . . . , nx (14)

Complete details can be found in Referred to [30–32]. In the above equations, Vi and xi are,
respectively, the tributary volume (used as quadrature weight) and co-ordinates associated to
particle i. Note that the tributary volumes of neighbouring particles are included in matrix WV,
thus obtaining an MLS version of the RKPM (the so-called MLSRKPM) [30]. Otherwise, we
can use W instead of WV

W(x) = diag{Wi(x − xi )}, i = 1, . . . , nx (15)

which corresponds to the classical MLS approximation (in the nodal integration of the func-
tional (8), the same quadrature weight is associated to all particles). Introducing (11) into (7)
the interpolation structure can be identified as

û(x) = pT(x)M−1(x)P�x W(x)u�x = NT(x)u�x =
nx∑

j=1
Nj(x)uj (16)
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and, therefore, the MLS shape functions can be written as

NT(x) = pT(x)M−1(x)P�x WV (x) (17)

The functional basis p(x) is strongly related to the accuracy of the MLS fitting. Numerical
tests [32] have shown that, for a rth order MLS fitting (rth order complete polynomial basis)
and general irregularly spaced points, the nominal order of accuracy for the approximation of
a sth order gradient is roughly (r − s + 1). In general, any linear combination of the functions
included in the basis is exactly reproduced by the MLS approximation.

In this study, the following cubic polynomial basis was used

p(x) = (1 x1 x2 x1x2 x2
1 x2

2 x2
1x2 x1x

2
2 x3

1 x3
2)T (18)

which provides cubic completeness. In the above expressions, (x1, x2) denotes the Cartesian
co-ordinates of x. To improve the conditioning of the moment matrix, it is most frequent to
use scaled and locally defined monomials in the basis. Thus, if the shape functions were to be
evaluated at a certain point xI , the basis would be of the form p((x − xI )/�), instead of p(x).
With this transformation, the MLS shape functions read

NT(xI ) = pT(0)C(xI ) = pT(0)M−1(xI )P�xI
W(xI ) (19)

where C(x) was defined as

C(x) = M−1(x)P�x W(x) (20)

The approximate derivatives of u(x) can be expressed in terms of the derivatives of the MLS
shape functions. For instance, the first and second derivatives of u(x), evaluated at xI , read

�u(x)

�x�

∣∣∣∣
x=xI

≈
nxI∑
j=1

uj

�Nj(x)

�x�

∣∣∣∣
x=xI

,
�2

u(x)

�x��x�

∣∣∣∣∣
x=xI

≈
nxI∑
j=1

uj

�2
Nj(x)

�x��x�

∣∣∣∣∣
x=xI

(21)

The successive derivatives of the shape functions are obtained in terms of the derivatives of
the polynomial basis p((x − xI )/�) and the derivatives of C(x) [33].

A wide variety of kernel functions appears in the literature, most of them being spline or
exponential functions. In this study we use a very popular cubic spline

Wj(x) = W(x − xj , �) = �

��

⎧⎪⎪⎨
⎪⎪⎩

1 − 3
2 s2 + 3

4 s3 s�1

1
4 (2 − s)3 1<s�2

0 s>2

(22)

where s = ‖x−xj‖/�, � is the number of dimensions and � takes the value 2
3 , 10/7� or 1/� in

one, two or three dimensions, respectively. The coefficient �/�� is a scale factor necessary only
if non-corrected SPH interpolation is being used, to assure the normality property

∫
W dV = 1.

We do not use it in our MLS computations. Anisotropic weightings for 2D/3D computations
can be constructed, for instance, as tensor product of 1D kernels, as

Wj(x − xj ) =
�∏

n=1
Wn

j (xn − xn
j , �n) (23)
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where xn is the nth Cartesian co-ordinate of particle x. In the above expression we let Wn
j

and �n (the 1D kernel function and its characteristic smoothing length) be different for each
spatial dimension.

2.2.1. Diffuse derivatives. The concept of diffuse derivative is very interesting from a compu-
tational point of view in MLS approximations. In the diffuse approach, the derivatives of C(x)

are always neglected. Thus, the derivatives of the shape functions can only be written in terms
of the derivatives of the basis functions p((x − xI )/�) as

�kNT(x)

�x��x(k−�)
≈ �kpT(0)

�x��x(k−�)
C(x) (24)

It has been shown (see Reference [34] and references therein) that the diffuse derivatives of a
function u(x) converge at optimal rate to the exact derivatives.

2.3. Application to finite volume procedures on unstructured grids

The MLS technique outlined above will be used to provide a general and accurate approximation
framework for finite volume schemes on unstructured grids (some kind of FV shape functions).
The computation of the MLS shape functions and their derivatives involves two major steps:

• Determination of the ‘neighbourhood’ (cloud of nodes) of the evaluation point; i.e. the
set of nodes (centroids) that contribute to the fit.

• Evaluation of the MLS shape functions and their required full/diffuse derivatives, as
exposed above.

Once the shape functions and their derivatives have been evaluated at a certain location x,
the flow variables and their successive derivatives can be approximated using (21), or similar
expressions for higher-order derivatives. Note that, using fixed clouds, the MLS shape functions
do not change in time and, therefore, they need to be computed only once at the preprocessing
phase.

As mentioned before, a key issue concerning MLS approximations in the context of finite
volume schemes on unstructured grids is the definition of the cloud of nodes (somewhat the
MLS stencil) for each evaluation point. The selection process must be suitable for general
unstructured grids, and the stencil should be as compact as possible for the sake of computa-
tional efficiency and physical meaning.

