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Abstract This paper presents a review of some of the most
successful higher-order numerical schemes for the com-
pressible Navier-Stokes equations on unstructured grids. A
suitable candidate scheme would need to be able to han-
dle potentially discontinuous flows, arising from the pre-
dominantly hyperbolic character of the equations, and at the
same time be well suited for elliptic problems, in order to
deal with the viscous terms. Within this context, we explore
the performance of Moving Least-Squares (MLS) approx-
imations in the construction of higher order finite volume
schemes on unstructured grids. The scope of the application
of MLS is threefold: 1) computation of high order deriv-
atives of the field variables for a Godunov-type approach
to hyperbolic problems or terms of hyperbolic character,
2) direct reconstruction of the fluxes at cell edges, for el-
liptic problems or terms of elliptic character, and 3) mul-
tiresolution shock detection and selective limiting. The pro-
posed finite volume method is formulated within a continu-
ous spatial representation framework, provided by the MLS
approximants, which is “broken” locally (inside each cell)
into piecewise polynomial expansions, in order to make use
of the specialized finite volume technology for hyperbolic
problems. This approach is in contrast with the usual prac-
tice in the finite volume literature, which proceeds bottom-
up, starting from a piecewise constant spatial representa-

L. Cueto-Felgueroso (�)
Department of Aeronautics and Astronautics, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge,
MA 02139, USA
e-mail: lcueto@mit.edu

I. Colominas
School of Civil Engineering, Universidad de A Coruña, Campus
de Elviña, 15071, A Coruña, Spain
e-mail: icolominas@udc.es

tion. Accuracy tests show that the proposed method achieves
the expected convergence rates. Representative simulations
show that the methodology is applicable to problems of en-
gineering interest, and very competitive when compared to
other existing procedures.

1 Introduction

High order is fashionable. Whether very high order meth-
ods (higher than, say, fourth order) are really needed for
flow simulations or not is a different matter. For turbulence
simulations, for example, and in particular for Direct Nu-
merical Simulation (DNS), Large Eddy Simulation (LES)
or Detached Eddy Simulation (DES), what we really need
is methods with high resolution. This expression is not used
here in the sense popularized by Harten, second order accu-
racy for smooth flows and good shock capturing, but rather
in the sense of good spectral resolution: high accuracy in
Fourier space. We believe this distinction is important be-
cause, even though higher order usually means higher res-
olution (lower dispersion and dissipation), just increasing
the order of the truncation error is a quite inefficient way
of improving the resolution of a scheme, as those with some
experience in finite differences or spectral methods will cer-
tainly know. In the context of unstructured grids, however, it
is not easy to separate high-order and improved resolution,
because most schemes are based on polynomial approxima-
tion. In the following, by high-order we mean order higher
than second.

In the last decade, there has been a growing interest in the
construction of robust and efficient high order schemes for
the Navier-Stokes equations on unstructured grids, parallel
to the increasing feeling that highly accurate discretization
schemes, suitable for complex geometries, are a conditio
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sine qua non for the development of practical high-fidelity
computational approaches, particularly for turbulence simu-
lation and aeroacoustics.

In this paper we present a review of some of the most
successful existing methods (or, rather, families of meth-
ods), namely: high-order finite volume methods [20, 22,
23, 51, 54, 72, 74, 75, 93, 96], essentially non-oscillatory
(ENO and WENO) methods [48, 53, 55–57, 60, 71, 84], dis-
continuous Galerkin methods [24, 25, 31–35], the so-called
spectral (finite) volume method [98–102], and residual dis-
tribution or fluctuation splitting methods [4, 6–13, 41, 76,
77, 79, 80]. There is clear difference in terms of spatial
approximation between the above schemes. High order fi-
nite volume methods construct high order reconstructions
of the field variables extracting information from neigh-
bour cells. Essentially non-oscillatory methods use a simi-
lar approach, but they use adaptive stencils in order to get
non-oscillatory solutions. On the other hand, both discon-
tinuous Galerkin methods and the so-called spectral volume
method use piecewise polynomial approximations obtained
by means of additional degrees of freedom inside each ele-
ment or cell. The former uses the high-order finite element
technology, whereas the latter is based on cell subdivision.
Finally, residual distribution schemes are also based on the
traditional spatial approximation of continuous finite ele-
ment methods. Each of these approaches has its own advan-
tages and disadvantages. The “extended” approach of finite
volume methods is, in principle, less systematic than the
finite-element based approach of discontinuous Galerkin,
for instance. This makes the DG approximation more clear,
compact and general. On the other hand, high-order recon-
structions based on stencils are spatially centered, in con-
trast with the spatially biased approximation of piecewise
polynomial reconstructions, like those of DG. The quality
and nature of the reconstruction procedure is critical, as it
directly affects not only the accuracy and robustness of the
scheme, but also its efficiency, through the pattern of cou-
pling between degrees of freedom.

All the methods considered here are rather “specialized”
numerical schemes, in the sense that they are best suited for
hyperbolic conservation laws, and the extension to elliptic
problems requires, in principle, special attention. We present
a review of some of the most successful strategies to extend
the above techniques to solve elliptic equations, and discuss
their relative advantages and shortcomings.

Within this context, this paper also presents a review
on the recent developments on high-order finite volume
schemes based on Moving Least-Squares approximation
[36, 38, 40]. The crucial difference with respect to other state
of the art finite volume methods is the spatial representa-
tion provided by the MLS approximants. Rather than start-
ing from a piecewise constant field, which is “improved” or

reconstructed, we start with a continuous high order repre-
sentation of the solution, which is, for convenience, “bro-
ken” locally (inside each cell) into piecewise polynomial
expansions, in order to make use of the powerful finite vol-
ume technology for hyperbolic problems. We have, thus, a
dual approximation framework: an underlying continuous
high-order reconstruction of the variables, provided by the
MLS approximation, and its piecewise polynomial approxi-
mation, a “broken” reconstruction inside each cell. The for-
mer provides the basic formulation, consistent mass matrix,
and viscous fluxes, whereas the latter establishes a direct
connection to more traditional Godunov-type high-order fi-
nite volume schemes. One of the major advantages of the
proposed methodology is, thus, that the solution of elliptic
equations fits naturally within its scope.

Originally devised for data processing and surface gener-
ation [65], Moving Least-Squares (MLS) became very pop-
ular within the meshfree community, being widely used both
in Eulerian and Lagrangian formulations to provide spa-
tial approximation. The characteristics of Moving Least-
Squares and reproducing kernel methods have been exten-
sively analyzed, both from theoretical and purely numeri-
cal approaches [52, 66–68, 70]. This class of approximation
methods is particularly well suited for the reconstruction of a
given function and its successive derivatives from scattered,
pointwise data. This fact suggested the incorporation of
MLS approximants into finite volume methods on unstruc-
tured grids [38, 40], somewhat providing a kind of “shape
functions” for unstructured-grid finite volume solvers.

The scope of the application of MLS to develop higher
order finite volume schemes, as we understand it, is three-
fold: 1) computation of high order derivatives of the field
variables for a Godunov-type approach to hyperbolic prob-
lems or terms of hyperbolic character, 2) direct reconstruc-
tion of the fluxes at cell edges, for elliptic problems or terms
of elliptic character, and 3) multiresolution shock detection
and selective limiting.

The strategy adopted in this study for convection terms
follows the ideas of the generalized Godunov method [23,
51, 54], performing piecewise polynomial reconstructions of
the field variables inside each cell, and subsequently using
those reconstructed variables as input data for a numerical
flux function [23, 49, 59, 97]. In practice, the construction
of very high order schemes of this kind has been severely
limited by the absence of robust approximation techniques,
capable of providing accurate estimates of the successive
derivatives of the field variables on unstructured grids.

A major advantage of the proposed methodology over the
most popular existing higher order methods is related to the
viscous discretization. The use of MLS approximations as
a general continuous approximation framework allows the
direct reconstruction of high order viscous fluxes using quite
compact stencils, and without introducing new degrees of
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freedom, which results in a significant reduction in storage
and workload.

Even though well behaved limiters for second order
schemes have been developed, the question for higher or-
der reconstructions is far from being clear. Therefore, selec-
tive shock-capturing is a critical issue in this context. If the
limiters are active over the whole domain, their deleterious
effect on higher order derivatives results into a partial (or,
quite frequently, complete) loss of the higher order accuracy
of the reconstruction in smooth regions of the flow, virtually
taking the method back to second order.

A selective limiting procedure is proposed, based on the
multiresolution properties of the MLS approximants [69],
which allows to switch off the limiters in smooth regions of
the flow. Note that the concept of “smooth region” itself is
strongly related to the approximation being used, and hence
the convenience of an indicator that is of the same order and
nature as the approximants. In some sense, this procedure
can be regarded as an unstructured grid generalization of the
wavelet-based selective filtering proposed by Sjögreen and
Yee for finite differences [87].

The outline of the paper is as follows. Section 2 presents
the model equations, which will serve as a reference point of
the kind of problems we are interested in solving. Section 3
contains a review of some of the most successful state of the
art high order schemes for convection-dominated problems
on unstructured grids. Section 4 introduces the proposed fi-
nite volume formulation, and Sect. 5 is a brief introduction
to Moving Least Squares Reproducing Kernel approxima-
tion methods, which is completed with some practical im-
plementation issues, presented in Sect. 6. Accuracy tests and
representative simulations are exposed in Sects. 7 and 8, re-
spectively, and, finally, our main conclusions are drawn in
Sect. 9.

2 Model Problem: The Navier-Stokes Equations

We are interested in high-order methods that are well suited
for the solution of mixed hyperbolic/parabolic problems on
unstructured meshes. This section presents the compressible
Navier-Stokes equations, which are to be used as the proto-
type model problem. These governing equations can be writ-
ten as a system of conservation laws, with terms of distinct
mathematical structure: terms of hyperbolic character (the
“Euler” part of the equations), and terms of elliptic charac-
ter (the “viscous” part of the equations). The diverse math-
ematical properties of these terms will be reflected in the
discretization methods presented in the following sections.

2.1 Governing Equations

The compressible Navier-Stokes equations for two-dimen-
sional flow, written in Cartesian coordinates and in the ab-

sence of source terms, can be cast in conservative form as

∂U

∂t
+ ∂(F x − F V

x )

∂x
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y )
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= 0 (1)
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the conserved variables and inviscid fluxes, respectively, and
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(3)

the viscous fluxes. In the above expressions, ρ denotes den-
sity, p pressure and v = (u, v) is the velocity vector. The
total energy and enthalpy are given by

ρE = ρe + 1

2
ρ v · v, H = E + p

ρ
, (4)

where e is the specific internal energy. The viscous stresses
are modelled as

τxx = 2μ
∂u

∂x
− 2

3
μ

(
∂u

∂x
+ ∂v

∂y

)
,

τyy = 2μ
∂v
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− 2

3
μ

(
∂u

∂x
+ ∂v

∂y

)
, (5)

τxy = μ

(
∂u

∂y
+ ∂v

∂x

)
,

where μ is the viscosity. The heat fluxes are assumed to be
represented by Fourier’s law

qx = −λ
∂T

∂x
, qy = −λ

∂T

∂y
, (6)

where T denotes temperature, λ = cpμ/Pr is the thermal
conductivity, cp the specific heat at constant temperature
(cp = 1003.5 for air) and Pr is the Prandtl number (Pr =
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0.72 for air). The equation of state and temperature for an
ideal gas can be written as

p = (γ − 1)

(
ρE − 1

2
ρv · v

)
, T = 1

cv

p

ρ(γ − 1)
, (7)

where cv is the specific heat at constant volume (cv = 716.5
for air) and γ = cp

cv
is the ratio of specific heats (γ = 1.4 for

air). The speed of sound is given by

c =√γp/ρ (8)

and the dynamic viscosity μ is assumed to be related to the
temperature according to Sutherland’s law

μ = μ∞
T + S0

T∞ + S0

(
T

T∞

)1.5

, (9)

where μ∞ and T∞ denote freestream viscosity and tempera-
ture, respectively, and S0 = 110.4 K is an experimental con-
stant [105].

3 Review of High-order Schemes for the Compressible
Navier-Stokes Equations on Unstructured Meshes

This section presents an introduction to some of the most
successful state of the art higher (than second) order dis-
cretization methods for the compressible Navier-Stokes
equations on unstructured grids. The predominantly hyper-
bolic character of the Navier-Stokes equations has a signif-
icant impact on the structure of the schemes described in
the following paragraphs. In some sense, all of them are
“specialized” methods, particularly well suited for hyper-
bolic problems. On the other hand, this specialization has
a negative impact on their suitability for the discretization
of elliptic equations or terms of elliptic character. Some of
the methods are based on inherently discontinuous spatial
representations of the variables, others are based on mul-
tidimensional upwinding principles, but none of them are
naturally suited for the discretization of higher order terms.
We start by describing the structure of these methods for
“advection” problems, and then present a review on how
“diffusive” terms are addressed.

3.1 High-order Schemes for Hyperbolic Conservation
Laws

3.1.1 Introduction: The Generalized Godunov Scheme

The basic first-order finite volume discretization stems from
the integral form of the conservation law

∂u

∂t
+ ∇ · F = S in � (10)

Fig. 1 Cell-centered finite volume discretization

over a control volume �I (Fig. 1)
∫

�I

∂u

∂t
d� +

∫
�I

∇ · F d� =
∫

�I

S d�. (11)

Using the divergence theorem, the above expression can be
written as
∫

�I

∂u

∂t
d� +

∫
�I

F · n d� =
∫

�I

S d�, (12)

where n = (nx, ny) is the outward pointing unit normal to
the control volume boundary �I , and the definition

F = (F x,F y

)
(13)

was used for the sake of a more compact presentation. The
idea behind the finite volume method is to discretize the
computational domain into a set of non-overlapping con-
trol volumes (cells) in which the conservation equations are
enforced. In order to fix ideas, consider a cell-centered ap-
proach with quadrilateral control volumes (Fig. 1). The ex-
tension to triangular grids is inmediate. From a spatial point
of view, the algorithm involves studying the evolution of
cell-averaged values of the field variables, and the solution is
assumed to be constant within each control volume. There-
fore, the underlying spatial representation would be that of
a piecewise constant flow field. High order schemes are
constructed by substituting the constant representation by
a piecewise continuous (usually polynomial) reconstruction
of the flow variables inside each cell. In addition, special
care must be paid to the discretization of the viscous fluxes,
which are functions of the conserved variables, but also of
their gradients.

The methodology will be presented within the framework
of the numerical method of lines. Focusing on a control vol-
ume I , and assuming that suitable approximations to the
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fluxes (numerical fluxes) are available at a set of quadrature
points at each edge, the semi-discrete version of (12) reads

AI

dU I

dt
+

nedgeI∑
iedge=1

ngauI∑
igau=1

F · n∣∣igauWigau = SI , (14)

where AI is the area of cell I , nedgeI the number of cell
edges, ngauI the number of Gauss quadrature points on each
edge, Wigau denotes a quadrature weight and U I represents
the average value of U over the cell I . It is critical in the
development of robust high order schemes for the Navier-
Stokes equations to acknowledge the distinct nature of the
inviscid and viscous fluxes. The former is of hyperbolic
character, whereas the latter is of elliptic character.

