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Abstract

This paper explores the approximation power of Moving Least-Squares (MLS) approximations in the context of higher-order finite
volume schemes on unstructured grids. The scope of the application of MLS is threefold: (1) computation of high-order derivatives of the
field variables for a Godunov-type approach to hyperbolic problems or terms of hyperbolic character, (2) direct reconstruction of the
fluxes at cell edges, for elliptic problems or terms of elliptic character, and (3) multiresolution shock detection and selective limiting.
A major advantage of the proposed methodology over the most popular existing higher-order methods is related to the viscous discret-
ization. The use of MLS approximations allows the direct reconstruction of high-order viscous fluxes using quite compact stencils, and
without introducing new degrees of freedom, which results in a significant reduction in storage and workload. A selective limiting pro-
cedure is proposed, based on the multiresolution properties of the MLS approximants, which allows to switch off the limiters in smooth
regions of the flow. Accuracy tests show that the proposed method achieves the expected convergence rates. Representative simulations
show that the methodology is applicable to problems of engineering interest.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

This work is motivated by the question about whether
piecewise polynomial approximations are the best option
for the construction of higher-order Navier–Stokes solvers
on unstructured grids. By this we refer to schemes that,
either within the finite element framework (such as Discon-
tinuous Galerkin methods [1]), or through suitable cell sub-
divisions (such as the so-called Spectral Volume method
[2]), create new degrees of freedom inside each cell and
use them to construct piecewise polynomial interpolants.
The most important advantage of this kind of approaches
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doi:10.1016/j.cma.2007.06.003

* Corresponding author. Tel.: +34 981167000; fax: +34 981167170.
E-mail address: icolominas@udc.es (I. Colominas).
is that, under certain conditions, the high-order interpola-
tion/reconstruction can be formulated in a quite robust
and general setting (particularly in the case of DG). Painful
viscous discretizations, where additional degrees of free-
dom must be introduced and solved for, the necessarily
high-order grids required and, in the case of higher-order
DG, the absence of robust and accurate shock-capturing
techniques, are major drawbacks of this approach. By
accurate shock-capturing we mean shock resolutions com-
parable to typical second-order finite volume or residual
distribution schemes.

Of course, having the general approximation framework
of the finite element method makes DG the ‘‘safe’’ path,
and it is understandable that many authors may be will-
ing to pay the price of very high cost and ‘‘robustness
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uncertainty’’ in order to follow it. This study is aimed at
showing that, perhaps only for the more adventurous, there
may be other less safe, but maybe better, options.

Originally devised for data processing and surface gen-
eration [3], Moving Least-Squares (MLS) became very
popular within the meshfree community, being widely used,
both in Eulerian and Lagrangian formulations, in order to
provide spatial approximation. The characteristics of Mov-
ing Least-Squares and Reproducing Kernel methods have
been extensively analyzed, both from theoretical and
purely numerical approaches [4–8]. This class of approxi-
mation methods is particularly well suited for the recon-
struction of a given function and its successive derivatives
from scattered, pointwise data. This fact suggested the
incorporation of MLS approximants into finite volume
methods on unstructured grids [9], somewhat providing a
kind of ‘‘shape functions’’ for unstructured-grid finite vol-
ume solvers.

The scope of the application of MLS to develop higher-
order finite volume schemes, as we understand it, is three-
fold: (1) computation of high-order derivatives of the field
variables for a Godunov-type approach to hyperbolic prob-
lems or terms of hyperbolic character, (2) direct reconstruc-
tion of the fluxes at cell edges, for elliptic problems or terms
of elliptic character, and (3) multiresolution shock detection
and selective limiting.

Quite the opposite to most existing high-order finite vol-
ume schemes, our approach is ‘‘top-down’’. Firstly, instead
of adopting the cell-average framework, we work with
pointwise values of the conserved variables, associated to
the cell-centroids. Furthermore, our spatial representation,
which is provided by the MLS approximants, is continuous

and already high-order accurate. Note that the discretiza-
tion of elliptic problems is straightforward within this
framework. In order to deal with convection-dominated
problems, and to apply the usual finite volume technology
for hyperbolic terms, we break our continuous representa-
tion locally (inside each cell), by means of Taylor series
expansions. The resulting scheme has the flavour of a
Godunov-type method, but the accurate and clear discret-
ization of elliptic terms is a crucial advantage over most
existing approaches.