Figures 2 and 3 present the stencils used in this study to compute the MLS shape functions at
the centroids and edge quadrature points, respectively. A stronger enforcement of the boundary
conditions was achieved through the introduction of a set of ‘zero area’ cells attached to
the boundary (an approach analogous to the use of so-called ghost cells [35]). Note that the
centroids of these boundary cells, i.e. the midpoints of those edges lying on the boundary, have
been included in the above stencils.

Once the cloud of neighbour centroids has been determined, the smoothing length � is
set to be proportional to the maximum distance between the evaluation point xI and its
neighbours, as

� = k max(‖xj − xI‖) (25)
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Figure 2. Typical MLS stencil: centroids.

Figure 3. Typical MLS stencil: quadrature points on edges.

Values of k around 0.6–0.7 seem to be adequate (recall that, using radial weighting,
the support of the kernel expands over a circle of radius 2�). Note that a cell-centred
approach with quadrilateral volumes has been adopted in this study. However, the exposed
methodology could be extended to any other type of control volumes, provided that suitable
stencils are defined.

3. TWO NUMERICAL SCHEMES FOR THE SHALLOW WATER EQUATIONS

The spatial approximation described above was used as the basis to construct two different
high-order finite volume formulations for the set of shallow water equations.

The first formulation corresponds to a Lax–Wendroff-type centred scheme with added artificial
dissipation. The spatial finite volume discretization uses the MLS approximation as a kind of
‘shape functions’ for unstructured grids, which provide the general approximation framework.
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This class of centred schemes requires the introduction of an artificial dissipation model, in
order to deal with shocks and/or steep gradients in the flow variables.

The second formulation follows the ideas of the generalized Godunov method [18, 19, 23],
with piecewise polynomial reconstructions inside each cell. In this study, both the computation
of the successive derivatives of the flow variables and the evaluation of the diffusive fluxes
have been addressed by means of MLS approximations.

3.1. Governing equations

The shallow water mathematical model is obtained by depth-integrating the Navier–Stokes
equations, neglecting the vertical component of the acceleration and assuming that the fluid is
incompressible and isothermal. In conservative form, the resulting system of equations can be
written as [2]

�U
�t

+ �Fx

�x
+ �Fy

�y
= Rs + �Rdx

�x
+ �Rdy

�y
(26)

being

U =
⎛
⎜⎝

h

hux

huy

⎞
⎟⎠ (27)

Fx =

⎛
⎜⎜⎝

hux

hu2
x + 1

2g(h2 − H 2)

huxuy

⎞
⎟⎟⎠ Fy =

⎛
⎜⎜⎝

huy

huxuy

hu2
y + 1

2g(h2 − H 2)

⎞
⎟⎟⎠ (28)

Rdx =

⎛
⎜⎜⎜⎜⎜⎜⎝

0

2�h
�ux

�x

�h

(
�uy

�x
+ �ux

�y

)

⎞
⎟⎟⎟⎟⎟⎟⎠

Rdy =

⎛
⎜⎜⎜⎜⎜⎜⎝

0

�h

(
�uy

�x
+ �ux

�y

)

2�h
�uy

�y

⎞
⎟⎟⎟⎟⎟⎟⎠

(29)

RS =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0

g(h − H)
�H

�x
− gn2|u|ux

h1/3

g(h − H)
�H

�y
− gn2|u|uy

h1/3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(30)

In the above, u = (ux, uy) is the depth-averaged velocity, h is the total height of fluid, H is
a certain reference level (mean water level), g is the gravity acceleration and � is the eddy
viscosity coefficient. The Chezy–Manning formula has been used to model the bottom friction,
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where n represents the Manning friction coefficient. Coriolis acceleration, surface traction and
variable atmospheric pressure effects have been neglected.

3.2. A one-step Lax–Wendroff scheme

The Lax–Wendroff time marching algorithm is obtained by performing a second-order Taylor
series expansion in time about t = tn, as

Un+1 = Un + �t

(
�U
�t

)n
+ �t2

2

(
�2U
�t2

)n
(31)

The time derivatives are expressed in terms of spatial derivatives using the original Equa-
tion (26), to yield [2]

Un+1 = Un + �t

(
Rs + �Rdi

�xi

− �Fi

�xi

)n

+�t2

2

{
G
(

Rs − �Fi

�xi

)
− �

�xi

[
Ai

(
Rs − �Fj

�xj

)]}n

(32)

where all derivatives of order higher than second have been dropped. The notation

�Fi

�xi

= �Fx

�x
+ �Fy

�y
,

�Rdi

�xi

= �Rdx

�x
+ �Rdy

�y
(33)

�
�xi

[
Ai

(
Rs − �Fj

�xj

)]
= �

�x

[
Ax

(
Rs − �Fj

�xj

)]
+ �

�y

[
Ay

(
Rs − �Fj

�xj

)]
(34)

has been used for simplicity, and

Ax = �Fx

�U
, Ay = �Fy

�U
, G = �Rs

�U
(35)

are the Jacobian matrices of the convective fluxes and source term, respectively. The particular
expression for G depends on the source terms considered. The Jacobians Ax and Ay are

Ax =

⎛
⎜⎜⎝

0 1 0

−u2
x + gh 2ux 0

−uxuy uy ux

⎞
⎟⎟⎠ , Ay =

⎛
⎜⎜⎝

0 0 1

−uxuy uy ux

−u2
y + gh 0 2uy

⎞
⎟⎟⎠ (36)