It is widely accepted that the most powerful schemes for
hyperbolic problems are those that take into account, in one
way or another, the underlying wave structure of the equa-
tions. In the finite volume context, this can be achieved by
using upwind numerical flux functions, that take as input
variables the states on either side of each interface, and re-
turn a unique numerical flux. First order schemes use the
cell-average values of the variables on each side of the inter-
face as left and right states, whereas higher order schemes
use reconstructed ones, obtained from a certain extrapola-
tion procedure. These ideas are in the basis of the general-
ized Godunov scheme [23, 51, 54, 93], whose implementa-
tion involves three major steps in the explicit case:

• Development of piecewise continuous (usually polyno-
mial) reconstructions of the flow variables inside each
control volume, using cell-averaged information from
neighbour centroids. The resulting spatial representation
is still discontinuous across interfaces. The presence of
discontinuities or steep gradients in the solution may re-
quire the use of some limiting strategy.

• Evaluation of fluxes at cell edges. The extrapolated left
(+) and right (−) states at each edge integration point
are used as input data for an approximate Riemann solver
(Fig. 2).

• Solution advancement, using appropriate time stepping
algorithms.

The above steps are only meaningful, of course, in the con-
text of explicit time integration schemes, as they reflect the
process of residual evaluation. If implicit strategies are pre-
ferred, one should add to the above steps the assembly of
the Jacobian matrix and solution of the (nonlinear, in gen-
eral) systems of equations.

As we will see below, viscous terms pose a major prob-
lem for methods that use piecewise polynomial approxima-
tions. Second-order schemes often use the average of the
derivatives of the flow variables on either side of the inter-
face to compute the viscous fluxes. Unfortunately, if higher
order discretizations of elliptic equations or viscous terms

Fig. 2 Extrapolated variables used to evaluate the inviscid fluxes
across the interfaces of control volumes �I and {�Jk

, k = 1,4}

follow this path, the stability of the resulting numerical
scheme can be seriously compromised.

3.1.2 High-order Finite Volume Methods: k-exact
Reconstruction and the Cell-average Approach

Assume that, in principle, the piecewise constant cell-
averaged solution representation exposed in the previous
section is adopted. In order to evaluate the flux F · n, from
the states u+ and u− at each side of the interface, a suitable
numerical flux H(u+,u−) has to be defined. A practical
discretization of (14) then reads

AI

dU I

dt
+

nedgeI∑
iedge=1

ngauI∑
igau=1

H(u+,u−,n)|igauWigau = SI . (15)

As mentioned above, high-order schemes require high-order
accurate reconstructed states u+ and u−. Second order
schemes (linear reconstruction) have been well studied and
the complexity of the reconstruction reduces to the estima-
tion of the gradient of the solution, which is usually accom-
plished by means of Green-Gauss or simple least-squares
procedures [21, 23, 49, 59, 97]. Higher order schemes re-
quire more sophisticated strategies, and the number of exist-
ing reconstruction procedures is small.

A popular existing approach follows the lines introduced
in [20, 22], and further developed for practical applications
in [72, 74, 75, 96], about k-exact reconstructions. The idea
behind this reconstruction is to compute a polynomial ex-
pansion at each cell I , RI (x − xI ), that preserves the mean
value in the control volume I , and that reconstructs exactly
polynomials of degree up to k. The coefficients defining this
polynomial are obtained by minimizing, in a least-squares
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sense, the error in the estimate of the cell-averaged values at
some neighbour cells (the stencil of the reconstruction).

Note that, although we are in a cell-average contex, the
reconstructing polynomial reconstructs point-wise values. It
would probably be meaningless to reconstruct cell-averages,
since the function “mean value of the solution at each cell”
can hardly be thought of as a smooth function of the spatial
coordinates.

The expansion RI (x − xI ) can be written as

RI (x − xI ) = uR
I (x − xI )

= uI + ∇uI · (x − xI )

+ 1

2
(x − xI )

T H (x − xI ) + · · · , (16)

where uR
I is the reconstructed value, and ∇uI and H are,

respectively, the gradient and Hessian matrix at the ref-
erence point (usually the centroid) of the control volume,
xI = (xI , yI ). Note that the point value uI does not coin-
cide, at least in general, with the cell-averaged value. This
remark is important in terms of accuracy, as indicated in
[74]. The coefficients of this expansion (the approximate
derivatives and point value at (xI , yI )) are chosen to enforce
conservation of the mean on cell I , and to minimize, in some
suitable sense, the error in the reconstruction of smooth so-
lutions.

Conservation of the mean inside control volume I im-
plies

1

AI

∫
�

uR
I d� = uI (17)

which, for the expansion (16), reads

1
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∫
�

uR
I d�

= uI + ∂u

∂x

∣∣∣∣
I

x̃I + ∂u

∂y

∣∣∣∣
I

ỹI + ∂2u

∂x2
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I

x̃2
I

2
+ ∂2u

∂x∂y

∣∣∣∣
I

x̃yI

+ ∂2u

∂y2

∣∣∣∣
I

ỹ2
I

2
+ · · · , (18)

where

˜xnym
I = 1

AI

∫
�

(x − xI )
n(y − yI )

m d�. (19)

The coefficients {uI ,
∂u
∂x

|I , ∂u
∂y

|I , . . . } are now chosen to min-
imize the error in the predicted mean values of the function
for the control volumes within a certain stencil associated to
control volume I . Thus, the mean value of the reconstruc-
tion corresponding to a control volume J of the stencil can
be written as [72, 74, 75]

1

AJ

∫
�J

uR
I (x − xI ) d�

= uI + ∂u

∂x

∣∣∣∣
I

x̂IJ + ∂u
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where

̂xnym
IJ = 1

AJ

∫
�J

((x − xJ ) + (xJ − xI ))
n ((y − yJ )

+ (yJ − yI ))
m d�. (21)

As mentioned above, the coefficients are chosen to mini-
mize, in a least squares sense, the difference between the
averages of the reconstructing polynomial, (20), and the ac-
tual averages uJ . Geometric weights are included to mea-
sure the relative importance of the error incurred at each
control volume. These weights ωIJ are functions of the dis-
tance between the control volume reference points. The re-
sulting least-squares problem reads

⎛
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.

.

.
ωINuN

⎞
⎟⎠ (22)

with the constraint (18). Note that, in principle, the explicit
introduction of this constraint requires the solution of the
constrained least-squares problem each time the reconstruc-
tion is performed (in actual computations, each time the
residual is evaluated). The weights are of the form

ωIJ = 1

|xJ − xI |p , (23)

where, typically, p = 2. Additional constraints are imposed
at the boundaries in order to honor the boundary conditions
[72, 74, 75]. This approach provides a reconstruction with
exact satisfaction of the boundary conditions. On the other
hand, the introduction of constraints in the least-squares
problem implies, as mentioned above, the necessity of solv-
ing the least-squares problem for each control volume at
every residual evaluation.

The above high-order reconstruction procedure involves
a piecewise polynomial (discontinuous) representation of
the solution. This provides a natural way to implement Rie-
mann solvers for advection-like fluxes, but the discretization
of viscous-like fluxes is compromised. At every quadrature
point along the control volume boundary, the reconstruction
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solution and its successive derivatives are double-valued,
corresponding to the two discontinuous reconstructions on
each side of the interface. The usual choice is to compute
the diffusive fluxes using the average values of the solution
and its gradients [74], although the stability of the scheme
can be compromised by this choice.

One of the main challenges that this approach has to face
is related to the conditioning of the least-squares problem,
which, particularly in the case of stretched grids (very com-
mon, on the other hand, on wall bounded flow problems)
may preclude the use of this reconstruction technique.

3.1.3 High-order Essentially Non-oscillatory (ENO and
WENO) Methods

The above reconstruction procedure uses fixed stencils,
which means that, with independence of the shape of the so-
lution, the reconstruction at a given cell is always performed
using the same set of neighbours (stencil) and weights. This
implies that, in the presence of discontinuities, some TVD-
like limiting procedure has to be applied to the high order
reconstruction.

The basic idea behind ENO schemes [53, 55, 56, 84] is to
use adaptive stencils or some adaptive weighting of various
suitable polynomial reconstructions for each cell (WENO
schemes [48, 57, 60, 71]). In the standard ENO approach,
a set of stencils comprising different neighbour cells is de-
fined for each cell in the finite volume mesh. For each sten-
cil, a polynomial recovery is constructed, which reconstructs
the cell-averages or point values over the cells in the sten-
cil. In the latter case, the polynomials are built is such a
way that the reconstruction is conservative. Amongst all the
polynomials associated with the various stencils, the less os-
cillatory (the smoothest is some suitable sense) is selected,
which requires a certain smoothness indicator. If high-order
polynomial reconstructions are employed, the resulting fi-
nite volume scheme is also high-order accurate. In a later
development of ENO schemes, the so-called Weighted ENO
(WENO) schemes, the whole set of stencils and their asso-
ciated reconstructions are used to form a weighted sum of
reconstruction polynomials.

The objective in developing this type of schemes is to
avoid the introduction of excessive numerical dissipation
near discontinuities and smooth extrema, while retaining
high-order accuracy and non-oscillatory solutions in those
regions. Although ENO and WENO schemes are quite well
developed for structured grids, the procedure for unstruc-
tured grids is more complicated, and issues related to high
cost and insufficient robustness pose important challenges
to the practical application of ENO schemes on general
meshes. Nonetheless, a considerable amount of progress has
been done [2, 3, 5, 14, 43, 53, 58, 73, 88, 89], and this is an
interesting and active area of research.

Of particular interest to the methodology proposed in
this study is the fact that the development of ENO schemes
for unstructured grids has attracted the attention of many
researchers towards non-polynomial reconstruction tech-
niques [5, 14, 43, 58, 88], due to the fact that the multidi-
mensional polynomial interpolation problems required for
recovery from scattered data are in general badly condi-
tioned.

3.1.4 Discontinuous Galerkin Methods

Discontinuous Galerkin methods have received enormous
attention in recent years, and many researchers believe that
they will become the preferred discretization method for
convection dominated flows in the following years (see [24,
25, 31–35] for an introduction and early developments).
They have attracted both finite volume practitioners, who
see in DG a natural generalization of finite volume schemes,
and finite element analysts, who see in DG a natural bridge
between the general Galerkin finite element framework and
the powerful Godunov-type finite volume technology, which
has been successful in the simulation of flows with strong
discontinuities.

The start point is again the conservation law

∂u

∂t
+ ∇ · F = S in � (24)

with suitable initial and boundary conditions on ∂�. Let
us introduce the “broken” subspace V (T h), associated to a
suitable decomposition of � into a set of non-overlapping
elements, T h = {K}. In particular, V (T h) denotes the space
of functions whose restriction to each element K belongs to
the Sobolev space H 1(K)

V =
{
v ∈ L2(�) | v|K ∈ H 1(K) ∀K ∈ Th

}
. (25)

In order to perform a Galerkin discretization of (24), let us
introduce the finite element space

V h =
{
v ∈ L2(�) | v|K ∈Pp(K) ∀K ∈ T h

}
, (26)

where Pp(K) is the space of polynomials of degree at most
p on K . The DG formulation then reads: find uh ∈ V h such
that, for all K ∈ T h, we have

∫
K

v
∂uh

∂t
dx −

∫
K

∇v · Fh dx +
∫

∂K

v Fh · nds

=
∫

K

v S dx ∀v ∈Pp(K). (27)

The discontinuous nature of the approximation requires, as
in finite volume schemes, the introduction of suitable numer-
ical fluxes H(u+,u−,n) on the interfaces. This fact sug-
gests that DG is not purely a finite element method, since
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the Galerkin weak form (27) is not enough to capture the
physics underlying the conservation law (24), and some ad-
ditional technology (upwind fluxes, Riemann solvers, etc.)
has to be borrowed from the usual finite volume prac-
tice. The resulting scheme for hyperbolic problems is very
compact, since interelement couplings are restricted to first
neighbours only and, in particular, to those nodes that are
shared with the adjacent elements. Unfortunately, this is no
longer the case for problems involving higher order deriva-
tives (like elliptic equations, or equations with terms of el-
liptic character).

Summing over all the elements, and considering conser-
vative schemes, for which the numerical fluxes on a given
edge are unique, we obtain the following global expression:
find uh ∈ V h such that
∫

�

v
∂uh

∂t
dx −

∫
�

∇hv · Fh dx

+
∫
E
(v+ − v−)Hds +

∫
∂�

v Hds

=
∫

K

v S dx ∀v ∈Pp(K), (28)

where E denotes the union of all the interior edges and ∇h

is the “broken” gradient operator, i.e. ∇hu is the function
whose restriction to K is ∇u. One of the major problems
that discontinuous Galerkin practitioners will have to face
in order to make the method fully viable for engineering
problems, apart from the very high computational cost as-
sociated to DG discretizations, is the fact that, for moder-
ately or very high order schemes (say, from p = 3), which is
precisely the range when DG is competitive compared to fi-
nite volume schemes, the shock-capturing properties of DG
schemes are not much better than those of a continuous finite
element method, i.e. quite poor. This is due to the fact that
the amount of “upwinding” introduced by the use of finite
volume-type numerical fluxes at the element edges is not
sufficient to yield non-oscillatory solutions. The direct im-
plementation of limiters with such high orders is probably
meaningless, and shock-capturing techniques based on arti-
ficial viscosities face basically the same challenges as those
designed for their continuous counterpart.

3.1.5 Spectral (Finite) Volume Methods

The so-called Spectral Volume method was introduced in a
series of papers by Wang et al. [98–102]. The idea is some-
what between classical finite volume schemes and discontin-
uous Galerkin methods, in the sense that high-order schemes
are constructed within the finite volume framework (piewise
constant test functions, cell-averaged data representation),
but the reconstruction is based on piecewise polynomial ap-
proximations, obtained by means of new degrees of freedom

Fig. 3 Discontinuous Galerkin methods: piecewise polynomial ap-
proximation

Fig. 4 Spectral (Finite) Volume method: typical cell partitions, k = 2
(left), k = 3 (center) and k = 4 (right)

created inside each control volume through suitable cell sub-
division.

Assume that the conservation law (24) is solved in a com-
putational domain �, discretized into N non-verlapping (tri-
angular) control volumes or cells �i . The design of a numer-
ical scheme with order of accuracy k starts with the partition
of each control volume into m = k(k + 1)/2 subcells, �ij .
Typical partitions for k = 2,3,4 are shown in Fig. 4.

The cell-averaged variables for subcell �ij are defined as

uij = 1

Ai

∫
�i

ud�. (29)

Given the cell-averaged variables for all the control volumes
inside cell i, a polynomial p(x, y) ∈ P k−1 is constructed,
such that p(x, y) is a k-th order approximation to u(x, y) in
�i , by enforcing

1

Aij

∫
�ij

p(x, y) d� = uij . (30)

The final reconstructing polynomial can be cast as

pi(x, y) =
N∑

j=1

Lijuij . (31)
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This reconstruction is then used to formulate finite volume
scheme, whereby the integral form of the conservation law
is enforced at each subcell. The semi-disctretized equations
read

Aij

duij

dt
+

E∑
e=1

∫
�e

F · nds, (32)

where E is the number of faces in the subcell i.
The Spectral Volume method is similar to DG in the sense

that both are somewhat generalizations of the finite volume
method. The crucial differences are that piecewise constant
test functions are employed in the SV scheme, and that the
solution representation is based on cell-averages, rather than
on point values. The polynomial approximation in DG is
based on the powerful finite element approximation tech-
nology and, therefore, is more accurate and robust than the
cell-partition approach of the SV method, which is poten-
tially problematic, due to the difficulty of constructing good
partitions for very high-order reconstructions. Both meth-
ods have been compared [90, 109], and DG has proven to
be consistently more accurate that the SV method. On the
other hand, the spectral volume approach has one clear ad-
vantage over DG, related to the fact that limiting is applied
on a sub-cell basis, which constitutes a very important dif-
ference with respect to the rather poor shock-capturing ca-
pabilities of very high-order DG methods.