The strategy adopted for convection terms follows the
ideas of the generalized Godunov method [10–12], per-
forming piecewise polynomial reconstructions of the field
variables inside each cell, and subsequently using those
reconstructed variables as input data for a numerical flux
function [12–15]. In practice, the construction of very
high-order schemes of this kind has been severely limited
by the absence of robust approximation techniques, capa-
ble of providing accurate estimates of the successive deriv-
atives of the field variables on unstructured grids. Thus, the
concept of high-order scheme is most frequently used in the
literature in reference to formally second-order schemes
(piecewise linear reconstruction). We believe the use of
powerful approximation techniques like MLS may open
new perspectives for this kind of schemes.
As mentioned above, a major advantage of the proposed
methodology over the most popular existing higher-order
methods is related to the viscous discretization. The use
of MLS approximations allows the direct reconstruction
of high-order viscous fluxes using quite compact stencils,
and without introducing new degrees of freedom. This
approach is conceptually similar to the successful second-
order Multi-Point Flux Approximation (MPFA) methods
developed by the petroleum engineering community [18].

Even though well behaved limiters for second-order
schemes have been developed, the question for higher-
order reconstructions is far from being clear. Therefore,
selective shock-capturing is a critical issue in this context.
If the limiters are active over the whole domain, their del-
eterious effect on higher-order derivatives results into a
partial (or, quite frequently, complete) loss of the higher-
order accuracy of the reconstruction in smooth regions of
the flow, virtually taking the method back to second order.

A selective limiting procedure is proposed, based on the
multiresolution properties of the MLS approximants [19],
which allows to switch off the limiters in smooth regions
of the flow. Note that the concept of ‘‘smooth region’’ itself
is strongly related to the approximation being used, and
hence the convenience of an indicator that is of the same
order and nature as the approximants. In some sense, this
procedure can be regarded as an unstructured grid general-
ization of the wavelet-based selective filtering proposed by
Sjögreen and Yee for finite differences [20].

The outline of the paper is as follows. Section 2 presents
the model equations and basic numerical scheme. Section 3
is a brief introduction to Moving Least-Squares Reproduc-
ing Kernel approximation methods, which is completed
with some practical implementation issues presented in
Section 4. Accuracy tests and representative simulations
are exposed in Sections 5 and 6 and, finally, our main con-
clusions are drawn in Section 7.
2. Mathematical model and basic finite volume scheme

2.1. Governing equations

The compressible Navier–Stokes equations for two-
dimensional flow, written in cartesian coordinates and in
the absence of source terms, can be cast in conservative
form as

oU

ot
þ oðFx � FV

x Þ
ox

þ
oðFy � FV

y Þ
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¼ 0 ð1Þ
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Fig. 1. Cell-centered finite volume discretization.
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the conserved variables and inviscid fluxes, respectively,
and

FV
x ¼

0

sxx

sxy

usxx þ vsxy � qx

0BBB@
1CCCA; FV

y ¼

0

sxy

syy

usxy þ vsyy � qy

0BBB@
1CCCA
ð3Þ

the viscous fluxes. In the above expressions, q denotes den-
sity, p, pressure and v = (u,v) is the velocity vector. The
total energy and enthalpy are given by

qE ¼ qeþ 1

2
qv � v; H ¼ E þ p

q
; ð4Þ

where e is the specific internal energy. The viscous stresses
are modelled as

sxx ¼ 2l
ou
ox
� 2

3
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� �
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oy
� 2
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� �
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ð5Þ

where l is the viscosity. The heat fluxes are assumed to be
represented by Fourier’s law

qx ¼ �k
oT
ox
; qy ¼ �k

oT
oy
; ð6Þ

where T denotes temperature, k = cpl/Pr is the thermal
conductivity, cp the specific heat at constant temperature
(cp = 1003.5 for air) and Pr is the Prandtl number
(Pr = 0.72 for air). The equation of state and temperature
for an ideal gas can be written as

p ¼ ðc� 1Þ qE � 1

2
qv � v

� �
; T ¼ 1

cv

p
qðc� 1Þ ; ð7Þ

where cv is the specific heat at constant volume (cv = 716.5
for air) and c ¼ cp

cv
is the ratio of specific heats (c = 1.4 for

air). The speed of sound is given by

c ¼
ffiffiffiffiffiffiffiffiffiffi
cp=q

p
ð8Þ

and the dynamic viscosity l is assumed to be related to the
temperature according to Sutherland’s law

l ¼ l1
T þ S0

T1 þ S0

T
T1

� �1:5

; ð9Þ

where l1 and T1 denote freestream viscosity and temper-
ature, respectively, and S0 = 110.4K is an experimental
constant [21].