The integration of (32) over a cell (control volume) � yields to

∫
�

�U d� = �t

∫
�

(
Rs + �Rdi

�xi

− �Fi

�xi

)(n)

d�

+�t2

2

∫
�

{
G
(

Rs − �Fi

�xi

)
− �

�xi

[
Ai

(
Rs − �Fj

�xj

)]}n

d� (37)
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Making use of the divergence theorem and rearranging the different terms, it is obtained

∫
�

�U d� = �t

∫
�

(Rd − F)(n) · n d� − �t2

2

∫
�

Sn · n d�

+ �t

∫
�

Rn
s d� + �t2

2

∫
�

[
G
(

Rs − �Fi

�xi

)]n

d� (38)

where n is the outward pointing unit normal to the boundary � and

F = (Fx, Fy), Rd = (Rdx, Rdy), S =
(

Ax

(
Rs − �Fj

�xj

)
, Ay

(
Rs − �Fj

�xj

))
(39)

In the absence of source terms, Rs = 0 and Equation (38) reduces to

∫
�

�U d� = �t

∫
�

(Rd − F)(n) · n d� + �t2

2

∫
�

(
Ax

�Fj

�xj

nx + Ay

�Fj

�xj

ny

)(n)

d� (40)

Adopting a standard finite volume discretization for (38), surface integrals are computed using
the centroid of each cell, where the conserved variables are stored, and boundary integrals are
evaluated at certain representative points (e.g. at the centre of each edge). Thus, the discrete
equation for each cell I results

�UIAI = �t
nedge∑
iedge

(Rd − F)niedge · niedgeLiedge − �t2

2

nedge∑
iedge

Sn
iedge · niedgeLiedge

+ �tRn
sIAI + �t2

2

[
G
(

Rs − �Fj

�xj

)]n

I

AI (41)

where AI is the area of cell I , nedgeI the number of edges, Liedge the length of edge iedge
and UI the average value of U over the cell I (associated to the cell centroid).

3.2.1. Spatial approximation. The final numerical algorithm is obtained after introducing the
spatial approximation presented in Section 2 into the above general formulation. Recall the
MLS approximation �̂(x) of a function �(x), given by

�̂(x) =
nx∑

j=1
�jNj (x) (42)

in terms of the values of the variables {�j , j = 1, . . . , nx} at nx neighbouring cell centres. The

approximate gradient ∇�̂ is computed as

∇�̂(x) =
nx∑

j=1
�j∇Nj(x) (43)
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This interpolation scheme provides the basis to reconstruct the necessary information at the cell
edges. Assuming a group representation, convective fluxes are first computed at the centroids
using the cell-average information, and then interpolated at the edge quadrature points as

Fx(xiedge) =
ni∑

j=1
FxjNj (xiedge), Fy(xiedge) =

ni∑
j=1

FyjNj (xiedge) (44)

where, for simplicity, ni = nxiedge denotes the number of neighbour centroids taken into account
in the reconstruction process. Similarly, other required entities can be interpolated as

Rs(xiedge) =
ni∑

j=1
RsjNj (xiedge),

�Fk

�xk

∣∣∣∣
xiedge

=
ni∑

j=1
(Fxj , Fyj ) · ∇Nj(xiedge) (45)

Ax(xiedge) =
ni∑

j=1
AxjNj (xiedge), Ay(xiedge) =

ni∑
j=1

AyjNj (xiedge) (46)

Diffusive fluxes are not computed following this scheme, but directly at the edges. For such
purpose, the velocity gradient is required at the quadrature points, which is computed as

∇ux(xiedge) =
ni∑

j=1
uxj∇Nj(xiedge), ∇uy(xiedge) =

ni∑
j=1

uyj∇Nj(xiedge) (47)

or, in compact form,

∇u(xiedge) =
ni∑

j=1
uj ⊗ ∇Nj(xiedge) (48)

In general, any variable and its gradient can be computed using Equations (42) and (43) and
the information stored at the centroids.

3.2.2. Artificial viscosity. As a consequence of the centred character of the spatial approxima-
tion, the above Lax–Wendroff scheme is not free from spurious oscillations in the presence of
shocks. Some artificial dissipation model is therefore required to preclude the onset of instabil-
ities near discontinuities. Making use again of the approximation framework provided by the
MLS shape functions, we propose a rather simple shock-capturing technique which is com-
pletely analogous to those used in finite element general purpose algorithms when applied to
high-speed flows. Although early methods used the gradient of velocity to locate discontinuities,
later studies have shown that pressure-based algorithms perform better in shock capturing [36].
Following this idea, and implemented straightforwardly as an ‘added viscosity’ rather than a
‘smoothing’ of the variables (as is commonly employed in high-speed flow computations), we
add the shock-capturing viscous fluxes, RSC

dx and RSC
dy , to the right-hand side of (26) as

�U
�t

+ �Fx

�x
+ �Fy

�y
= Rs + �(Rdx + RSC

dx)

�x
+ �(Rdy + RSC

dy )

�y
(49)
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where

RSC
dx =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

�SC
h

�h

�x

2�SC
V h

�ux

�x

�SC
V h

(
�uy

�x
+ �ux

�y

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

RSC
dy =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�SC
h

�h

�y

�SC
V h

(
�uy

�x
+ �ux

�y

)

2�SC
V h

�uy

�y

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(50)

and the shock-capturing viscosities

�SC
h = Ch�

2 |u| + c

h
|∇h|, �SC

V = CV �2 |u| + c

h
|∇h| (51)

In these expressions, � is a characteristic length (e.g. the typical mesh spacing), c is the
gravity wave celerity and Ch and CV are parameters that control the amount of artificial
dissipation. The required flow information, h, u and ∇h, is computed using the MLS shape
functions. In the case of transcritical flows, an entropy fix scheme should also be included in
this formulation [37].