3.1.6 Residual Distribution Schemes

The interest in developing fully multidimensional upwind
schemes has given rise to a very active and interesting area
of research; probably the most successful family of meth-
ods developed so far in this context is the class of so-called
Residual Distribution or Fluctuation Splitting schemes [4,
6–13, 41, 76, 77, 79, 80].

The starting point is again the conservation law

∂u

∂t
+ ∇ · F = 0 in � (33)

and a triangulation of �, T h = {K}. The solution is approx-
imated as in the finite element method, in particular using
linear interpolation, as

uh(x) =
∑

ujNj (x). (34)

The flux balance over each triangle K defines the residual
or fluctuation, as

φK =
∫

K

∂uh

∂t
dx =

∫
∂K

F · nds. (35)

An important concept for RD schemes is the definition of a
conservative linearization of the flux, which may allow to

write

φK =
∫

∂K

F · nds =
∫

K

λ̂ · ∇uh dx = |K|λ̂ · ∇uh. (36)

The above expression exploits the fact that ∇uh is constant
for linear triangles and λ̂ can be defined as

λ̂ = 1

|K|
∫

K

λdx. (37)

Residual Distribution schemes are based on distributing
fractions of the residual (36) to the nodes of the element
(Fig. 5). Using a forward Euler time-stepping for presenta-
tion purposes, the basic update scheme becomes

un+1
i = un

i − �t

Si

∑
K

βK
i φK, (38)

where Si is the area of the median dual cell around node i

and βK
i the distribution coefficient applied to φT . Consis-

tency requires that, for each triangle K ,

βK
1 + βK

2 + βK
3 = 1. (39)

What defines each RD scheme is the actual way in which
the coefficients βK

i are chosen. There is a quite sound math-
ematical background concerning the various design criteria
behind a particular RD scheme: multidimensional upwind-
ing, positivity, linearity preservation and second order accu-
racy and continuity. It is interesting that some stabilized fi-
nite element methods (Streamline Upwind Petrov Galerkin,
SUPG, methods), and finite volume methods, are closely re-
lated to RD schemes.

Higher order generalizations have been constructed,
based on subtriangulations and extensions of the basic dis-
tribution strategy for second order schemes [9, 12]. The ex-
tension to quadrilateral meshes poses some difficulties, al-
though some advances towards the extension of the residual
distribution ideas to quadrilaterals have been recently pub-
lished [12, 77].

Residual Distribution schemes are among the least dis-
sipative schemes for hyperbolic problems, and the idea of
multidimensional upwinding has proven to yield very good
results in this context. Furthermore, their mathematical for-
mulation and analysis is sound and powerful. The main
drawbacks of this type of schemes is the use of a conser-
vative linearization, which is not always available, and the
viscous discretization and extension to higher order accu-
racy, which are not straightforward.

3.2 A Tale of Two Natures: Discretization of Elliptic Terms

The discretization of terms of elliptic character, such as
those arising from diffusive processes, is not straightforward
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Fig. 5 Residual Distribution Schemes: Residual contributions to
node i

with any of the aforementioned schemes. They are all natu-
rally suited for hyperbolic problems, but their suitability for
advection seems to be somewhat in conflict with a straight-
forward extension to diffusion problems. The strategies fol-
lowed to address this issue vary according to the different
schemes. Some of them, which have been used with more or
less success, are presented in the following paragraphs.

3.2.1 The Standard Finite Volume Approach

The discretization of diffusion terms in finite volume meth-
ods is, at least in principle, inconsistent with the advection
approach. As indicated in [94], the finite volume approach is
basically pragmatic, in the sense that advective and diffusive
discretizations are based on different spatial representations
of the solution. Thus, the discretization of advective fluxes is
based on discontinuous reconstructions, computed from the
underlying cell-averaged data. On the other hand, the dif-
fusive fluxes are often computed with cell-averages “rein-
terpreted” as point-wise function values, and the equivalent
reconstruction is not conservative in general.

On unstructured grids, the most common approaches can
be presented as

• Methods based on Green-Gauss reconstruction of the gra-
dients. Following this approach, the gradients are evalu-
ated as

∇u = 1

A�

∫
∂�

unds, (40)

where the path ∂� varies for the different implementa-
tions. The extension of the stencils resulting from this ap-
proach is one of its most important drawbacks. Nonethe-
less, this is the most frequent practice in state of the art
second order finite volume codes. An interesting analysis
of Green-Gauss gradient reconstructions can be found in
[59].

• Methods that use averaged gradients. Thus, the piecewise
polynomial reconstructions at each cell are used to com-
pute two “side” gradients at the edges. These gradients,
one from each side of the interface, are then averaged and
used to evaluate the diffusive fluxes [75].

In the first case, the extension to higher order accuracy re-
sults in rapidly increasing complexity and size of the sten-
cils, whereas the averaging approach has robustness issues
when extended to higher-order accuracy.

3.2.2 Discontinuous Galerkin for Diffusion

The distinct nature of convection and diffusion processes,
which arises in most “specialized” numerical schemes for
convection-dominated flows, is also present in discontinu-
ous Galerkin discretizations. Due to the piecewise polyno-
mial approximation employed in DG, special care must be
paid to those terms involving higher order derivatives.

The extension of DG methods to elliptic problems is a
challenging and very active area of research [16, 17, 26, 28,
34, 78, 83, 107]. A unified framework of analysis of vari-
ous existing schemes was presented in [17]. From a histor-
ical perspective, two main streams of development of dis-
continuous Galerkin methods for elliptic problems can be
identified. On one side, the more recent schemes developed
alongside the application of discontinuous Galerkin meth-
ods to hyperbolic problems [24, 34, 78]. On the other hand
the so-called interior penalty (IP) methods, developed in the
finite element community independently of the development
of DG methods for hyperbolic problems [15, 42, 103]. It is
shown in [17] that most of these methods, if not all, can be
analyzed within a unified framework.

The most popular approach stems from the decomposi-
tion of the original problem, involving high order deriva-
tives, into a system of first order equations, by introducing
auxiliary variables for the solution gradient or flux. The re-
sulting first order problem is discretized using the standard
DG methodology, with a suitable definition of the interele-
ment fluxes. In some cases (for example, when the addi-
tional variable is the gradient of the solution), the auxiliary
variables can be eliminated locally. Amongst the most sta-
ble and accurate schemes are the second method of Bassi
and Rebay (BR2 [24]), the Local Discontinuous Galerkin
method (LDG [34]), and a newer variant of the latter, the
Compact Discontinuous Galerkin method (CDG [78]). The
CDG is similar to LDG in its formulation, but slightly more
accurate and efficient, since the couplings are reduced to the
nearest neighbours.

Consider, for example, the model Poisson problem

∇ · (−κ∇u) = f in �,

u = gD on ∂�D,

κ
∂u

∂n
= gN on ∂�N,

(41)
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where f (x) is a function on L2(�) and κ ∈ L∞(�). In order
to develop a DG discretization, the problem (41) is rewritten
as a first order system of equations

∇ · σ = f in �,

σ = −κ∇u in �,

u = gD on ∂�D,

κ ∂u
∂n

= gN on ∂�N.

(42)

Consider again the partition T h of �. In addition to the
space V (T h) defined above, we also introduce the “broken”
space �(T h), which denotes the space of functions whose
restriction to each element K belongs to the Sobolev space
[H 1(K)], that is

V =
{
v ∈ L2(�)|v|K ∈ H 1(K) ∀K ∈ Th

}
,

� =
{
τ ∈

[
L2(�)

]2 |τ |K ∈
[
H 1(K)

]2 ∀K ∈ Th

} (43)

and the finite element subspaces V h ∈ V and �h ∈ �

V h =
{
v ∈ L2(�)|v|K ∈Pp(K) ∀K ∈ Th

}
,

�h =
{
τ ∈

[
L2(�)

]2 | τ |K ∈ [Pp(K)
]2 ∀K ∈ Th

}
.

(44)

Now consider DG discretizations of the form
∫

K

σ h · τ dx = −
∫

K

uh∇ · (κτ ) dx +
∫

∂K

ûκτ · nds

∀τ ∈ [Pp(K)
]2

,
∫

K

σ h · ∇v dx = −
∫

K

f v dx +
∫

∂K

σ̂ · nv ds

∀v ∈ Pp(K).

(45)

Then again we need to define numerical fluxes. Analogous
expressions (with the location of the κ’s changed in the
equations) can be obtained for the, somewhat more conve-
nient in the case a general purpose code, situation when the
auxiliary variable is ∇u instead of the whole flux. Note that,
in both cases, the most common practice is to defined, rather
than numerical fluxes, some suitable average states for the
variables, û and σ̂ . One may wonder whether this is an ap-
propriate choice in the nonlinear case.

The definition of the above numerical fluxes is critical,
and affects not only the stability and accuracy of the scheme,
but also its efficiency through the sparsity pattern and struc-
ture of the stiffness matrix ([17, 78]).

The LDG and CDG methods define û and σ̂ as

σ̂ = {σ h} − C11

[
uh
]
+ C12 [σ ] ,

û = {uh} − C12 ·
[
uh
] (46)

for the interior edges, and

σ̂ = σ h − C11(u
h − gD)n, û = gD on ∂�D,

σ̂ = gNn, û = uh on ∂�N

(47)

for the boundary edges. In the above expressions, C11 is a
positive constant and C12 is a vector which is determined
for each interior edge according to

1

2

(
SK−

K+ n+ + SK+
K− n−) , (48)

where SK−
K+ ∈ {0,1} is a switch which is defined for each

edge, satisfying

SK−
K+ + SK+

K− = 1. (49)

The average and jump operators are given by

{τ } = 1

2

(
τ+ + τ−) , {v} = 1

2

(
v+ + v−) , (50)

[τ ] = τ+ · n + τ− · n, [v] = v+n + v−n. (51)

The viscous discretization in the so-called Spectral Volume
methods follow the same basic procedures as discontinuous
Galerkin methods [101].

We would like to comment on the approach suggested in
[94] for the discretization of diffusive terms using DG. The
authors acknowledge the distinct structure of advective and
diffusive terms, and propose to construct a “local smooth re-
covery” of the solution at the interfaces, that would remove
the discontinuity in a weak sense. This dual continuous-
discontinuous spatial representation is also the basis for the
higher order finite volume scheme proposed in this study.
Our approach is somewhat the opposite, however, since we
start from a continuous representation of the solution, which
is then “broken” into piecewise polynomial expansions in-
side each cell, in order to deal with hyperbolic terms.

3.2.3 Residual Distribution Schemes for Elliptic Problems

Consider a model “diffusion” term of the form μ�u. For
each element K , the idea of the RD discretization would be
to distribute, among the nodes of K , the residual over K

corresponding to this term, namely

φK,d =
∫

�

μ�uh d�. (52)

Using linear (for triangles) or bilinear (for quadrilaterals)
elements, and evaluating (52) following the standard finite
element interpolation, the above residual is zero and, there-
fore, the discrete Laplacian operator needs to be defined in
a different way.
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One option is to used a hybrid discretization, where ad-
vective terms are discretized using the standard upwind
techniques of the RD approach, whereas the diffusion terms
are computed using a standard finite element Galerkin dis-
cretization. This approach has the advantages of being in-
expensive and keeping the stencil compact [76]. Unfortu-
nately, it is not consistent with the general RD formulation,
and leads to schemes that are only first-order accurate [77].

Another option, which retains the residual based ap-
proach of RD methods, is to evaluate the viscous fluctuation
by means of a contour integral,

φK,d =
∫

�

μ�uh d� =
∫

�

μ∇u · nd�. (53)

The solution gradient needs to be reconstructed at the nodes.
To this end, procedures similar to those employed in the fi-
nite volume community (such as Green-Gauss reconstruc-
tion) are employed. In this approach, the diffusive terms
are treated as source terms, and distributed with coefficients
based on the convective terms. In turn, the stencil needs to
be extended in order to compute the gradients at the nodes.

4 A High-order Finite Volume Scheme Based on
Point-wise Data Representation and Moving
Least-squares Approximation

This section presents the fundamental structure of the pro-
posed finite volume method. Although the details about the
approximation scheme will be presented later, the method-
ology can be derived by assuming a fairly general approx-
imation framework. We are interested in schemes that ac-
knowledge the distinct nature of convective and diffusive
processes. In [94], a methodology to construct discretiza-
tions for diffusive terms is presented within the context of
DG. The authors argue that the use of a discontinuous ap-
proximation, which is adequate to discretize the convective
terms, is not well suited for viscous discretizations, and pro-
pose a recovery procedure to remove the discontinuity in a
weak sense. Their idea is, thus, to “locally recover the un-
derlying smooth solution with sufficient fidelity”.

Our approach is somewhat the opposite. We will start
from a high-order continuous representation of the solution
uh(x), obtained by means of Moving Least-Squares approx-
imation, and suitable for general unstructured grids. In or-
der to deal with hyperbolic terms, this continuous recon-
struction is “broken” locally (inside each cell) into piece-
wise polynomial approximations to the reconstructed solu-
tion, uhb(x − xI ). As a consequence, the “broken” recon-
struction is also a high-order approximation to the underly-
ing smooth solution. These piecewise polynomial approxi-
mations are constructed by means of Taylor series expan-
sions of uh(x) around the reference point (node) xI , and

require the successive derivatives of uh(x), which are also
given within the Moving Least-Square framework. The fol-
lowing paragraphs elaborate on the above ideas, and intro-
duce the proposed methodology.

Consider again a system of conservation laws of the form

∂u

∂t
+ ∇ ·

(
F I (u) + FV (u,∇u)

)
= S(x,u,∇u) in �

(54)

supplemented with suitable initial and boundary conditions.
The fluxes have been split into an “inviscid” (hyperbolic)
part, and a “viscous” (elliptic) part. Consider, in addition,
a partition of the domain � into a set of non-overlapping
control volumes or cells, T h = {I }. Furthermore, we define
a reference point (node), xI , inside each cell (the cell cen-
troid), where the numerical solution uI is computed.

The general spatial representation of the solution is as
follows: consider a function u(x), given by its point values,
uj = u(xj ), at the nodes or reference locations, one inside
each cell. The approximated or reconstructed function uh(x)

is sought for in the subspace spanned by a set of basis func-
tions Nj(x) associated to the nodes, such that uh(x) is a
continuous function of the form

uh(x) =
nx∑

j=1

Nj(x)uj (55)

which states that the approximation at a certain point x is
computed using nx surrounding nodes. The reconstruction
can also be seen, in analogy to finite element spaces, as writ-
ten in terms of nodal shape functions Nj(x). Note that the
reconstructed function uh(x), using Moving Least-Squares
approximation, is not a polynomial in general.