2.2. Basic finite volume formulation

The basic finite volume discretization stems from the
integral form of the conservation laws (1) over a control
volume XI (Fig. 1)
Z
XI

oU

ot
dXþ

Z
XI

oðFx � FV
x Þ

ox
þ

oðFy � FV
y Þ

oy

 !
dX ¼ 0:

ð10Þ

Using the divergence theorem, the above expression can be
written asZ

XI

oU

ot
dX ¼

Z
CI

ðFV �FÞ � ndC; ð11Þ

where n = (nx,ny) is the outward pointing unit normal to
the control volume boundary CI, and the definitions

F ¼ ðFx;FyÞ; FV ¼ ðFV
x ;F

V
y Þ ð12Þ

are used for the sake of a more compact presentation. The
idea behind the finite volume method is to discretize the
computational domain into a set of non-overlapping con-
trol volumes (cells), in which the conservation equations
are enforced. In this study a cell-centered approach with
quadrilateral control volumes was adopted (Fig. 1),
although the proposed methodology can be easily extended
to more general finite volume discretizations. From a spa-
tial point of view, and in principle, finite volume schemes
involve studying the evolution of cell-averaged values of
the field variables. Therefore, the underlying spatial repre-
sentation is that of a piecewise constant flow field. Stan-
dard high-order schemes are constructed through the
substitution of this piecewise constant representation for
a piecewise continuous (usually polynomial) reconstruction
of the flow variables inside each cell. In addition, and
due to the fact that the reconstructed fields are still discon-
tinuous across interfaces, special care must be paid to the
discretization of the viscous fluxes, which are functions of
the conserved variables, but also of their gradients.
According to this description, most existing high-order
finite volume schemes work within a cell-average setting,
and proceed ‘‘bottom-up’’.

Our approach is somewhat the opposite. Firstly, instead
of adopting the cell-average framework, we work with
pointwise values of the conserved variables, associated to
the cell-centroids. Furthermore, our spatial representation,



Fig. 2. Extrapolated variables used to evaluate the inviscid fluxes across
the interfaces of control volumes XI and fXJk ; k ¼ 1; 4g.
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which is provided by the MLS approximants, is continuous

and already high-order accurate. Note that the discretiza-
tion of elliptic problems is straightforward within this
framework. In order to deal with convection-dominated
problems, and to apply the usual finite volume technology
for hyperbolic terms, we break our continuous representa-
tion locally (inside each cell), by means of Taylor series
expansions. In this sense, we proceed ‘‘top-down’’. The
resulting scheme has the flavour of a Godunov-type
method, but the accurate and clear discretization of elliptic
terms is a crucial advantage of our scheme. More details of
the proposed formulation can be found in [22].

Adopting the numerical method of lines, focusing on a
control volume I, and assuming that suitable approxima-
tions to the inviscid and viscous fluxes are available at a
set of quadrature points at each edge, the semi-discrete ver-
sion of (11) reads

AI
dU I

dt
¼
XnedgeI

iedge¼1

XngauI

igau¼1

h
ðFV �FÞ � n

i
igau

Wigau; ð13Þ

where AI is the area of cell I, nedgeI the number of cell
edges, ngauI the number of Gauss quadrature points on
each edge, Wigau denotes a quadrature weight and UI

represents, either the average value of U over the cell I

(cell-average approach), or the pointwise value of U at
the centroid of the cell I. In this latter case, the presence
of AI instead of a consistent mass matrix assumes that a
mass-lumping has been performed.