3.3. An upwind scheme based on the generalized Godunov method

High-resolution schemes based on Riemann solvers are widely recognized as powerful com-
putational tools to handle highly convective flows, including shock wave propagation. Recent
studies have shown their superior performance, compared to artificial viscosity schemes [38].
Unfortunately, upwind schemes are frequently associated to an excessive numerical dissipation
in more general applications [14–16], being rather widely regarded as ‘specialized’ methods,
and less competitive for smooth flows.

An effective approach to reduce the amount of numerical dissipation of the upwind scheme
is the development of a continuous (usually polynomial) reconstruction of the field variables
inside each cell, requiring the evaluation of gradients and, eventually, higher-order derivatives.
On unstructured meshes, it is difficult to obtain reconstructions of order higher than second
using existing procedures, and even the development of second-order algorithms with low
grid sensitivity is not straightforward [35]. It is in this context that the interesting features
of mesh-free interpolation schemes such as MLS, particularly well suited to provide accurate
derivatives on irregularly spaced points [32], can be exploited. This section presents a high-
resolution scheme, based on Roe’s flux difference splitting [24], applied to the set of shallow
water equations on unstructured meshes. Second- and third-order polynomial reconstructions
are developed, using MLS approximation to compute first- and second-order derivatives of the
flow variables.

Recall the shallow water equations written in conservative form (26)

�U

�t
+ �Fx

�x
+ �Fy

�y
= Rs + �Rdx

�x
+ �Rdy

�y
(52)
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Integrating over a control volume �, and using the divergence theorem,∫
�

�U
�t

d� =
∫

�
(Rd − F) · n d� +

∫
�

Rs d� (53)

where n is the outward pointing unit normal to the boundary � and

F = (Fx, Fy), Rd = (Rdx, Rdy) (54)

A finite volume discretization leads to a system of ordinary differential equations

�UI

�t
= 1

AI

nedgeI∑
iedge=1

[(Rd − F) · n]iedgeLiedge + RsI (55)

where AI is the area of cell I , nedgeI the number of cell edges, Liedge the longitude of edge
iedge and UI the average value of U over the cell I (associated to the cell centroid). Standard
ODE solvers can be applied to (55). We have used the third-order TVD–Runge–Kutta algorithm
proposed by Shu and Osher [39]

U1 = Un + �tL(Un)

U2 = 3
4Un + 1

4U1 + 1
4�tL(U1) (56)

Un+1 = 1
3Un + 2

3U2 + 2
3�tL(U2)

In the above equations, the operator L(·) represents the right-hand side of (55). The diffusive
fluxes are evaluated using the same procedure as in the Lax–Wendroff scheme, computing
velocity gradients at the edge quadrature points by means of the MLS approximation. The
numerical inviscid fluxes are obtained using Roe’s flux difference splitting [24]. For this purpose,
left (U+) and right (U−) states are defined on each interface (Figure 4). The numerical flux is
then computed as [40]

(Fx, Fy) · n = 1
2 [(Fx(U+), Fy(U+)) + (Fx(U−), Fy(U−))] · n − 1

2 |J̃|(U− − U+) (57)

where J̃(U+, U−) is an approximate flux Jacobian, satisfying certain matrix properties [40].
Equation (57) can also be written as [41]

(Fx, Fy) · n = 1

2
[(Fx(U+), Fy(U+)) + (Fx(U−), Fy(U−))] · n − 1

2

3∑
k=1

�̃k|	̃k|r̃k (58)

where {	̃k, k = 1, 3} and {r̃k, k = 1, 3} are, respectively, the eigenvalues and eigenvectors of the
approximate Jacobian J̃(U+, U−)

	̃1 = ũxnx + ũyny + c̃, 	̃2 = ũxnx + ũyny, 	̃3 = ũxnx + ũyny − c̃ (59)

r̃1 =
⎛
⎜⎝

1

ũx + c̃nx

ũy + c̃ny

⎞
⎟⎠ , r̃2 =

⎛
⎜⎝

0

−c̃ny

c̃nx

⎞
⎟⎠ , r̃2 =

⎛
⎜⎝

1

ũx − c̃nx

ũy − c̃ny

⎞
⎟⎠ (60)
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Figure 4. Extrapolated variables used to evaluate the inviscid fluxes across the interfaces
of control volumes �I and {�Jk

, k = 1, 4}.

and the corresponding wave strengths {�̃k, k = 1, 3}

�̃1 = �h

2
+ 1

2c̃
(�(hux)nx + �(huy)ny − (ũxnx + ũyny)�h)

�̃2 = 1

c̃
((�(huy) − ũy�(h))nx − (�(hux) − ũx�(h))ny) (61)

�̃3 = �h

2
− 1

2c̃
(�(hux)nx + �(huy)ny − (ũxnx + ũyny)�h)

where �(·) = (·)− − (·)+, n = (nx, ny) is the outward pointing unit normal to the interface, and
the Roe-averaged values (computed using U+ and U−) are defined as

ũx = u+
x

√
h+ + u−

x

√
h−

√
h+ + √

h− , ũy = u+
y

√
h+ + u−

y

√
h−

√
h+ + √

h− , c̃ =√g(h+ + h−)/2 (62)

A first-order scheme is obtained by setting U+ and U− to be the cell-average variables at the left
and right control volumes. Although first-order schemes often provide valuable information for
the engineering practice, their accuracy is severely undermined by an excess of numerical
dissipation. More accurate methods (the so-called high-order schemes) can be devised by
choosing ‘better’ values for the left and right states, through a suitable reconstruction procedure.