Consider now the integral form of the system of conser-
vation laws (54) which, for each control volume I , reads
∫

�I

∂u

∂t
d� +

∫
�I

(
F I (u) + F V (u,∇u)

)
· nd�

=
∫

�I

S(x,u,∇u) d�. (56)

Note that this expression can be obtained through a weighted
residuals procedure, just by taking test functions that are
constant inside each control volume and zero elsewhere.
Introducing the component-wise reconstructed function uh,
the above expression reads

∫
�i

∂uh

∂t
d� +

∫
�i

(
F I (uh) + F V (uh,∇uh)

)
· nd�

=
∫

�i

S(x,uh,∇uh) d�. (57)
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Note that the reconstructed function uh(x) is continuous
and, therefore, the numerical scheme (57) is conservative
(the normal fluxes are unique). The continuity of the recon-
struction is quite convenient for elliptic/parabolic equations
(or terms of elliptic character). However, we would like to
make use of the classical finite volume technology to dis-
cretize hyperbolic equations (or terms of hyperbolic charac-
ter). To this end, we introduce a “broken” reconstruction,
uhb

I (x), which approximates uh(x) (and, therefore, u(x))
locally inside each cell I , and is discontinuous across cell
interfaces. In general, we require the order of accuracy of
the broken reconstruction to be the same as that of the orig-
inal continuous reconstruction i.e.

‖u − uh‖ ≤ C1h
k+1 (58)

and

‖u − uhb
I ‖I ≤ C2h

k+1 (59)

for some constants k, C1 and C2, and a characteristic cell
size h. One possible choice is to use Taylor series expansion
of the form

uhb
I (x − xI , y − yi)

= uh
I + ∇uh

I · (x − xI ) + 1

2
(x − xI )

T H h (x − xI )

+ 1

6
�2xT

I T I (x − xI ) + · · · , (60)

where the gradient ∇uh
I , the Hessian matrix H h, and

�2xT
I = ((x − xI )

2 (y − yI )
2) ,

T I =
⎛
⎝

∂3uI

∂x3 3 ∂3uI

∂x2∂y

3 ∂3uI

∂x∂y2
∂3uI

∂y3

⎞
⎠ (61)

involve the successive derivatives of the continuous recon-
struction uh(x).

This dual continuous/discontinuous reconstruction of the
solution is crucial in order to obtain accurate and efficient
numerical schemes for mixed hyperbolic/parabolic prob-
lems.

The cell-wise broken reconstruction defined here is ac-
tually a piecewise continuous approximation to uh. The
advantage is that it allows us to make use of Riemann
solvers, limiters, and other standard finite volume technolo-
gies, while keeping some consistency in terms of functional
representation. Thus, the general continuous reconstruction
is used to evaluate the viscous (elliptic-like) fluxes, whereas
its discontinuous approximation is used to evaluate the in-
viscid (hyperbolic-like) fluxes.

The final semidiscrete scheme can be written as
∫

�I

∂uh

∂t
d� +

∫
�I

H (uhb+,uhb−,n) d�

+
∫

�I

F V (uh,∇uh) · nd�

=
∫

�I

S(x,uh,∇uh) d�, (62)

where H (uhb+,uhb−,x) is a suitable numerical flux. The
direct evaluation of the fluxes corresponding to the elliptic
terms assumes that certain continuity requirements on uh,
that depend on the order of the derivatives to be discretized,
are satisfied.

Note that our dual reconstruction procedure induces
a non-diagonal mass matrix. Most existing finite volume
schemes recover, in principle, the diagonal structure of the
mass matrix, by enforcing reconstructions that preserve the
mean. It is actually not clear whether this is actually the
case when elliptic terms are present, due to the “pragmatic”
flux evaluation approach, which may have some influence
on the underlying solution representation, and therefore in
the structure of the consistent mass matrix. One advantage
of the proposed scheme, at least in terms of formulation, is
that the approximation framework is completely clear.

In our case, the structure of the consistent mass matrix is
of the form M = {mij }, where

mij =
∫

�i

Nj (x) d�. (63)

As we work with point-wise values, enforcing mij = 0 for
i �= j may have deleterious effects on the accuracy of the
reconstructed function uh(x), in addition to increasing the
complexity of the design of an approximation scheme. We
prefer uh to be as accurate as possible, even is this produces
the inconvenience of a non-diagonal mass matrix.

One possible option to recover the diagonality of the
mass matrix (apart from straightforward lumping proce-
dures) is to replace the continuous reconstruction in the
time-dependent term by the discontinuous one, and enforce
conservation of the mean in this reconstruction uhb . This
can be accomplished, for example, through the use of zero-
mean polynomials in the expansion (60). For example, the
quadratic case reads

uhb
I (x − xI , y − yi)

= uh
I + ∇uh

I · (x − xI ) + 1

2

(
(x − xI )

2 − x̃2
) ∂2uh

∂x2

∣∣∣∣
xI

+ ((x − xI ) (y − yI ) − x̃y)
∂2uh

∂x∂y

∣∣∣∣
xI

+ 1

2

(
(y − yI )

2 − ỹ2
) ∂2uh

∂y2

∣∣∣∣
xI

,

where

x̃2 = 1

AI

∫
�I

(x − xI )
2 d�,
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x̃y = 1

AI

∫
�I

(x − xI )(y − yI ) d�, (64)

ỹ2 = 1

AI

∫
�I

(y − yI )
2 d�.

This specification of the polynomial reconstruction can also
be obtained through a suitable numerical quadrature. Fol-
lowing this procedure, the resulting diagonal mass matrix
would be consistent with the discretization of the hyper-
bolic terms (as they use the broken reconstruction), but
“lumped” with respect to the viscous discretization. In
terms of the diagonality of the mass matrix, this reconstruc-
tion based on zero-mean polynomials is equivalent to the
mean-conservation restrictions used in other finite volume
schemes based on cell averages. Note that, in our context,
conservation of the mean appears in a very specific context
of the formulation, and does not need to be imposed a pri-
ori in the reconstruction. For steady-state computations we
do not require the polynomial reconstruction to preserve the
mean values.

5 Moving Least-squares Reproducing Kernel
Approximations

5.1 General Formulation

Consider a function u(x) defined in a domain �. Moving
Least-Squares (MLS) approximate u(x), at a given point x,
through a weighted least-squares fitting of u(x) in a neigh-
bourhood of x, as

u(x) ≈ û(x) =
m∑

i=1

pi(x)αi(z)
∣∣∣
z=x

= pT (x)α(z)
∣∣∣
z=x

,

(65)

where pT (x) is an m-dimensional basis of functions (usu-
ally polynomials) and α(z)|z=x is a set of parameters to be
determined, and such that they minimize the following error
functional

J (α(z)|z=x) =
∫

y∈�x

W(z − y, h)

∣∣∣
z=x

×
[
u(y) − pT (y)α(z)

∣∣∣
z=x

]2
d�x (66)

being W(z − y, h)|z=x a kernel (also weighting, smoothing
or window function) with compact support (denoted by �x )
centered at z = x. Note that, even if all the basis functions
in pT (x) are polynomials, the reconstructed function û(x)

is not a polynomial in general.
The parameter h, usually called smoothing length or di-

lation parameter in the meshfree literature, is a certain char-
acteristic measure of the size of the support �x (e.g. kernels

with circular supports of radius 2h). Splines are the most
frequent kernels, in particular the cubic spline used in this
study,

W(x − y, h) =

⎧⎪⎨
⎪⎩

1 − 3
2 s2 + 3

4 s3, s ≤ 1,
1
4 (2 − s)3, 1 < s ≤ 2,

0, s > 2,

(67)

where s = |x−y|
h

. In practice, the minimization of (66) pro-
vides a means to approximate or reconstruct u(x), at any
point x ∈ �, from its pointwise value at a number of scat-
tered locations in �, which are often called particles or
nodes.

Thus, the minimization of J with respect to the set of
parameters α leads to the expression

∫
y∈�x

p(y)W(z − y, h)

∣∣∣
z=x

u(y)d�x = M(x)α(z)
∣∣∣
z=x

,

(68)

where the moment matrix M(x) is defined as

M(x) =
∫

y∈�x

p(y)W(z − y, h)

∣∣∣
z=x

pT (y)d�x . (69)

The above integrals are evaluated using nodal integration
and, given the compact support of the kernel, only those
nodes inside �x are involved as quadrature points. After
some algebra, the set of parameters α that minimize the
functional J are obtained as

α(z)
∣∣∣
z=x

= M−1(x)P �x WV (x)u�x , (70)

where the vector u�x contains the pointwise values of the
function to be reproduced, u(x), at the nx particles inside
�x (Fig. 6)

u�x = (u(x1) u(x2) · · · u(xnx )
)T

. (71)

The moment matrix, M , which is an (m × m) matrix, is
given by M(x) = P �x WV (x)P T

�x
, and the matrices P �x

and WV (x), whose dimensions are, respectively, (m × nx)

and (nx × nx), can be obtained as

P �x = p(x1) p(x2) · · · p(xnx ), (72)

WV (x) = diag {Wi(x − xi )Vi} , i = 1, . . . , nx . (73)

Complete details can be found in [67, 70]. In the above equa-
tions, Vi and xi denote, respectively, the tributary volume
(used as quadrature weight) and coordinates associated to
node i. Note that the tributary volumes of the neighbouring
nodes are included in matrix WV , obtaining an MLS version
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of the Reproducing Kernel Particle Method [70]. Otherwise,
we can use W instead of WV

W (x) = diag {Wi(x − xi )} , i = 1, . . . , nx (74)

which corresponds to the classical MLS approximation (in
the nodal integration of the functional (66), the same quadra-
ture weight is associated to all nodes). Introducing (70) in
(65), the interpolation structure can be identified as

û(x) = pT (x)M−1(x)P �x W (x)u�x

= NT (x)u�x =
nx∑

j=1

Nj(x)uj . (75)

In analogy to finite elements, the approximation was written
in terms of the MLS “shape functions”

NT (x) = pT (x)M−1(x)P �x W (x), (76)

where Nj(x) can be seen as the shape function associated to
particle j .

The MLS shape functions are not interpolants in general,
in the sense that the value of the original function at a certain
node i, u(xi ), does not necessarily coincide with the MLS-
reconstructed value, û(xi ), i.e.

ui = u(xi ) �= û(xi ) =
nxi∑
j=1

Nj(xi )uj (77)

in general. In particular,

Nj (xi ) �= δij , (78)

where δij is the Kroneker delta function.
The functional basis p(x) is strongly related to the accu-

racy of the MLS fit. Theory and numerical evidence [52]
show that, for a pth order MLS fit (pth order complete
polynomial basis) and general, irregularly spaced points, the
nominal order of accuracy for the approximation of a sth or-
der gradient is roughly (p − s + 1). In general, any linear
combination of the functions included in the basis is exactly
reproduced by the MLS approximation.

In 2D, the p = 2 basis (polynomial, 2-complete), reads

p(x) =
(

1 x1 x2 x1x2 x2
1 x2

2

)T

(79)

and the p = 3 basis is given by

p(x) =
(

1 x1 x2 x1x2 x2
1 x2

2 x2
1x2 x1x

2
2 x3

1 x3
2

)T

.

(80)

In the above expression, (x1, x2) denotes the Cartesian co-
ordinates of x. To improve the conditioning of the moment

Fig. 6 Meshfree approximation: general scheme. Support for recon-
struction at P

matrix, it is most frequent to use scaled and locally defined
monomials in the basis. Thus, if the shape functions were to
be evaluated at a certain point xI , the basis would be of the
form p(x−xI

h
), instead of p(x). With this transformation,

the MLS shape functions read

NT (xI ) = pT (0)C(xI ) = pT (0)M−1(xI )P �xI
W (xI ),

(81)

where C(x) was defined as

C(x) = M−1(x)P �x W (x). (82)

The approximate derivatives of u(x) can be expressed in
terms of the derivatives of the MLS shape functions, which
are functions of the derivatives of the polynomial basis
p(x−xI

h
) and the derivatives of C(x) [36, 38–40].

The first order derivatives of the shape functions are com-
puted in this study as full MLS derivatives, whereas second
and third order derivatives are approximated by the diffuse
ones. In the diffuse approach, the successive derivatives of
C(x) are neglected. Note that the diffuse derivatives of the
shape functions are readily obtained once the matrix C(x)

is computed. Although this approach greatly simplifies the
presentation and implementation of the MLS approximants,
very rough grids may require the use of full derivatives.

The approximate derivatives of u(x) can be expressed in
terms of the derivatives of the MLS shape functions. For ex-
ample, the first and second order derivatives of u(x), evalu-
ated at xI , are given by

∂u (x)

∂xα

∣∣∣∣
x=xI

≈
nxI∑
j=1

uj

∂Nj (x)

∂xα

∣∣∣∣
x=xI

(83)
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and

∂2u (x)

∂xα∂xβ

∣∣∣∣
x=xI

≈
nxI∑
j=1

uj

∂2Nj (x)

∂xα∂xβ

∣∣∣∣
x=xI

. (84)

Where the first and second order derivatives of the shape
functions can be obtained as

∂NT (x)

∂xα

= ∂pT (0)

∂xα

C(x) + pT (0)
∂C(x)

∂xα

, (85)

∂2NT (x)

∂xα∂xβ

= ∂2pT (0)

∂xα∂xβ

C(x) + pT (0)
∂2C(x)

∂xα∂xβ

+ ∂pT (0)

∂xα

∂C(x)

∂xβ

+ ∂pT (0)

∂xβ

∂C(x)

∂xα

, (86)

where

∂C(x)

∂xα

= C(x)W−1(x)
∂W (x)

∂xα

(
I − P T

�x
C(x)

)
(87)

and

∂2C(x)

∂xα∂xβ

= ∂C(x)

∂xβ

W−1(x)
∂W (x)

∂xα

(
I − P T

�x
C(x)

)

−C(x)
∂W (x)

∂xβ

W−2(x)
∂W (x)

∂xα

(
I − P T

�x
C(x)

)

+ C(x)W−1(x)
∂2C(x)

∂xα∂xβ

(
I − P T

�x
C(x)

)

−C(x)W−1(x)
∂W (x)

∂xα

P T
�x

∂C(x)

∂xβ

. (88)

More details of the MLS procedure used in this paper can be
found in [36, 40].

5.2 Computational Aspects

The MLS shape functions are data independent and, there-
fore, for fixed grids they need to be computed only once at
the preprocessing phase. Note again that the reconstructed
function is not a polynomial, even in the case when the basis
of functions comprises only polynomials.

The evaluation of the shape functions at a given point
involves a series of matrix operations, the most expensive of
them being the inversion of the moment matrix M . The size
of this matrix is m × m, where m is the dimension of the
basis p(x). Note that the size of M does not depend on the
number of neighbours in the cloud of the evaluation point.

In order to prevent the matrix M from being singular or
ill-conditioned, the cloud of neighbours should fulfill certain
“good neighbourhood” requirements. Thus, if the number of
neighbours is less than m (the number of functions in the ba-
sis), M becomes singular. Nevertheless, the approximation

could be poor if M is severely ill-conditioned, so it is con-
venient to use a number of neighbours slightly above the
minimum, and with the information coming from as many
directions as possible. For rough grids it may be necessary
to use anisotropic kernels, as exposed below. The definition
of the cloud (the MLS stencil) for each evaluation point is an
important issue that will also be addressed in the following
sections. The selection process must be suitable for general
unstructured grids, and the stencil should be as compact as
possible for the sake of computational efficiency and physi-
cal meaning.

Once the cloud of neighbour centroids has been deter-
mined, the smoothing length h for isotropic kernels (radial
weighting) is set to be proportional to the maximum distance
between the evaluation point xI and its neighours, as

h = k max
(‖xj − xI‖

)
. (89)

Values of k around 0.6–0.7 seem to be adequate (recall that,
using radial weighting, the support of the kernel expands
over a circle of radius 2h). In the following section we elab-
orate on the implementation of anisotropic (tensor-product)
kernels.