It is critical in the development of robust high-order
schemes for the Navier–Stokes equations to acknowledge
the distinct nature of the inviscid and viscous fluxes. The
former is of hyperbolic character, whereas the later is of
elliptic character. It is widely accepted that the most pow-
erful schemes for hyperbolic problems are those that take
into account, in one way or another, the underlying wave
structure of the equations. In the finite volume context, this
can be achieved by using upwind numerical flux functions,
that take as input variables the states on either side of each
interface, and return a single numerical flux. First-order
schemes use the cell-average values of the variables on each
side of the interface as left and right states, whereas higher-
order schemes use reconstructed ones, obtained from a
certain extrapolation procedure. These ideas are in the
basis of the generalized Godunov scheme [10–12], whose
implementation involves three major steps in the explicit
case:

• Development of piecewise continuous (usually polyno-
mial) reconstructions of the flow variables inside each
control volume, using either cell-averaged or pointwise
information from neighbour cells. In our case, we use
the point values of the variables at the cell centroids.
The resulting spatial representation is still discontinuous
across interfaces. The presence of discontinuities or
steep gradients in the solution may require the use of
some limiting strategy.
• Evaluation of fluxes at cell edges. The extrapolated left
(+) and right (�) states at each edge integration point
are used as input data for an approximate Riemann sol-
ver (Fig. 2).

• Solution advancement, using appropriate time stepping
algorithms.

Viscous terms pose a major problem for methods that
use piecewise polynomial approximations. Second-order
schemes often use the average of the derivatives of the flow
variables on either side of the interface to compute the vis-
cous fluxes. Unfortunately, higher-order discretizations of
elliptic equations or viscous terms cannot follow this path.
One alternative is to decompose the original second-order
system into a first-order one, with the consequent introduc-
tion of additional degrees of freedom. Another option, and
the one that will be adopted in this study, is to perform a
reconstruction of the viscous fluxes using information from
neighbouring cells. This approach is sometimes thought to
require large stencils, therefore being less efficient in prac-
tice. It is one of the objectives of this study to show that,
with the reconstruction technique proposed, very competi-
tive and efficient schemes for elliptic problems can be
devised via multi-point reconstruction.

3. Moving Least-Squares Reproducing Kernel
approximations

3.1. General formulation

Consider a function u(x) defined in a domain X. MLS
approximate u(x), at a given point x, through a weighted
least-squares fitting of u(x) in a neighbourhood of x, as

uðxÞ � ûðxÞ ¼
Xm

i¼1

piðxÞaiðzÞjz¼x ¼ pTðxÞaðzÞjz¼x: ð14Þ

Note that ûðxÞ is not a polynomial, in general. In the above
expression, pT(x) is an m-dimensional basis of functions
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(usually polynomials) and a(z)jz=x is a set of parameters to
be determined, and such that they minimize the following
error functional:

JðaðzÞjz¼xÞ ¼
Z

y2Xx

W ðz� y; hÞjz¼x½uðyÞ

� pTðyÞaðzÞjz¼x�
2 dXx ð15Þ

being W(z � y,h)jz=x a kernel (also weighting, smoothing
or window function) with compact support (denoted by
Xx) centered at z = x. The parameter h, usually called
smoothing length or dilatation parameter in the meshfree lit-
erature, is a certain characteristic measure of the size of the
support Xx (e.g. kernels with circular supports of radius
2h). Splines are the most frequent kernels, in particular
the cubic spline used in this study

W ðx� y; hÞ ¼
1� 3

2
s2 þ 3

4
s3 s 6 1;

1
4
ð2� sÞ3 1 < s 6 2;

0 s > 2;

8><>: ð16Þ

where s ¼ jx�yj
h . In practice, the minimization of (15) pro-

vides a means to approximate or reconstruct u(x), at any
point x 2 X, from its pointwise value at a number of scat-
tered locations in X, which are often called particles or
nodes.

The integral in (15) is evaluated using nodal integration
and, given the compact support of the kernel, only those
nodes inside Xx are involved as quadrature points. After
some algebra, the set of parameters a that minimize the
functional J are obtained as

aðzÞjz¼x ¼M�1ðxÞPXx WV ðxÞuXx ; ð17Þ

where the vector uXx contains the pointwise values of the
function to be reproduced, u(x), at the nx particles inside
Xx (Fig. 3)

uXx ¼ ð uðx1Þ uðx2Þ � � � uðxnx
Þ ÞT: ð18Þ

The moment matrix, M, which is an (m · m) matrix, is
given by MðxÞ ¼ PXx

WVðxÞPT
Xx

, and the matrices PXx
and
Fig. 3. Meshfree approximation: general scheme. Support for reconstruc-
tion at P.
WV(x), whose dimensions are, respectively, (m · nx) and
(nx · nx), can be obtained as