3.3.1. Reconstruction. This is probably the most complex issue concerning the development of
accurate and robust high-order upwind schemes for unstructured grids. Reconstruction is usually
addressed by substituting the piecewise constant representation of the basic first-order scheme
by a piecewise polynomial reconstruction of the field variables inside each control volume,
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obtained from cell-averaged data. The development of very-high-order schemes of this kind has
been severely limited by the absence of robust approximation techniques, capable of providing
accurate estimates of the successive derivatives of the field variables on unstructured grids.
Thus, the concept of high-order scheme is almost invariably used in the literature in reference
to formally second-order schemes (piecewise linear reconstruction). This section presents the
linear and quadratic reconstructions used in this study. The first- and second-order derivatives
of the field variables will be computed using MLS approximation.

Using a Taylor series expansion, the linear componentwise reconstruction of the field variables
inside each cell I reads

U(x) = UI + ∇UI · (x − xI ) (63)

where UI is the average value of U over I (associated to the centroid), xI denotes the
Cartesian co-ordinates of the centroid and ∇UI is the gradient of the variable at the centroid.
The aforementioned gradient is assumed to be constant inside each cell and, therefore, the
reconstructed variable is still discontinuous across interfaces.

Analogously, the quadratic reconstruction reads

U(x) = UI + ∇UI · (x − xI ) + 1

2
(x − xI )

THI (x − xI ) − 1

2

[
Ixx

�2
U

�x2
+ 2Ixy

�2
U

�x�y
+ Iyy

�2
U

�y2

]

(64)

where HI is the centroid hessian matrix and

Ixx =
∫

�
(x − xI )

2 d�, Ixy =
∫

�
(x − xI )(y − yI ) d�, Iyy =

∫
�
(y − yI )

2 d� (65)

The last term in (64) has been introduced to enforce conservation of the mean, i.e.

1

AI

∫
x∈�I

U(x) d� = UI (66)

Note that the incorporation of this term does not reduce the order of the approximation given
by (64). For steady-state computations we can simply use

U(x) = UI + ∇UI · (x − xI ) + 1
2 (x − xI )

THI (x − xI ) (67)

In the case of unlimited reconstructions, the derivatives of the field variables are computed
directly at centroids using MLS. Thus, the approximate gradients read

∇UI =
nxI∑
j=1

Uj∇Nj(xI ) (68)

whereas the second-order derivatives can be written as

�2
UI

�x2
=

nxI∑
j=1

Uj

�2
Nj(xI )

�x2

�2
UI

�x�y
=

nxI∑
j=1

Uj

�2
Nj(xI )

�x�y

�2
UI

�y2
=

nxI∑
j=1

Uj

�2
Nj(xI )

�y2
(69)

In this study, first-order derivatives are computed as full MLS derivatives, whereas second-order
derivates are approximated by the diffuse ones.
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The numerical integration of the inviscid fluxes was performed using one Gauss point per
edge in the case of linear reconstruction. It is convenient to combine higher-order reconstructions
with more accurate quadrature rules. Thus, two Gauss points were used for the quadratic
reconstruction.

In practice, the use of unlimited reconstructions may lead to oscillatory solutions in the
presence of shocks. What follows is a brief presentation of two families of limiting strategies
for the above reconstructions.

3.3.2. Monotonicity enforcement. Barth and Jespersen [23] have proposed an extension of Van
Leer’s scheme [42] which is suitable for unstructured grids. The basic idea is to enforce
‘monotonicity’ in the reconstructed solution. In this context, monotonicity implies that no new
extrema are created by the reconstruction process [23]. The enforcement is local, in the sense
that only certain neighbour cells are considered for the ‘no new extrema’ criterion.

Recall the piecewise linear reconstruction U(x)I of a variable U inside a certain cell I

U(x)I = UI + ∇UI · (x − xI ) (70)

and consider a limited version of this reconstruction, as

U(x)I = UI + �I∇UI · (x − xI ) (71)

where �I is a slope limiter (0��I�1) such that reconstruction (71) satisfies

Umin�U(x)I�Umax (72)

being

Umin = min
j∈AI

(Uj ), Umax = max
j∈AI

(Uj ) (73)

where AI is the set of ‘neighbour’ cells. In practice, restriction (72) is only enforced at the
quadrature points on the edges of cell I ; thus, for each quadrature point q, its associated slope
limiter �q

I is computed in terms of the unlimited extrapolated value U
q
I , as

�q
I =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

min

(
1,

Umax − UI

U
q
I − UI

)
U

q
I − UI>0

min

(
1,

Umin − UI

U
q
I − UI

)
U

q
I − UI<0

1 U
q
I − UI = 0

(74)

and, finally,

�I = min
q

(�q
I ) (75)

In the case of the quadratic reconstruction (67), a similar limiting strategy can be written as

U(x) = UI + �I (∇UI · (x − xI ) + 1
2 (x − xI )

THI (x − xI )) (76)

where the limiter �I is obtained following the same procedure exposed above for the linear
case.
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Figure 5. Neighbourhoods for the limiting of the reconstruction inside cell I .

In this study the neighbourhood to determine the extremum values Umin and Umax is com-
prised of the reconstruction cell I and its first-order neighbours (Figure 5(A)). In the following,
the above limiter will be referred to as ‘BJ limiter’.