5.3 Anisotropic Node Distributions

The methodology described so far, with radial weighting
in two and three dimensions, in not well suited for highly
anisotropic node distributions. This situation corresponds, in
terms of the application considered in this study, to the pres-
ence of cells with high aspect ratios, which is, on the other
hand, a quite frequent circumstance in most practical appli-
cations of the Navier-Stokes equations. Fortunately, Moving
Least Squares can account for this kind of cloud structure,
by means of the use of anisotropic kernels.

Consider a general node distribution that may include
strongly directional features (Fig. 7). Rather than using ra-
dial kernels, we will construct our MLS shape functions us-
ing tensor-product kernels of the form

WD(x − y,h) =
D∏

i=1

W(xi − yi, hi), (90)

where W(x −y,h) is the basic one-dimensional kernel used
to construct the D-dimensional kernel WD(x − y,h), h =
(h1, . . . , hD) is the vector of directional smoothing lengths,
and (x1, . . . , xD) (resp. (y1, . . . , yD)) are the Cartesian co-
ordinates of node x (resp. y).

In addition to setting different smoothing lengths for each
coordinate direction, we should also include the directional-
ity properties of the cloud of nodes (Fig. 7), i.e. the fact that
the principal directions of anisotropy of the cloud may not
be aligned with the Cartesian coordinate axis. Focusing our
analysis on the two-dimensional case, this can be addressed
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Fig. 7 Anisotropic kernels:
tensor-product support
definition

by the use of rectangular supports (tensor-product kernels)
defined by the length of their sides (L1 = 4h1, L2 = 4h2)
and a rotation angle α. We determine this rotation through
an inertial analogy, by looking at the principal directions of
the tensor

I =
(

Ixx Ixy

Iyx Iyy

)

=
( ∑N

j=1(xj − xI )
2 ∑N

j=1(xj − xI )(yj − yI )∑N
j=1(xj − xI )(yj − yI )

∑N
j=1(yj − yI )

2

)
.

(91)

In particular, the angle α is given by

tan(2α) = 2Ixy

Ixx − Iyy

. (92)

Once the directionality of the cloud has been characterized,
through the computation of α, it is more convenient to com-
pute the MLS shape functions in a rotated space, with the
transformed coordinate axis (x∗, y∗) aligned with the prin-
cipal directions of the tensor I . To this end the nodes in the
cloud are rotated according to

x∗ =
(

cos(α) sin(α)

− sin(α) cos(α)

)
x, (93)

where x = (x1 x2)
T stands for coordinates in the physical

space, and x∗ = (x∗
1 x∗

2 )T are the coordinates in the trans-
formed space. Once the coordinates of the nodes in the cloud
have been rotated, the MLS shape functions and their deriv-
atives are computed in the transformed space using smooth-
ing lengths

h∗
1 = k1 max(|x∗

1j − x∗
1I |),

h∗
2 = k2 max(|x∗

2j − x∗
2I |)

(94)

and the corresponding tensor-product kernels

W(x∗ − y∗,h∗) = W(x∗
1 − y∗

1 , h∗
1)W(x∗

2 − y∗
2 , h∗

2). (95)

While the shape functions in the transformed space are equal
to the shape functions in the physical space, the derivatives
have to be rotated back to the physical space. For example,
the first derivatives read
(

∂N
∂x1
∂N
∂x2

)
=
(

cos(α) − sin(α)

sin(α) cos(α)

)( ∂N
∂x∗

1
∂N
∂x∗

2

)
(96)

while the second derivatives are computed as

⎛
⎝

∂2N

∂x2
1

∂2N
∂x1x2

∂2N
∂x1x2

∂2N

∂x2
2

⎞
⎠=

(
cos(α) − sin(α)

sin(α) cos(α)

)⎛
⎝

∂2N

∂x∗2
1

∂2N
∂x∗

1 x∗
2

∂2N
∂x∗

1 x∗
2

∂2N

∂x∗2
2

⎞
⎠

×
(

cos(α) sin(α)

− sin(α) cos(α)

)
. (97)

These basic expressions are easily extended to higher order
derivatives.

5.4 Moving Least Squares vs. Piecewise Polynomial
Interpolation

As mentioned in the above state of the art review, most ex-
isting higher order schemes are based on piecewise poly-
nomial approximations, which are obtained either within
the finite element framework (consider the Discontinuous
Galerkin method [35]), or using some suitable form of cell
subdivision (such as the so-called Spectral Volume method
[102]). Following this approach, higher order accuracy is
achieved by creating new degrees of freedom inside each
cell, which are used to construct an interpolating polyno-
mial. This piecewise polynomial interpolation is discontin-
uous across element interfaces, a feature that is quite con-
venient in terms of the stability and compactness of the
scheme for hyperbolic problems, but also quite inconvenient
in terms of the efficiency of the scheme for equations and
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Fig. 8 MLS shape functions for p = 5, N = 9 (bottom left), and p = 10, N = 15 (bottom right). Lagrange basis for p = 5 (top left) and p = 10
(top right)

terms of elliptic character. The way Moving Least Squares
approximations work is rather different, and this section is
aimed at shedding some light on its advantages and short-
comings.

Even though the MLS approximants will be later used in
a “moving” (centered) sense, Figs. 8 and 9 present some ex-
amples of MLS shape functions computed in an “element”
sense. By this we mean that, in order to compute the set
of p-complete MLS shape functions associated to N points
on [−1,+1], the cloud for each point comprises all the N

points, instead of using compact supports. This may be use-
ful to give a flavour of the structure of the shape functions,
and to have a first comparison to the Lagrange basis.

Figure 8 presents the computed shape functions for p =
5, N = 9 (bottom left), and p = 10, N = 15 (bottom right).
The MLS points are uniformly spaced. The Lagrange ba-
sis for p = 5 and p = 10, computed with uniform nodes,
are also plotted (top left and top right, respectively). For

p = 10, it is clear that non-uniform nodes should be used
for the Lagrange basis, and the same is true for MLS, al-
though the MLS basis is slightly better behaved. Note that
the MLS shape functions do not bear the Kronecker delta
property. The smoothing length is h = 0.6dmax , where dmax

is the maximum of the distances between the evaluation
point and its neighbours. Figure 9 gives some insight into
the effect over the shape functions of changes in the number
of points in the cloud N , or in the point distribution. Thus,
the shape functions present a better behaviour when more
points are added to the cloud (top right). Good non-uniform
point distributions have the same effect as in the Lagrange
basis (bottom left). Finally, a set of basis functions for irreg-
ularly spaced points is presented (bottom right).

This is not, however, the way Moving Least-Squares are
usually employed. They are better defined as a “centered”
approximation, without reference to an underlying element
or patch structure. Thus, the interpolation is based on a
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Fig. 9 MLS shape functions for p = 10: N = 15 uniform points (top left), N = 19 uniform points (top right), N = 15 Gauss-Lobatto points
(bottom left) and N = 15 random points (bottom right)

“nearest neighbours” or stencil structure, which is local and
centered at the evaluation point (the stencil moves to the
evaluation point). We believe this feature has some advan-
tages over piecewise polynomial interpolation. The first one
is that, for the same order, higher accuracy can be achieved
even with irregular point distributions. Another one is that
the interpolation is continuous across interfaces, which will
allow the direct computation of high-order viscous fluxes in
a multi-point fashion.

Figures 10 and 11 present the errors in the interpolation
of u = sin(2πx) in the domain [0,+1]. The function value is
interpolated at 800 points for plotting, using 40 point values
for MLS. Several values of p and N will be discussed, and
the smoothing length is defined as before. The function is
also interpolated using piecewise polynomials, with a num-
ber of elements such that the grid resolution h/p is the same
as that of the MLS point distribution, and with the nodes
placed at the Gauss-Lobatto points. Figure 10 plots the er-

ror distribution for p = 4 and p = 8. The MLS points are
evenly spaced. When the minimum number of neighbours,
p + 1, is used (top left and bottom left, respectively), the ac-
curacy of MLS for interior nodes is significantly higher than
that of the piecewise polynomial interpolation. Furthermore,
note that the difference increases with the polynomial order.
The same trend is observed for irregularly spaced point dis-
tributions, as depicted in Fig. 11. Note that in Fig. 11 the so-
lutions were computed using random points (MLS), and the
optimal Gauss-Lobatto node distribution (piecewise polyno-
mial), respectively. For redundant point clouds, N > p + 1
(Fig. 10, top right and bottom right), the piecewise polyno-
mial interpolation is more accurate, although the differences
for interior points are small. We must point out that gener-
ating good non-uniform nodal distributions for high order
piecewise polynomial interpolants is straightforward in 1D
(the Gauss-Lobatto points are optimal), but the multidimen-
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Fig. 10 Error distributions with MLS and piecewise polynomial inter-
polations, u(x) = sin(2πx). Top, p = 4, MLS with N = 5 (left) and
N = 7 (right), 40 uniform points, Lagrange polynomials, 10 elements

with Gauss-Lobatto nodes. Bottom, p = 8, MLS with N = 9 (left) and
N = 7 (right), 40 uniform points, Lagrange polynomials, 5 elements
with Gauss-Lobatto nodes

sional case is far from being so, particularly in the case of
methods that use cell subdivisions on triangles.

One of the main shortcomings of MLS approximants is
also apparent from Figs. 10–11. For p = 8, the interpolation
errors near the boundaries of the global domain are about
an order of magnitude higher than those inside the domain.
This is associated to the one-sided MLS approximation, and
is more and more pronounced as p is increased. We must
point out that suboptimal node distributions for piecewise
polynomial interpolations would have the same effect, but
in this case on all cells, not just near the domain boundaries
as MLS. We believe that this effect is less important for most
practical values of p (maybe up to p = 5), and that it can be
alleviated by the use of ghost points and special boundary
kernels.

Another potential weakness of MLS is the condition-

ing of the moment matrix, either due to the cloud structure

(highly anisotropic grids), or to very high values of p. Even

in 1D, values of p beyond 10 cannot be used in practice due

to the extremely ill-conditioned problem they pose near the

boundaries. In multidimensions the threshold is even lower,

although in practice the definition of the stencil is probably

a more stringent limitation to stay in p’s up to 4 or 5 in

2D/3D, which, on the other hand, is enough for most practi-

cal applications. The use of anisotropic kernels that adapt to

the point distribution helps providing robustness in general

grids, but the question is far from being resolved.
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Fig. 11 Error distributions with MLS and piecewise polynomial in-
terpolations, u(x) = sin(2πx). Left, p = 4, MLS with N = 5, 40
random points, Lagrange polynomials, 10 elements with Gauss-

Lobatto nodes. Right, p = 8, MLS with N = 9, 40 random
points, Lagrange polynomials, 5 elements with Gauss-Lobatto nodes

5.5 Multiple Scale Analysis and Shock Detection

One of the most interesting features of the MLS approxi-
mation stems from its natural connection to wavelets and
their intrinsic property of multiresolution analysis (see [69]
and references therein). Consider a function u(x), and define
two sets of MLS shape functions, Nh(x) and N2h(x), com-
puted using two different values of the smoothing length, h

and 2h, which respectively define h-scale and 2h-scale ap-
proximations of the form

uh(x) =
n∑

j=1

ujN
h
j (x), u2h(x) =

n∑
j=1

ujN
2h
j (x). (98)

A set of wavelet functions is obtained as

�2h(x) = Nh(x) − N2h(x) (99)

which allow the h-scale solution to be expressed as the sum
of its low-scale and high-scale complementary parts, as

uh(x) = u2h(x) + �2h(x), (100)

where

�2h(x) =
n∑

j=1

uj�
2h
j (x)

=
n∑

j=1

uj

(
Nh

j (x) − N2h
j (x)

)
. (101)

The low-scale u2h(x) can be further decomposed using the
same rationale. Figure 12 presents a function u(x), taken

from a typical gas dynamics problem, and its corresponding
high-scale component �2h, obtained using several values of
p. Clearly, �2h is a sensitive and powerful indicator of the
smoothness of u(x), that can be used as a shock detector or
error sensor for adaptive and multiresolution algorithms. In
this latter context, it is interesting that �2h is a “single grid”
detector, that it is naturally suited for unstructured meshes,
and that, for smooth functions, it converges to zero with the
same order as uh does, p + 1 (it is identically zero for poly-
nomials of degree equal or less than p).

We believe that this multiresolution smoothness indica-
tor, and its straightforward incorporation into a code that
already uses MLS approximations (one only needs to com-
pute another set of shape functions, but with 2h instead of
h), is a very attractive feature of the proposed methodol-
ogy. Even though well behaved limiters for second order
schemes have been developed, the question for higher order
reconstructions is far from being clear. Therefore, selective
shock-capturing is a critical issue for higher-order schemes.
If the limiters are active over the whole domain, their effect
on higher order derivatives results into a partial (or, quite
frequently, complete) loss of the higher order accuracy of
the reconstruction in smooth regions of the flow, virtually
taking the method back to second order.

As it is shown in one of the simulations below, the lim-
iters can be switched off in those areas where �2h is lower
than a certain threshold, therefore retaining the whole accu-
racy of the scheme in smooth regions. Note that the concept
of “smooth region” itself is strongly related to the approx-
imation being used, and hence the convenience of an indi-
cator that is of the same order and nature as the approxi-
mants. In some sense, this procedure can be regarded as an
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Fig. 12 Multiscale analysis: u(x) (top left), and its high-scale component �2h, using p = 1, N = 3 (top right), p = 3, N = 6 (bottom left), and
p = 6, N = 9 (bottom right)

unstructured grid generalization of the wavelet-based selec-
tive filtering proposed by Sjögreen and Yee for finite differ-
ences [87].

5.6 Moving Least-Squares, Finite Volume Solvers,
Unstructured Grids

The proposed methodology uses MLS approximations to
construct high order finite volume schemes on unstructured
grids, and its scope is threefold:

• Moving Least-Squares approximants provide a general
(continuous) approximation framework. For elliptic prob-
lems, or terms of elliptic character, this allows a straight-
forward, direct reconstruction of the fluxes at the inter-
faces. This procedure yields a single-valued, centered and
high-order flux approximation at each edge quadrature

point. For example, the viscous Navier-Stokes fluxes re-
quire the reconstruction of the conserved variables and
their gradients at each quadrature point. We find connec-
tions between this approach and the successful second-
order Multi-Point Flux Approximation (MPFA) methods
developed by the petroleum engineering community (see
[1] for an introduction). This approximation framework
induces a non-diagonal mass matrix.

• For hyperbolic problems, or terms of hyperbolic char-
acter, the generalized Godunov method [21, 51, 54] is
adopted. We use “broken” piecewise polynomial recon-
structions based on the MLS general approximation and
Taylor series expansions. The successive derivatives of
the conserved variables at the cell centroids are computed
using MLS approximations. Therefore, rather than creat-
ing new degrees of freedom inside each cell, we use in-
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Fig. 13 p = 3 MLS stencil:
centroids

formation from neighbouring cells, in a centered (moving)
fashion.

• The MLS-based multiresolution indicator provides a re-
liable shock-detection tool for the selective limiting of
higher-order discretizations.

6 Practical Implementation Aspects

6.1 Overview

The following sections elaborate on the practical implemen-
tation of the proposed methodology. Conceptually, two as-
pects of the process should be distinguished:

• How the MLS shape functions and their derivatives are
computed; in particular, the choice of the cloud of neigh-
bours for each evaluation point (centroids or edge quadra-
ture points). We call these clouds the stencil of the MLS
approximation. This choice ultimately determines the full
stencil of the finite volume method.