3.3.3. Averaged derivatives. This section presents a general strategy to obtain limited gradients
and hessian matrices. Thus, the limited gradient associated to a certain cell I , ∇UI is obtained
as a weighted average of a series of representative gradients, as

∇UI =
N∑

k=1

k∇Uk (77)

where {∇Uk, k = 1, . . . , N} is a set of unlimited gradients, used as a basis to construct
the limited one. In an approach similar to that exposed in Reference [35], the weights
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{
k, k = 1, . . . , N} are given by


k(g1, g2, . . . , gN) =
∏N

i �=k gi + �N−1

∑N
j=1

(∏N
i �=j gi

)
+ N�N−1

k = 1, . . . , N (78)

where {gi, i = 1, . . . , N} are functions of the unlimited gradients (in this study, gi = ‖∇Ui‖2)
and � is a small number, introduced to avoid division by zero. The hessian matrices will also
be limited following these ideas, but in this case the functions gi read

gi =
(

�2
Ui

�x2

)2

+ 2

(
�2

Ui

�x�y

)2

+
(

�2
Ui

�y2

)2

i = 1, . . . , N (79)

For quadrilateral cells we propose a limiter based on (77)–(78) with N = 5; i.e. the limited
derivatives are obtained as a weighted average of five unlimited derivatives. Figure 5 presents
four suitable configurations to determine such representative derivatives. In this study only the
configuration given by Figure 5(A) will be considered. In the following, the above limiter will
be referred to as ‘PC5 limiter’.

4. NUMERICAL EXAMPLES

This section intends to provide further insight into the behaviour of the proposed methodologies
and presents additional information on computational and practical implementation issues.

It is known that high-resolution schemes are particularly well suited to yield accurate solutions
of inviscid flows with shock waves. The ability to accurately capture such complex flows is also
tested in the case of the Lax–Wendroff algorithm, combined with a shock-capturing viscosity
model.

The dissipation properties of the proposed schemes are also analysed in the case of vis-
cous flow at moderate to high Reynolds numbers. In the case of smooth viscous flow, the
Lax–Wendroff scheme is expected to yield quite accurate solutions, thus representing a good
opportunity to assess the quality of the results provided by the high-order upwind schemes.

Special attention is paid to the proposed third-order-reconstruction upwind scheme, both in
inviscid and viscous flow applications. In the latter case, the low-dissipation properties of this
scheme look particularly interesting, with substantial improvements with respect to the second-
order scheme. The unstructured quadrilateral meshes were generated using the code GEN4U,
based on the formulation proposed by Sarrate and Huerta [43].

4.1. Inviscid flows

4.1.1. Two-dimensional dam break problem. This first example is a rather classical benchmark
test for discontinuous transient flow solvers. The problem set-up is depicted in Figure 6 (left),
and corresponds to two reservoirs, with water levels h1 = 10 m and h2 = 5 m, respectively,
separated by an asymetrically located lockgate, which is ‘instantaneously’ removed at the
beginning of the simulation. Viscosity and bottom friction effects are not considered. The
solution at t = 7.2 s (90 time steps) was obtained using the Lax–Wendroff and Roe schemes.
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Figure 6. Two-dimensional breaking dam: problem set-up (left) and computational grid (right).

The uniform computational grid comprises of 6200 cells, with �x = �y = 2.5 m, and is depicted
in Figure 6 (right).

Figure 7 presents the water depth contours obtained with the different techniques exposed
in the previous sections. Cases A and B correspond to the upwind scheme, with linear and
quadratic reconstructions, respectively, and the BJ limiter. Cases C and D also correspond to
the upwind scheme, with linear and quadratic reconstructions, respectively, and the PC5 limiter.

Even though the use of quadratic reconstruction yields to slightly less dissipative solutions,
the improvements are not so relevant considering the increase in computational cost associated
to the evaluation of second-order derivatives, and the use of two Gauss points per edge. This fact
is probably related to an excessively strong limiting imposed on the second-order derivatives.
The sensitivity of the fine scales of the flow to the limiting of high-order derivatives is well
known in the context of ENO and WENO schemes [44].

The Lax–Wendroff scheme must be combined with a shock-capturing viscosity model. The
methodology proposed in Section 3 includes two free constants, Ch and CV , and requires
the definition of a characteristic length �. The shape (and quality) of the solution is largely
influenced by the adequate choice of such parameters. Cases E and F in Figure 7 depict the
contours obtained with Ch = 1 and CV = 3, and Ch = 0.3 and CV = 0.7, respectively. In the
latter case, the advancing front is reasonably well captured, but at the cost of slightly less
smooth contours. On the other hand, Ch = 1 and CV = 3 yield a smoother but also excessively
dissipative solution. This example illustrates an important drawback of this kind of artificial-
viscosity-based schemes, where an adequate tuning of the shock-capturing model is fundamental
to obtain accurate and stable algorithms for each mesh and problem.

A 3D view of the water surface, obtained with the Roe scheme, linear reconstruction, and
BJ limiter, is plotted in Figure 8.

4.1.2. Supercritical flow in a channel with variable width. Let us consider an example of
supercritical flow in a symmetrical channel. The initial width of 40 m is constricted from both
sides with an angle of 15◦. After the constriction there follows a straight channel, being the
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Figure 7. Two-dimensional breaking dam: computed water depth contours at t = 7.2 s.
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Figure 8. Two-dimensional breaking dam: 3D view of the water surface at t = 7.2 s.

Figure 9. Supercritical flow in a channel with variable width: coarse grid (5878 cells).

total length of the domain 120 m. The imposed inlet flow parameters are: Froude number,
Fr = 3, and unit depth, h = 1 m.