• How the MLS shape functions and their derivatives
are used to 1) develop high order reconstructions for a
Godunov-type scheme for hyperbolic problems and to 2)
directly reconstruct the “viscous” fluxes at the edges, thus
obtaining a multipoint-like high order scheme for elliptic
problems.

The following sections elaborate on the MLS stencils used
in this study for the cubic basis (p = 3).

6.2 p = 3 MLS Stencils: I. Centroids

Figure 13 presents the stencil used to compute the p = 3
MLS shape functions at the cell centroids. For and interior
cell I , the stencil comprises its first and second neighbours
(by neighbours we mean cells that share an edge). This gives
a 13-point stencil. For boundary cells the stencil comprises

those cells that share a vertex with the cell and their first
neighbours. A stronger enforcement of the boundary con-
ditions was achieved through the introduction of a set of
“zero area” cells attached to the boundary (an approach anal-
ogous to the use of so-called ghost cells [59]). Note that
the centroids of these boundary cells, i.e. the midpoints of
those edges lying on the boundary, have been included in
the above stencils. During the simulation, the variables at
these locations will be either extrapolated or assigned a cer-
tain value, depending on the type of boundary condition to
be enforced.

6.3 p = 3 MLS Stencils: II. Edges

Figure 14 presents the stencil to compute the p = 3 MLS
shape functions at the edge quadrature points. Given a
quadrature point lying in the interface between cells A and
B , its stencil comprises those cells sharing the extremum
vertices of the edge, and their first neighbours. If both ver-
tices are shared by 4 cells, this is a 16-point stencil. For
boundary cells we also include the neighbours of the edge
opposite to the boundary, and the corresponding ghost cells.

6.4 Comments on the Full Stencil of the Finite Volume
Scheme

The “inviscid” stencil of a cell I is obtained as the union of
its MLS stencil, and the MLS stencils of its first neighbours.
Figure 15 (left) depicts the p = 3 inviscid stencil for interior
cells, which comprises 25 cells. This stencil can be used to
construct a fourth order scheme for the Euler equations.

Analogously, the stencil of the “viscous” discretization
is obtained as the union of the MLS stencils associated to
all the edges of cell I . Figure 15 (right) depicts the p = 3
viscous stencil for interior cells, which comprises 21 cells.
This is the stencil of a fourth order scheme for elliptic prob-
lems. The full stencil for Navier-Stokes computations coin-
cides with the inviscid one, as the latter includes the viscous
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Fig. 14 p = 3 MLS stencil:
quadrature points on edges

stencil as a subset. Note that, quite the opposite to what is
usually thought about finite volume schemes, this stencil is
actually quite compact. In the examples section we present
a comparison with the DG stencil for elliptic problems.

6.5 Specific Techniques for Hyperbolic Terms: “broken”
Reconstruction and Limiting

Reconstruction is usually addressed in finite volume schemes
as a bottom-up process, by substituting the piecewise con-
stant representation of the basic first order scheme by a
piecewise polynomial reconstruction of the field variables
inside each control volume. In practice, the development
of very high order schemes of this kind has been severely
limited by the absence of robust approximation techniques,
capable of computing accurate estimates of the successive
derivatives of the field variables in the context of unstruc-
tured grids. Thus, the concept high-order scheme is most
frequently used in the literature in reference to formally
second-order schemes (piecewise linear reconstruction).

In contrast, our approach is top-down, as we define a gen-
eral continuous approximation framework uh(x), provided

by the Moving Least-Squares approximants, and then com-
pute local discontinuous approximations uhb

I (x), which are
broken high-order approximations to the underlying contin-
uous solution, to be used in the context of a Godunov-type
scheme. In this study, reconstructions of up to fourth order
(cubic) have been tested, although schemes of up to sixth
order are expected to be practical in the near future.

The linear component-wise reconstruction of the vari-
ables inside cell I reads

uhb
I (x) = uI + ∇uI · (x − xI ), (102)

where uI stands for the centroid value, xI denotes spatial
coordinates of the centroid of the cell and ∇uI is a cell-
centered gradient. This gradient is assumed to be constant
on each cell and, therefore, the reconstructed variables are
discontinuous across interfaces.

Analogously, the quadratic reconstruction reads

uhb
I (x) = uI + ∇uI · (x − xI )

+ 1

2
(x − xI )

T H I (x − xI ), (103)
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Fig. 15 Full fourth order
MLS-FV stencil: Euler and
Navier-Stokes (left) and elliptic
problems (right)

where H I is the centroid Hessian matrix. Finally, the cubic
reconstruction can be written as

uhb
I (x) = uI + ∇uI · (x − xI ) + 1

2
(x − xI )

T H I (x − xI )

+ 1

6
�2xT

I T I (x − xI ), (104)

where

�2xT
I =

(
(x − xI )

2 (y − yI )
2
)

,

T I =
⎛
⎝

∂3uI

∂x3 3 ∂3uI

∂x2∂y

3 ∂3uI

∂x∂y2
∂3uI

∂y3

⎞
⎠ . (105)

For unsteady problems, additional terms must be introduced
in (103) and (104) to enforce conservation of the mean, i.e.

1

AI

∫
x∈�I

u (x) d� = uI (106)

as exposed in Sect. 4. The derivatives of the field variables
are directly computed at centroids using MLS. Thus, the ap-
proximate gradients read

∇uI =
nxI∑
j=1

uj∇Nj(xI ), (107)

where the uj ’s stand for variables at the nxI
“neighbour” (in

the sense of the MLS stencil) centroids. The second order
derivatives read

∂2uI

∂x2
=

nxI∑
j=1

uj

∂2Nj(xI )

∂x2
,

∂2uI

∂x∂y
=

nxI∑
j=1

uj

∂2Nj(xI )

∂x∂y
,

∂2uI

∂y2
=

nxI∑
j=1

uj

∂2Nj(xI )

∂y2
.

(108)

Finally, the third order derivatives are written as

∂3uI

∂x3
=

nxI∑
j=1

uj

∂3Nj(xI )

∂x3
,

∂3uI

∂x2∂y
=

nxI∑
j=1

uj

∂3Nj(xI )

∂x2∂y
,

∂3uI

∂x∂y2
=

nxI∑
j=1

uj

∂3Nj(xI )

∂x∂y2
,

∂3uI

∂y3
=

nxI∑
j=1

uj

∂3Nj(xI )

∂y3
.

(109)

In this study, the first order derivatives were computed as
full MLS derivatives, whereas the second and third order
derivatives are approximated by the diffuse ones.

In the presence of shocks, some limiting procedure is ap-
plied to the above derivatives. The choice of adequate mul-
tidimensional limiters is critical in order to achieve accurate
and non-oscillatory shock-capturing algorithms.

6.5.1 Limiters: I. Monotonicity Enforcement

Barth and Jespersen [23] have proposed an extension of
Van Leer’s scheme [93] which is suitable for unstructured
grids. The basic idea is to enforce “monotonicity” in the
reconstructed solution. In this context, monotonicity im-
plies that no new extrema are created by the reconstruction
process [23]. The enforcement is local, in the sense that only
certain neighbour cells are considered for the “no new ex-
trema” criterion.

Recall the piecewise linear reconstruction uhb
I (x) of a

variable U inside a certain cell I

uhb
I (x)I = uI + ∇uI · (x − xI ) (110)

and consider a limited version of this reconstruction, as

uhb
I (x)I = uI + �I∇uI · (x − xI ), (111)

where �I is a slope limiter (0 ≤ �I ≤ 1) such that the re-
construction (111) satisfies

umin ≤ uhb
I (x)I ≤ umax (112)
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being

umin = min
j∈AI

(uj ), umax = max
j∈AI

(uj ), (113)

where AI is the set of “neighbour” cells. In practice, the
restriction (112) is only enforced at the quadrature points
on the edges of cell I ; thus, for each quadrature point q ,
its associated slope limiter �

q
I is computed in terms of the

unlimited extrapolated value U
q
I , as

�
q
I =

⎧⎪⎪⎨
⎪⎪⎩

min(1, umax−uI

u
q
I −uI

), u
q
I − uI > 0,

min(1, umin−uI

u
q
I −uI

), u
q
I − uI < 0,

1, u
q
I − uI = 0

(114)

and, finally,

�I = min
q

(�
q
I ). (115)

In the case of the quadratic reconstruction, (103), a similar
limiting strategy is adopted

uhb
I (x) = uI + �I

(
∇uI · (x − xI )

+ 1

2
(x − xI )

T H I (x − xI )

)
, (116)

where the limiter �I is obtained following the same proce-
dure exposed above for the linear case. An analogous ex-
pression can be used for the cubic reconstruction.

In this study the neighbourhood to determine the ex-
trema umin and umax comprises the reconstruction cell I and
its first order neighbours (Fig. 16-A). In the following, the
above limiter will be referred to as “BJ limiter”.

6.5.2 Limiters: II. Averaged Derivatives

This section presents a general strategy to obtain limited gra-
dients and Hessian matrices. Thus, the limited gradient as-
sociated to a certain cell I , ∇uI is obtained as a weighted
average of a series of representative gradients, as

∇uI =
N∑

k=1

ωk∇uk, (117)

where {∇uk , k = 1, . . . ,N} is a set of unlimited gradi-
ents, used as a basis to construct the limited one. In an
approach similar to that exposed in [59], the weights {ωk ,
k = 1, . . . ,N} are given by

ωk (g1, g2, . . . , gN) =
∏N

i �=k gi + εN−1

∑N
j=1

(∏N
i �=j gi

)+ NεN−1
,

k = 1, . . . ,N, (118)

Fig. 16 Neighbourhoods for the limiting of the reconstruction inside
cell I

where {gi, i = 1, . . . ,N} are functions of the unlimited gra-
dients (in this study, gi = ‖∇ui‖2) and ε is a small number,
introduced to avoid division by zero. The Hessian matrices
will also be limited following these ideas but, in this case,
the functions gi read

gi =
(

∂2ui

∂x2

)2

+ 2

(
∂2ui

∂x∂y

)2

+
(

∂2ui

∂y2

)2

,

i = 1, . . . ,N. (119)

Some existing limiters could be considered to be included in
this family. Van Rosendale [95] has proposed an extension
to three gradients of Van Albada’s limiter [92]. This lim-
iter was used on unstructured triangular grids and its gen-
eral structure is that of (117) with N = 3. The representative
gradients are evaluated at the three vertices of the cell. Jawa-
har and Kamath [59] proposed a limiter with N = 3, with
averaged gradients computed from the unlimited gradients
evaluated at the centroids of the adjacent cells on triangular
meshes. Furthermore, the denominators in (118) are slightly
different in this case.

For quadrilateral cells we propose a limiter based on
(117)–(118) with N = 5; i.e. the limited derivatives are ob-
tained as a weighted average of five unlimited derivatives.
Figure 16 presents four suitable configurations to determine
such representative derivatives. In this study only the con-
figuration given by 16-A will be considered. In the follow-
ing, the above limiter will be referred to as “PC5 limiter”.
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6.6 Numerical Convective Fluxes

For exposition purposes, we present the numerical convec-
tive fluxes corresponding to the model problem (Navier-
Stokes equations), which are obtained using Roe’s flux dif-
ference splitting [81]. For this purpose, left (u+) and right
(u−) states are defined on each face. The numerical flux is
then computed as

(
F x,F y

) · n

= 1

2

[(
F x

(
u+) ,F y

(
u+))+ (F x

(
u−) ,F y

(
u−))] · n

− 1

2

3∑
k=1

α̃k |̃λk |̃rk, (120)

where {̃λk, k = 1,4} and {̃rk, k = 1,4} are, respectively, the
eigenvalues and eigenvectors of the approximate Jacobian
J̃ (u+,u−)

λ̃1 = ṽ · n − c̃, λ̃2 = λ̃3 = ṽ · n,

λ̃4 = ṽ · n + c̃,
(121)

( r̃1 r̃2 r̃3 r̃4)

=
⎛
⎝

1 0 1 0
ũ − c̃nx −c̃ny ũ ũ + c̃nx

ṽ − c̃ny c̃nx ṽ ṽ + c̃ny

H̃ − c̃ ṽ · n c̃(̃vnx − ũny) 1
2 (̃u2 + ṽ2) H̃ + c̃ ṽ · n

⎞
⎠

(122)

and the corresponding wave strengths {̃αk, k = 1,4}

α̃1 = 1

2̃c2

[
�(p) − ρ̃c̃

(
�(u)nx + �(v)ny

)]
,

α̃2 = ρ̃

c̃

[
�(v)nx − �(u)ny

]
,

(123)
α̃3 = − 1

c̃2

[
�(p) − c̃2�(ρ)

]
,

α̃4 = 1

2̃c2

[
�(p) + ρ̃c̃

(
�(u)nx + �(v)ny

)]
,

where �(·) = (·)− −(·)+, n = (nx, ny) is the outward point-
ing unit normal to the interface, and the Roe-average values
ṽ = (̃u, ṽ) and H̃ (computed using U+ and U−) are defined
as

ũ = u+√ρ+ + u−√ρ−
√

ρ+ +√ρ− , ṽ = v+√ρ+ + v−√ρ−
√

ρ+ +√ρ− ,

(124)

H̃ = H+√ρ+ + H−√ρ−
√

ρ+ +√ρ− .

On the other hand, the average values ρ̃ and c̃ are computed
as

ρ̃ =
√

ρ+ρ−, c̃2 = (γ − 1)

[
H̃ − 1

2

(
ũ2 + ṽ2

)]
.

(125)

6.7 Viscous Fluxes

As mentioned before, one of the major advantages of the
proposed method is that we use the MLS approximants as
a global (centered) reconstruction procedure to evaluate the
viscous fluxes at the quadrature points on the edges. This
procedure provides a single high-order flux and, therefore,
it is not necessary to create auxiliary degrees of freedom to
compute the derivatives of the variables at the cell edges.

Recall that the evaluation of the viscous stresses and heat
fluxes requires interpolating the velocity vector v, temper-
ature T , and their corresponding gradients, ∇v and ∇T , at
each quadrature point xiq . Using MLS approximation, these
entities are readily computed as

viq =
niq∑
j=1

vjNj (xiq ), Tiq =
niq∑
j=1

TjNj (xiq ) (126)

and

∇viq =
niq∑
j=1

vj ⊗ ∇Nj(xiq ), ∇Tiq =
niq∑
j=1

Tj∇Nj(xiq ),

(127)

where niq is the number of neighbour centroids (in the sense
of the MLS stencil). Once the above information has been
interpolated, the diffusive fluxes can be computed, accord-
ing to (3).

6.8 Flux Integration

One quadrature point (the midpoint) was used in the case of
linear reconstruction, whereas two and three Gauss points
were respectively used in the case of quadratic and cubic
reconstructions.

6.9 Time Integration

6.9.1 Explicit Schemes

For explicit time integration we use the third order TVD-
Runge-Kutta algorithm proposed by Shu and Osher [85].
Given the field variables un at the previous time step n, the
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algorithm proceeds in three stages to obtain the updated field
variables un+1, as

u1 = Un + �tL(un),

u2 = 3

4
un + 1

4
u1 + 1

4
�tL(u1), (128)

un+1 = 1

3
un + 2

3
u2 + 2

3
�tL(u2),

where the operator L(·), which represents the spatial dis-
cretization operator, reads

L(u) = 1

A

nedge∑
iedge=1

ngau∑
igau=1

[(
FV − F

)
· n
]

igau
Wigau. (129)

6.9.2 Implicit Schemes

Implicit time integration can be used either as a time march-
ing approach for unsteady problems, or as a relaxation
technique for steady state computations. For most implicit
schemes, in addition to the residual R, we need to evalu-
ate the Jacobian ∂R/∂u. The approximation framework in
terms of shape functions allows a clear formulation of the
Jacobian in the proposed methodology.

For presentation purposes, we will analyze the construc-
tion of the Jacobian for a nonlinear parabolic problem, the
Cahn-Hilliard equation [27]. Numerical results of the appli-
cation of the proposed finite volume method to the numer-
ical solution of this challenging problem will be presented
in Sect. 8. To the authors’ knowledge, this is the first prac-
tical finite volume scheme developed for this equation. The
stiffness of this problem precludes the use of explicit time-
stepping for practical applications, and requires the use of
efficient adaptive implicit time-stepping procedures [37].

Consider a binary mixture and let the concentration of
one of its constituents be denoted by c, 0 < c < 1. The con-
centration of the other constituent is, therefore, 1− c. Trans-
port of mass in the mixture is governed by the parabolic
(Cahn-Hilliard) equation

∂c

∂t
= ∇ · (b(c)∇ (−γ�c + � ′(c)

))
(130)

supplemented with suitable initial and boundary conditions,
where b(c) ≥ 0 is the diffusion mobility, �(c) is the ho-
mogeneous free energy density, and γ is a positive con-
stant. The Cahn-Hilliard equation was originally proposed
by Cahn and Hilliard [27] to model spinodal decomposition
and coarsening phenomena in binary alloys. In this study we
focus on the case of degenerate mobility

b(c) = c(1 − c) (131)

and logarithmic potential,

�(c) = A(c log(c) + (1 − c) log(1 − c)) + Bc(1 − c).
(132)

The finite volume formulation of (130) reads, for each con-
trol volume [37]
∫

�I

∂c

∂t
d�−

∫
�I

b(c)∇ (−γ�c + � ′(c)
) ·nd� = 0. (133)

The challenge for any finite volume scheme is how to com-
pute the flux

f · n = b(c)∇ (−γ�c + � ′(c)
) · n. (134)

Considering a constant value of γ , the above expression can
be written as

f · n = b(c)

⎛
⎝−γ ( ∂3c

∂x3 + ∂3c

∂y2x
) + ∂� ′(c)

∂x

−γ ( ∂3c

∂x2y
+ ∂3c

∂y3 ) + ∂� ′(c)
∂y

⎞
⎠ · n. (135)

Following the proposed MLS-based finite volume scheme,
the above fluxes can be directly, and uniquely, evaluated at
each interface quadrature point. This is accomplished by set-
ting mobilities

b(c)
∣∣
ig

=
n∑

j=1

Nj(xig)b(cj ) (136)

whereas the third derivatives of the concentrations are com-
puted as

∂3c

∂xayb

∣∣∣∣
ig

=
n∑

j=1

∂3Nj

∂xayb

∣∣∣∣
ig

cj ,

a + b = 3, a ≥ 0, b ≥ 0, (137)

and the free energy terms

∂� ′(c)
∂x

∣∣∣∣
ig

=
n∑

j=1

∂Nj

∂x

∣∣∣∣
ig

� ′(cj ),

(138)
∂� ′(c)

∂y

∣∣∣∣
ig

=
n∑

j=1

∂Nj

∂y

∣∣∣∣
ig

� ′(cj ).

The O(�x4) time step stability limit precludes the use of ex-
plicit time-stepping for practical purposes. The use of MLS
approximants, with its shape function structure, simplifies
the linearization of the fluxes (135). It follows from the
above definitions that the contribution to the Jacobian due
to each stencil node j of a certain edge quadrature point ig

corresponding to a cell I is given by

J
ig
Ij = −∂f ig

∂cj

ωig,

n = −b(c)
∣∣
ig

⎛
⎝−γ (

∂3Nj

∂x3 + ∂3Nj

∂y2x
) + ∂Nj

∂x
� ′′(cj )

−γ (
∂3Nj

∂x2y
+ ∂3Nj

∂y3 ) + ∂Nj

∂y
� ′′(cj )

⎞
⎠ωig · n
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Table 1 Convergence results for Ringleb flow

Grid Linear rec. Quadratic rec. Cubic rec.

Work L2 error Slope Work L2 error Slope Work L2 error Slope

10 × 10 1.3 5.04 × 10−5 2.1 4.71 × 10−6 4 1.39 × 10−7

20 × 20 3.5 1.28 × 10−5 1.98 6.8 2.23 × 10−7 4.40 12.6 1.06 × 10−8 3.71

40 × 40 11 3.14 × 10−6 2.03 23 2.34 × 10−8 3.25 42.5 6.60 × 10−9 4.01

80 × 80 35 7.81 × 10−7 2.01 80.5 2.80 × 10−9 3.06 152 4.07 × 10−10 4.02

− Njb
′(cj )

⎛
⎝−γ ( ∂3c

∂x3 + ∂3c

∂y2x
) + ∂� ′(c)

∂x

−γ ( ∂3c

∂x2y
+ ∂3c

∂y3 ) + ∂� ′(c)
∂y

⎞
⎠ωig · n,

(139)

where ωig is the quadrature weight associated to the quadra-
ture point ig.

7 Accuracy Tests

This section presents some convergence results of the pro-
posed finite volume method with Moving Least-Squares
approximations. The tests are intended to assess the per-
formance of the methodology with respect to two distinct
areas of its scope: high-order variable reconstruction for
Godunov-type schemes and high-order solution of hyper-
bolic problems, and high-order solution of elliptic problems.

7.1 Hyperbolic Problems: Ringleb Flow

Ringleb flow is an exact solution of the Euler equations, ob-
tained by means of the hodograph method [82]. The problem
is solved on the square [−1.15,−0.75] × [+0.15,+0.55],
imposing the exact value of the conserved variables on the
boundary. Linear, quadratic and cubic reconstructions are
developed by means of MLS derivatives, as exposed above.
A refinement study was carried out using a sequence of four
nested grids, the coarsest of which is showed in Fig. 17 (top),
along with the convergence curves, which are broken down
in Table 1.

All linear, quadratic and cubic reconstructions exhibit the
correct second, third and fourth orders of convergence, re-
spectively, as expected. One, two, and three Gauss quadra-
ture points per edge have been employed for the second,
third, and fourth order schemes, respectively. In addition,
Fig. 17 (bottom right) presents a comparison of the differ-
ent reconstructions with respect to accuracy versus work-
load. The cpu times are expressed in terms of time units
per time step of the Runge-Kutta integrator, and normalized
with respect to the cpu time associated to a time step of the
first-order scheme (no reconstruction) on the 10 × 10 grid,
which is taken as the reference workload, Work = 1. The

benefits and efficiency of the higher order reconstructions
are quite apparent. Comparing the second and fourth order
reconstructions, for example, we see that, for the same grid,
the accuracy of the latter is about three orders of magnitude
higher than that of the former, with a cpu increase of a factor
of four. Moreover, most of the additional cpu time associated
to the fourth order scheme is due to the use of three quadra-
ture points per edge, and therefore more flux evaluations,
and not to the higher order reconstruction itself.

7.2 Elliptic Problems: Comparison with Discontinuous
Galerkin Methods

In this section the accuracy test in [78] is reproduced. It will
serve as a comparison between the proposed scheme and
three DG discretizations for elliptic problems, namely the
Local Discontinuous Galerkin (LDG) method [34], an im-
proved variant of LDG, the so-called Compact Discontinu-
ous Galerkin (CDG) method [78], and the second scheme of
Bassi and Rebay (BR2) [24].

The two-dimensional model problem is

∇ · (−∇u) = f in �,
(140)

u = uD on �

where � is the unit square, [0,1] × [0,1], and � its bound-
ary. We use Dirichlet boundary conditions and a source term
such that the solution of (140) is

u(x, y) = exp[α sin(ax + by) + β cos(cx + dy)], (141)

where α = 0.1, β = 0.3, a = 5.1, b = −6.2, c = 4.3 and d =
3.4. The Dirichlet boundary conditions are enforced weakly
by the use of ghost boundary points which have associated
the exact boundary value.

The results in [78] were computed using a series of suc-
cessively refined meshes, obtained by splitting a regular
n × n Cartesian grid into 2n2 triangles, giving uniform ele-
ment sizes of h = 1/n. They consider nodal basis of degree
p, with the nodes uniformly distributed, and therefore the
spatial resolution is h/p.

In order to compare these DG results with those of the
proposed FV scheme we need to establish a way of generat-
ing the FV grids whose solutions are to be compared to the
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Fig. 17 Coarse grid level and convergence results for Ringleb flow

reported ones. In this study we make a comparison in terms
of accuracy for the same grid resolution. Following this cri-
terion, the results reported in [78] on a grid level n, with 2n2

p-elements, are to be compared with FV results obtained on
a Cartesian grid of (pn) × (pn) quadrilaterals. We will re-
strict our analysis to the case p = 3, which is the FV scheme
we are interested in for practical applications.

Note that, however, for the same grid resolution and
p = 3, the DG triangular grids comprise a total of 20n2 pri-
mal degrees of freedom, whereas the total number of degrees
of freedom for the FV scheme is 9n2, thus a factor of 2.2.

Furthermore, this analysis excludes the auxiliary degrees of
freedom required in DG which, for this simple problem, can
be written in terms of the primal unknowns. This “elimina-
tion” of the auxiliary variables involves, nonetheless, a non-
negligible cost. We prefer this comparison in terms of accu-
racy for the same grid resolution, rather than comparisons
of accuracy versus number of degrees of freedom or accu-
racy versus cost, which, being more fair for the FV scheme,
do not solve the question about the relative spatial accuracy
of either scheme. This study aims at shedding some light
on the question about whether DG is actually more accurate
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Table 2 2D Poisson, p = 3: L2 errors and convergence rates in primal variable. Comparison between the proposed FV scheme and three DG
schemes, namely: CDG, LDG and BR2

Scheme n = 4 (12 × 12) n = 8 (24 × 24) n = 16 (48 × 48) n = 32 (96 × 96) Rate

FV 2.02 × 10−4 1.40 × 10−5 9.07 × 10−7 5.78 × 10−8 4.0

CDG 2.44 × 10−4 1.71 × 10−5 1.10 × 10−6 7.03 × 10−8 4.0

LDG 3.81 × 10−4 2.04 × 10−5 1.18 × 10−6 7.23 × 10−8 4.0

BR2 3.77 × 10−4 2.47 × 10−5 1.52 × 10−6 9.46 × 10−8 4.0

Table 3 2D Poisson, p = 3: L2 errors and convergence rates of the gradient of the primal variable, p = 3. Comparison between the proposed FV
scheme and CDG

Scheme n = 4 (12 × 12) n = 8 (24 × 24) n = 16 (48 × 48) n = 32 (96 × 96) Rate

FV 3.24 × 10−3 2.78 × 10−4 2.49 × 10−5 2.15 × 10−6 3.5

CDG 3.01 × 10−3 3.63 × 10−4 4.37 × 10−5 5.36 × 10−6 3.0

Table 4 Memory requirements
and compactness measure for
the proposed FV scheme, CDG,
LDG and BR2

Scheme Memory requirements ndof per block Average Ratio

per block (primal dof for DG) entries per row

FV 9 × 21 = 189 9 21 1

CDG 2 × 220 = 440 2 × 10 = 20 22 1.05

LDG 2 × 236 = 472 2 × 10 = 20 23.6 1.12

BR2 2 × 292 = 584 2 × 10 = 20 29.2 1.39

and more compact than FV schemes, and the only way is to
compare with the same grid resolution. The conclusions in
terms of computational effort and efficiency will be straight-
forward, and are left to the reader.

In order to make the FV results reproducible, the sten-
cils for the computation of the fluxes at the interfaces are
defined as the 16 nearest centroids (the distances are com-
puted with respect to the centerpoint of the edge). This defi-
nition coincides, for Cartesian grids and interior edges, with
the one presented in Sect. 6. It is clearly sub-optimal for
edges near boundaries, but easy to reproduce. We used radial
kernels with the cubic spline (67), and smoothing lengths
h = 0.52 max(|xj − xq |), where xq is the quadrature (eval-
uation) point.

Table 2 presents a comparison of the L2 error norm for
the different grid sizes, the CDG results correspond to the
consistent switch. All schemes achieve the correct fourth or-
der of accuracy. The proposed FV scheme is slightly, but
consistently, more accurate than the DG methods at all re-
finement levels, with differences varying from 20% with re-
spect to the most accurate DG scheme (CDG), to almost a
factor of 2 with respect to BR2.

Table 3 presents a comparison of the errors in the gradient
(L2 error of the gradient). Only the CDG results are reported
in [78]. The differences are even more pronounced, due in
part to the superconvergent properties of the proposed finite
volume scheme.

It is also interesting to analyze the storage requirements
of the different schemes. Following the above “same grid
resolution” criterion, we consider an interior block of 2 DG
p-elements, and the corresponding p2 control volumes. Ta-
ble 4 is based on the data reported in [78] for the p = 3 case,
including the results for the proposed FV scheme. For each
block of 9 cells, and with the 21-point stencil presented in
Sect. 6, the finite volume scheme requires 9 × 21 = 189 en-
tries in the coefficient matrix. With the same grid resolution
(the same block), the CDG, LDG and BR2 schemes require
440, 472 and 584 entries, respectively. Of course, a signif-
icant part of the increased number of entries is due to the
fact that, as mentioned above, the DG schemes involve 2.22
times more degrees of freedom (equations). A good measure
to assess the net compactness of the different schemes is to
compute the average number of entries in each row of the
coefficient matrix. This value corresponds to dividing the
number of block entries between the number of degrees of
freedom per block (primal degrees of freedom in the case
of DG). Even in this measure the proposed finite volume
scheme outperforms the DG schemes, the differences vary-
ing between 5% in the case of CDG and 39% with respect to
BR2. This results challenge the somewhat widespread ideas
about the non-compactness of finite volume methods, as op-
posed to the compactness of DG.

The results of this study are clear: even for the same grid
resolution, the proposed FV scheme is consistently more ac-
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Fig. 18 Coarse grids for 2D Darcy flow: Chevron (left) and skewed (right)

curate than the analyzed DG schemes. Furthermore, it re-
quires less than half the number of degrees of freedom (2.22
times less rows in the coefficient matrix), and the average
stencil is smaller (average number of non-zero entries on
each row of the coefficient matrix). The cost analysis should
also include the fact that the DG discretizations require the
introduction of auxiliary degrees of freedom, that need to be
solved for in terms of the primal unknowns.

7.3 Further Analysis of the Superconvergence of the FV
Scheme for Elliptic Problems: 2D Darcy Flow

In order to assess whether the superconvergence in the gra-
dient of the previous section is due to the use of a Cartesian
grid, or there is the possibility of a property of the scheme,
consider the elliptic equation

∇ · (−K∇p) = f in �,

p = pD on �D, (142)

v · n = h on �N,

which is a prototype for the pressure equation in porous me-
dia flow, K is the permeability tensor and v = −K∇p is the
Darcy velocity. The problem (142) is solved in [0,+1] ×
[0,+1] using the p = 3 MLS-FV scheme, with k11 = k22 =
1, k12 = k21 = 0, and a source term and boundary conditions
such that the analytical solution is p = sin(2πx) sin(2πy).
The exact Dirichlet boundary condition is enforced on �.
A refinement study was carried out on a sequence of uni-
form, random, Chevron and skewed grids. The prototype

Chevron and skewed grids are plotted in Fig. 18. The coarse
random grid and its first level of refinement are plotted on
Fig. 19. The convergence results are presented in Tables 5
and 6, and confirm that, also on irregular grids, the scheme
is fourth order accurate in the primal variable (pressure) and
superconvergent (order 3.5) in the gradient (velocity).