The steady-state flow is characterized by the classical cross-wave structure, with several
hydraulic jumps. The solution is initially computed using the grid depicted in Figure 9 (5878
cells). The results obtained with the upwind scheme and various reconstruction techniques are
plotted in Figures 10 and 11. Figure 10 shows the water depth contours computed using linear
(top) and quadratic (bottom) reconstruction, with the BJ limiter. The results obtained with the
PC5 limiter are depicted in Figure 11. The PC5 limiter appears to be slightly more dissipative,
although the convergence properties of the scheme are significantly improved.

Figure 12 presents the water depth isolines computed on a finer grid of 23 349 cells with
the second-order upwind scheme and BJ limiter, whereas Figure 13 shows a 3D view of the
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Figure 10. Supercritical flow in a channel with variable width: water depth contours.
Linear (top) and quadratic (bottom) reconstructions with BJ limiter.

Figure 11. Supercritical flow in a channel with variable width: water depth contours.
Linear (top) and quadratic (bottom) reconstructions with PC5 limiter.

corresponding water surface. The results are quite accurate, with hydraulic jumps resolved within
2 cells. Note that it was not possible to obtain comparable results using the Lax–Wendroff
scheme.
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Figure 12. Supercritical flow in a channel with variable width: water depth contours (fine
grid, 23 349 cells). Linear reconstruction and BJ limiter.

Figure 13. Supercritical flow in a channel with variable width: 3D view of the water surface.

4.1.3. Hypercritical flow past a cylinder. In this last inviscid case we consider hypercritical
flow past a circular cylinder. The flow parameters at the inflow are: Froude number, Fr = 6
and unit water depth, h = 1 m. Figure 14 shows the geometry and computational grid (4719
cells) of the problem. The steady-state flow was computed using the upwind scheme with linear
reconstruction.

Figures 15 and 16 depict the Froude number (left) and water depth (right) contours, obtained
with the BJ and PC5 limiters, respectively. In this case, the behaviour of the more dissipative
PC5 limiter is superior to that of the BJ limiter which, even though providing extremely sharp
shock capturing (the hydraulic jump is contained within two cells in the frontal area), seems
to be unable to completely remove the oscillations near the strong shock.

Figure 17 presents a close-up view of the Froude number contours in front of the cylinder
for the BJ (left) and PC5 (right) limiters.
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Figure 14. Hypercritical flow past a cylinder (Fr = 6): geometry (left) and
computational grid (4719 cells, right).

4.2. Viscous flows

The practical interest of the proposed methodologies depend, to a large extent, on the ability
of the schemes to provide accurate solutions in problems were subtle viscous effects are of
interest. Given its low inherent dissipation, the Lax–Wendroff scheme is expected to perform
satisfactorily, whereas the development of high-order reconstructions will be critical to achieve
comparable performance in the case of upwind schemes.

The first example intends to evaluate the influence of the limiting procedure on the accuracy
of viscous computations, whereas the second one involves a smooth flow where limiters are not
needed, thus providing a closer insight into the intrinsic numerical dissipation of the different
schemes.

4.2.1. Supercritical viscous flow near a wall. In analogy with a classical benchmark test for
compressible flow solvers, we consider viscous supercritical flow near a solid wall. The prob-
lem set-up is outlined in Figure 18. The free stream flow parameters are: Froude number,
Fr = 1.5, unit depth, h = 1 m and Reynolds number Re = 1000, referred to a unit refer-
ence length, L = 1 m. No-slip boundary conditions were applied along the wall boundary,
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Figure 15. Hypercritical flow past a cylinder (Fr = 6): Froude number (left) and water
depth (right) isolines. Linear reconstruction and BJ limiter.

y = 0, 0.2 � x � 0.8. The flow pattern includes a shock front starting from the leading edge of
the wall and a boundary layer (assumed here to be laminar) due to the presence of the no-slip
condition.

The problem has been solved on two different meshes, plotted in Figures 19 and 20 (left).
The first is a structured non-uniform mesh, whereas the second is a (roughly) adapted, fully
unstructured mesh. In the first case, and given the mesh structure, the MLS shape functions
were computed using anisotropic weighting according to (23).

Figures 21 and 22 show the computed Froude number profiles along the outlet section with,
respectively, limited (BJ limiter) and unlimited reconstructions in the Roe schemes. For the
centred scheme (Lax–Wendroff) the artificial viscosity model was used, with Ch = Cv = 0.1.
In the case of limited reconstructions, the centred scheme is less dissipative that the upwind
methods. On the other hand, the results improve dramatically when the limiters are turned off.
The solution obtained using quadratic reconstruction is slightly better than that provided by the
linear one.

Even though the limiting procedure adds more dissipation in the smooth regions of the
flow, the results are reasonably close to those of the unlimited reconstructions. The Froude
number contours for the upwind scheme with unlimited quadratic reconstructions are plotted
in Figures 19 and 20 (right).
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Figure 16. Hypercritical flow past a cylinder (Fr = 6): Froude number (left) and water
depth (right) isolines. Linear reconstruction and PC5 limiter.

4.2.2. Lid-driven cavity flow. Although this is not a standard test in the shallow water literature
(and is probably devoid of any hydraulic meaning), in our opinion this problem is very useful
to assess the ability of the different numerical schemes to capture fine viscous features of the
flow. The problem set-up is completely analogous to the classical cavity flow problem used
to validate incompressible Navier–Stokes solvers. A unit square domain with flat, frictionless
bottom is considered. The boundary conditions imposed are h = 1 m, qx = 1 m2/s and qy = 0
on y = 1 m (including the corners) and solid walls (qx = 0 and qy = 0) elsewhere. Unit water
depths were also imposed on the inferior corners. The computational grid is shown in Figure 23,
and is comprised of 61 × 61 non-uniform cells. The grid has been refined near solid walls to
take into account the thin boundary layer.