8 Representative Simulations

8.1 Selective Limiting and the Multiresolution Detector

This 1D Euler example intends to provide some insight into
the behaviour of the limited higher order reconstructions
in the presence of shocks and smooth flow regions. In ad-
dition, it serves as an example of the performance of the
multiresolution-based selective limiting procedure exposed
in Sect. 3.4. The Shu-Osher test case [86] is solved using
400 cells in [−5,+5], with initial conditions

(ρR,uR,pR) = (3.857,2.629,10,333) ,

(ρL,uL,pL) = (1 + 0.2 sin(5x),0,1) .
(143)

The solution is advanced until t = 1.8, using linear, quadratic
and cubic reconstructions, with the limiters being active
everywhere (Fig. 20). In order to focus our analysis on the
reconstructions and limiting alone, all the derivatives are
computed using p = 3 MLS with N = 7 points per cloud
and h = 0.55dmax .

Even though the higher order schemes perform fairly bet-
ter than the second-order one, it is clear that the limiters are
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Fig. 19 Coarse random grid for 2D Darcy flow (left) and one level refinement (right)

Table 5 Darcy flow: Convergence results for the uniform and random grids (p = 3 MLS-FV scheme)

Grid Pressure Velocity

Uniform Random Uniform Random

Error Slope Error Slope Error Slope Error Slope

10 × 10 3.98 × 10−3 5.08 × 10−3 3.97 × 10−2 5.66 × 10−2

20 × 20 2.65 × 10−4 3.91 4.91 × 10−4 3.37 3.80 × 10−3 3.39 7.84 × 10−3 2.85

40 × 40 1.57 × 10−5 4.08 4.01 × 10−5 3.61 3.52 × 10−4 3.43 1.00 × 10−3 2.97

80 × 80 9.34 × 10−7 4.07 2.78 × 10−6 3.85 3.17 × 10−5 3.47 9.68 × 10−5 3.37

Table 6 Darcy flow: Convergence results for the Chevron and skewed grids (p = 3 MLS-FV scheme)

Grid Pressure Velocity

Chevron Skewed Chevron Skewed

Error Slope Error Slope Error Slope Error Slope

10 × 10 3.98 × 10−3 6.33 × 10−3 3.97 × 10−2 6.33 × 10−2

20 × 20 2.65 × 10−4 3.91 4.99 × 10−4 3.67 3.80 × 10−3 3.39 5.77 × 10−3 3.46

40 × 40 1.56 × 10−5 4.09 3.41 × 10−5 3.87 3.52 × 10−4 3.43 5.22 × 10−4 3.47

80 × 80 9.34 × 10−7 4.06 2.24 × 10−6 3.93 3.17 × 10−5 3.47 4.68 × 10−5 3.48

introducing excessive dissipation when applied to the higher
order derivatives. Actually, the third order scheme seems to
perform better than the fourth order one.

Selective limiting is then introduced. Thus, the deriva-
tives on cell I are only limited whenever the high-scale
component verifies |�| > 0.04|umax − umin|, where umax

(resp. umin) is the maximum (resp. minimum) value of the
sensed variable (density) within the cloud of cell I . Fig-

ure 21 presents the computed density profiles and location
of the limited cells (top), and the high-scale component of
the density (center) for the quadratic and cubic reconstruc-
tions. The response of the indicator � is interesting by it-
self. A comparison of the computed densities with limiters
everywhere and with selective limiting is also plotted (bot-
tom). The results are good, comparable only to those of high
order ENO/WENO schemes.
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Fig. 20 Shu-Osher problem, 400 cells, limiters active everywhere. Density profiles computed with the second (top left), third (top right) and
fourth (bottom left) order schemes. Detailed comparison (bottom right)

8.2 Inviscid Flow: Anisotropic Grids

In order to assess the ability of the MLS reconstruction to
handle meshes with strong anisotropies, a compression cor-
ner problem is solve on a highly stretched grid. The free
stream Mach number is M = 3. The problem is solved with
cubic reconstruction and anisotropic kernels, as exposed in
Sect. 5. The computational grid and pressure contours are

plotted in Fig. 22. The maximum aspect ratio of the cells
near the wall is about 2000.

8.3 Inviscid Flow: Airfoils

8.3.1 A Subsonic Test

The problem set up corresponds to a subsonic flow around
a NACA 0012 airfoil. The freestream Mach number is
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Fig. 21 Shu-Osher problem, 400 cells, multiresolution-based se-
lective limiting. Density profiles computed with the third and
fourth order schemes (top left and top right, respectively), high-

scale components of the density (center) and detailed compari-
son of the densities with and without selective limiting (bottom)
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Fig. 22 Highly stretched grids:
compression corner M = 3.
Computational mesh (left) and
pressure contours (right)

Fig. 23 Subsonic inviscid flow
around a NACA 0012 airfoil
(M = 0.63, α = 2.◦): close-up
view of the Mach number
contours obtained with linear
(A), quadratic (B) and cubic
(with 2 and 3 Gauss points per
edge, C and D) reconstructions

M = 0.63 and the angle of attack is α = 2◦. The computa-
tional grid is rather coarse (5322 cells). Given the poor mesh
resolution near the leading and trailing edges, the inherent
dissipation associated to each reconstruction becomes ap-
parent through the inspection of the Mach number isolines.

Figure 23 presents a close-up view of the Mach num-
ber isolines obtained by using linear (A), quadratic (B)
and cubic (C and D) reconstructions. The inviscid fluxes
have been integrated using one, two and either two (C) or
three (D) Gauss points per edge, for the linear, quadratic
and cubic reconstructions, respectively. The solution pro-
vided by the linear reconstruction clearly shows an anom-
alous pseudoviscous behaviour of the Mach number con-
tours near the surface. The entropy layer is dramatically
reduced by the increase of the order of the reconstruction.
Note that the grid was not modified near the airfoil for the
higher order schemes, and therefore straight edges are used

in the boundary cells. The maximum entropy production
reduces from �Smax = 0.03336 (linear reconstruction) to
�Smax = 0.00772 (cubic reconstruction), where S is given
by

S = ln

(
h

γ
γ−1

p

)
, h = γ

(
E − 1

2
(u2 + v2)

)
. (144)

8.3.2 Two Transonic Examples

A non-adapted finer grid (12243 cells) has been used to
solve two transonic test cases: I) M = 0.8, α = 1.25◦,
and II) M = 0.85, α = 1◦. Figures 24 and 25 show the
results for test cases I and II, respectively, using quadratic
reconstruction and either the BJ or the PC5 limiter: Mach
number isolines, pressure isolines and surface pressure co-
efficient Cp distribution. Both limiters provide sharp shock-
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Fig. 24 Inviscid flow around a NACA 0012 airfoil (M = 0.8,
α = 1.25◦): results obtained using quadratic reconstruction with
either the BJ limiter (A–C–E) or the PC5 limiter (B–D–F ). Mach

number contours (A–B), pressure contours (C–D) and surface pres-
surecoefficients Cp (E–F )
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Fig. 25 Inviscid flow around a NACA 0012 airfoil (M = 0.85, α = 1◦): results obtained using quadratic reconstruction with either the BJ limiter
(A–C–E) or the PC5 limiter (B–D–F). Mach number contours (A–B), pressure contours (C–D) and surface pressure coefficients Cp (E–F )
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Fig. 26 2D Darcy flow with highly anisotropic, homogeneous permeability (40 × 40 grid)

Fig. 27 2D Cahn-Hilliard
equation. Snapshots of the
solution at various time levels.
From left to right, and from top
to bottom: t = 0, t = 2 · 10−6,
t = 4 · 10−6, t = 8 · 10−6,
t = 1.6 · 10−5, t = 3.2 · 10−5,
t = 6.4 · 10−5, t = 1.28 · 10−4,
t = 2.56 · 10−4
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Fig. 28 Shock wave
impingement on a mixing layer
at t = 120. Fourth order results
on the 600 × 300 grid. Contours
of density (top), pressure
(center) and temperature
(bottom)

capturing (one interior cell) and clear slip lines, although the
PC5 limiter appears to be slightly more dissipative.

8.4 Complex Elliptic/Parabolic Problems

8.4.1 Darcy Flow with Highly Anisotropic Permeability

Consider again the Darcy flow model problem (142). Prac-
tical reservoir simulations pose a great challenge to any dis-
cretization method due to the fact that the coefficient tensor
K is in general highly variable and anisotropic. In particu-
lar, most existing schemes produce non-physical oscillations
in the presence of strongly anisotropic fields, which cannot
be eliminated by (reasonable) grid refinement. The search
for schemes with improved monotonicity properties consti-
tutes a very active area of research in the oil industry [1,
29, 44, 63, 64]. Given the nature of the equations, the au-
thors believed that the anomalous behaviour of many exist-
ing schemes in the presence of extreme anisotropy ratios was
due, at least in part, to their lack of accuracy in the computa-
tion of the interface fluxes (computation of gradients). This
section presents and example of the performance of the pro-
posed methodology for this kind of schemes, and somewhat
confirms the authors’ beliefs.

The problem is solved in [0,+1] × [0,+1]; the perme-
ability tensor K is such that its eigenvalues are a = 106 and
b = 1, and the first eigenvalue is rotated and angle α = π/4,
i.e.

K =
(

cos(α) sin(α)

− sin(α) cos(α)

)(
a 0
0 b

)(
cos(α) − sin(α)

sin(α) cos(α)

)
.

(145)

We impose Dirichlet boundary conditions in a certain area
around the corners (0,0 and (1,1), more precisely p(0, y) =
0 for y ≤ 0.25, p(x,0) = 0 for x ≤ 0.25, p(1, y) = 1 for
y ≥ 0.75 and p(x,1) = 1 for x ≥ 0.75. Otherwise, Neu-
mann boundary conditions (v · n = 0) are specified.

The results obtained in a grid of 40 × 40 cells are plotted
in Fig. 26. The solution is monotone and the sharp layers
are correctly captured by the scheme. We believe that the
correct behaviour of the method is due to the high quality of
the reconstructed gradients. This example also suggests that,
in some cases, we may be able, and should try to, tackle
our numerical problems by improving the accuracy of the
scheme, rather than by decreasing it (adding dissipation). In
other words, resolving, rather than “stabilizing”.

8.4.2 Cahn-Hilliard Equation

The model problem (130) presented in Sect. 6 is solved
using the proposed finite volume method [37]. The Cahn-
Hilliard equations have been solved using finite elements
[18, 19, 45–47, 61, 62], finite differences [50, 91] and, more
recently, discontinuous Galerkin methods [30, 104, 106].
We solve the second example in [104]. The simulation is
performed in [−0.5,+0.5] × [−0.5,+0.5], with a uniform
grid of 80 × 80 control volumes. The logarithmic poten-
tial (132) was used, with constants A = 3000, B = 9000,
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Fig. 29 Shock wave
impingement on a mixing layer
at t = 120. Fourth order results
on the 400 × 100 grid. Contours
of density (top), pressure
(center) and temperature
(bottom)

and γ = 1. The initial conditions are given by an average
concentration c = 0.63, with random perturbations between
−0.05 and +0.05. We use implicit time integration, with a
simple backward Euler scheme. The concentrations at dif-
ferent time levels are depicted in Fig. 27. The result agree
qualitatively with those reported in [104, 106].

8.5 Navier-Stokes Equations

8.5.1 Shock Wave Impingement on a Spatially Evolving
Mixing Layer

We reproduce the example presented in [108]. An oblique
shock impacts on a spatially developing mixing layer. The
flow is fully supersonic at the outflow, so no explicit outflow
boundary conditions are required. The problem domain is
the rectangle 0 ≤ x ≤ 200 and −20 ≤ y ≤ 20, with inflow
velocities specified as a hyperbolic tangent profile

u = 2.5 + 0.5 tanh (2y). (146)

Hence, the velocity of the upper stream is u1 = 3, whereas
the velocity of the lower stream is u2 = 2. The convective
Mach number, defined as u1−u2

c1+c2
, where c1 and c2 are the

free stream sound speeds, is equal to 0.6.
The shear layer is excited by adding a periodic fluctuation

to the vertical component of the velocity inflow, as

v′ =
2∑

k=1

ak cos

(
2πkt

T
+ φk

)
e(

−y2

b
), (147)

where b = 10 and T = λ
uc

, being uc = 2.68 is the convective

velocity, defined by uc = u1c2+u2c1
c1+c2 , and λ = 30 the wave-

length. For k = 1 we take a1 = 0.05 and φ1 = 0. For k = 2,
a2 = 0.05 and φ2 = π/2.

The reference density is taken as the average of the two
free streams and the reference pressure is given by:

pR = (ρ1 + ρ2) (u1 − u2)
2

2
. (148)

Under the assumption that both streams have equal stagna-
tion enthalpies, the local speed of sound reads

c2 = c1
2 + (γ − 1)

2

(
u1

2 − u2
2
)

. (149)

Equal pressure through the mixing layer is assumed. The
following values are used at the inflow (left boundary)

p0 = 0.3327, H0 = 5.211, μ0 = 5 × 10−4 (150)

whereas on the upper boundary we set

u = 2.9709, v = −0.1367,
(151)

ρ = 2.1101, p = 0.4754.

On the lower boundary, a slip wall condition was specified.
With this problem setup, an oblique shock originates from
the top left corner, impacting the shear layer around x = 90.
The shock wave reflects at the lower wall and passes back
through the deflected shear layer.

The problem was run using the fourth order scheme on
two grids of 400 × 100 and 600 × 300 cells. Figures 28 and
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29 show the contours of density (top), pressure (center) and
temperature (bottom) on the fine and coarse grids, respec-
tively. On both grids the fourth order scheme is capable of
capturing the fine scale features of the flow, such as the for-
mation of shocklets or the splitting in two of the vortex core
located at x = 148, caused by its interaction with the re-
flected shock wave.

9 Concluding Remarks

This paper explored the approximation power of Mov-
ing Least-Squares (MLS) approximations in the context of
higher order finite volume schemes on unstructured grids.
The scope of the application of MLS is threefold: 1) com-
putation of high order derivatives of the field variables for a
Godunov-type approach to hyperbolic problems or terms of
hyperbolic character, 2) direct reconstruction of the fluxes
at cell edges, for elliptic problems or terms of elliptic char-
acter, and 3) multiresolution shock detection and selective
limiting.

A major advantage of the proposed methodology over the
most popular existing higher order methods is related to the
viscous discretization. The use of MLS approximations al-
lows the direct reconstruction of high order viscous fluxes
using quite compact stencils, and without introducing new
degrees of freedom, which results in a significant reduction
in storage and workload.

The proposed selective limiting procedure, based on the
multiresolution properties of the MLS approximants, allows
to switch off the limiters on smooth regions of the flow, thus
reducing the excessive dissipation associated to the use of
limiters everywhere in the domain.

Accuracy tests show that the proposed method achieves
the expected convergence rates and is a competitive alter-
native to other existing schemes. Representative simulations
show that the methodology is applicable to problems of en-
gineering interest.
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