The problem was solved for Reynolds numbers of 1000 and 10 000. For comparison purposes,
the solutions were also obtained on the same mesh using the finite element Taylor–Galerkin
explicit formulation developed by Peraire [1, 2].

Given the absence of shocks, the Lax–Wendroff scheme was used without the introduction
of any added dissipation. It was not necessary to use limiters in the reconstruction process for
the upwind schemes. Given the presence of highly stretched cells near the walls, anisotropic
weighting was used for the MLS computations.
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Figure 17. Hypercritical flow past a cylinder (Fr = 6): Froude number isolineas (detail).
Linear reconstruction, BJ (left) and PC5 (right) limiters.

Figure 18. Supercritical viscous flow near a wall: problem set-up.

The streamlines for the Lax–Wendroff and the upwind scheme with quadratic reconstruc-
tion are depicted in Figures 24 and 25. The horizontal velocity (ux) profiles along x = 0.5 m
for the Taylor–Galerkin, Lax–Wendroff and upwind schemes are plotted in Figures 26
and 27.
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Figure 19. Supercritical viscous flow near a wall: structured grid (4875 cells, left) and Froude number
isolines (right). Roe scheme with unlimited quadratic reconstruction.

The different schemes yield almost identical solutions at moderate Reynolds numbers
(Re = 1000, Figure 26). However, at high Reynolds numbers (Re = 10 000, Figure 27) the
dissipation properties of each scheme become more evident. The results obtained with the
FEM Taylor–Galerkin and the proposed MLS–Lax–Wendroff schemes are very similar, although
the latter predicts slightly higher maximum horizontal velocities. The second and third-order-
reconstruction upwind schemes provide acceptable solutions for Re = 10 000. However, the
maximum horizontal velocities are somewhat displaced from their correct position closer to
the wall, affecting the shape of the profile. This effect could be associated to an excess of
crosswind dissipation introduced by the upwind scheme. It is remarkable that this excessive
dissipation is substantially reduced by the proposed third-order reconstruction. The solution
obtained with this latter approach is in better agreement with the solution obtained by using
the Taylor–Galerkin and MLS–Lax–Wendroff schemes.

5. CONCLUSIONS

In this paper it is explored the ability of a mesh-free interpolation technique (namely, the
moving least-squares method) to be used in combination with finite volume discretizations on
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Figure 20. Supercritical viscous flow near a wall: structured grid (5426 cells, left) and Froude number
isolines (right). Roe scheme with unlimited quadratic reconstruction.

Figure 21. Supercritical viscous flow near a wall: Froude number profiles along x = 0.8 m (left)
and detail (right). Limited reconstructions.
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Figure 22. Supercritical viscous flow near a wall: Froude number profiles along x = 0.8 m (left)
and detail (right). Unlimited reconstructions.
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Figure 23. Lid-driven cavity flow: computational grid (61 × 61 cells).
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Figure 24. Lid-driven cavity flow: streamlines for test case Re = 1000. MLS–Lax–Wendroff
scheme (left) and Roe scheme with quadratic reconstruction (right).

Figure 25. Lid-driven cavity flow: streamlines for test case Re = 10 000. MLS–Lax–Wendroff
scheme (left) and Roe scheme with quadratic reconstruction (right).

unstructured grids. The resulting numerical schemes have been applied to the resolution of the
set of shallow water equations.

Special emphasis has been placed in the development of low-dissipative high-order upwind
schemes, given their robustness and shock-capturing ability. In addition, and making use
of the general approximation framework provided by the MLS approach, a centred in space
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Figure 26. Lid-driven cavity flow: horizontal velocity ux along x = 0.5 for Re = 1000.
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Figure 27. Lid-driven cavity flow: horizontal velocity ux along x = 0.5 for Re = 10 000.
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Lax–Wendroff scheme has been developed, with accuracy and stability properties very simi-
lar to those of its FEM counterpart, the Taylor–Galerkin method. A shock-capturing artificial
viscosity model has been additionally proposed for this Lax–Wendroff scheme.

The development of high-order upwind schemes on unstructured grids involves high-order
reconstruction of the field variables or fluxes inside each cell. The main difficulty at this point
is associated to the accurate evaluation of gradients and, eventually, higher order derivatives.

In this study it is shown that the class of approximation methods employed in the ‘mesh-free’
literature (of which the MLS technique is one example) is particularly well suited for such
purpose, allowing, in addition, an accurate computation of the viscous fluxes. They provide a
robust and general approximation framework being an interesting alternative to the more or
less ‘heuristic’ existing techniques.

As expected, the performance of the more ‘specialized’ Roe schemes in complex flows
involving shock waves is superior to that of the centred scheme with the proposed artificial
viscosity model. The development of adequate limiting strategies for high-order derivatives
appears to be critical in order to exploit the full potential of very high-order reconstructions
applied to discontinuous flows.

On the other hand, the MLS–Lax–Wendroff scheme provides less dissipative solutions in the
case of smooth viscous flows. However, the third-order-reconstruction Roe scheme developed
here shows substantial improvements with respect to the second-order scheme. A more complete
assessment of the suitability of this scheme for turbulent flow computations is currently in
progress.
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