PXx ¼ ð pðx1Þ pðx2Þ � � � pðxnx
ÞÞ; ð19Þ

WVðxÞ ¼ diagfW iðx� xiÞV ig; i ¼ 1; . . . ; nx: ð20Þ

Complete details can be found in [4,5]. In the above equa-
tions, Vi and xi denote, respectively, the tributary volume
(used as quadrature weight) and coordinates associated
to node i. Note that the tributary volumes of the neigh-
bouring nodes are included in matrix WV, obtaining an
MLS version of the Reproducing Kernel Particle Method
[4]. Otherwise, we can use W instead of WV

WðxÞ ¼ diagfW iðx� xiÞg; i ¼ 1; . . . ; nx; ð21Þ

which corresponds to the classical MLS approximation (in
the nodal integration of the functional (15), the same quad-
rature weight is associated to all nodes). Introducing (17) in
(14), the interpolation structure can be identified as

ûðxÞ ¼ pTðxÞM�1ðxÞPXx
WðxÞuXx

¼ NTðxÞuXx

¼
Xnx

j¼1

NjðxÞuj: ð22Þ

In analogy to finite elements, the approximation was writ-
ten in terms of the MLS ‘‘shape functions’’

NTðxÞ ¼ pTðxÞM�1ðxÞPXx WðxÞ; ð23Þ

where Nj(x) can be seen as the shape function associated to
particle j. The functional basis p(x) is strongly related to the
accuracy of the MLS fit. Theory and numerical evidence [7]
show that, for a pth order MLS fit (pth order complete
polynomial basis) and general, irregularly spaced points,
the nominal order of accuracy for the approximation of a
sth order gradient is roughly (p � s + 1). In general, any
linear combination of the functions included in the basis
is exactly reproduced by the MLS approximation.

In 2D, the p = 2 basis reads

pðxÞ ¼ ð 1 x1 x2 x1x2 x2
1 x2

2 Þ
T ð24Þ

and the p = 3 basis is given by

pðxÞ ¼ ð 1 x1 x2 x1x2 x2
1 x2

2 x2
1x2 x1x2

2 x3
1 x3

2 Þ
T
:

ð25Þ

In the above expression, (x1,x2) denotes the cartesian coor-
dinates of x. To improve the conditioning of the moment
matrix, it is most frequent to use scaled and locally defined
monomials in the basis. Thus, if the shape functions were
to be evaluated at a certain point xI, the basis would be
of the form p x�xI

h

� �
, instead of p(x). With this transforma-

tion, the MLS shape functions read

NTðxIÞ ¼ pTð0ÞCðxIÞ ¼ pTð0ÞM�1ðxIÞPXxI
WðxIÞ; ð26Þ

where C(x) was defined as

CðxÞ ¼M�1ðxÞPXx WðxÞ: ð27Þ
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The approximate derivatives of u(x) can be expressed in
terms of the derivatives of the MLS shape functions, which
are functions of the derivatives of the polynomial basis
p x�xI

h

� �
and the derivatives of C(x) [9,23,24].

The first-order derivatives of the shape functions are
computed in this study as full MLS derivatives, whereas
second and third-order derivatives are approximated by
the diffuse ones. In the diffuse approach, the successive
derivatives of C(x) are neglected. Note that the diffuse
derivatives of the shape functions are readily obtained once
the matrix C(x) is computed. Although this approach
greatly simplifies the presentation and implementation of
the MLS approximants, problems with rough grids may
require the use of full derivatives.

More details of the MLS procedure used in this paper
can be found in [9,23].

3.2. Computational aspects

The MLS shape functions are data independent and,
therefore, for fixed grids they need to be computed only

once at the preprocessing phase. Note again that the recon-
structed function is not a polynomial, even in the case when
the basis of functions comprises only polynomials.

The evaluation of the shape functions at a given point
involves a series of matrix operations, the most expensive
of them being the inversion of the moment matrix M.
The size of this matrix is m · m, where m is the dimension
of the basis p(x). Note that the size of M does not depend
on the number of neighbours in the cloud of the evaluation
point.

In order to prevent the matrix M from being singular or
ill-conditioned, the cloud of neighbours should fulfill cer-
tain ‘‘good neighbourhood’’ requirements. Thus, if the
number of neighbours is less than m (the number of func-
tions in the basis), M becomes singular. Nevertheless, the
approximation could be poor if M is severely ill-condi-
tioned, so it is convenient to use a number of neighbours
slightly above the minimum, and with the information com-
ing from as many directions as possible. For rough grids it
may be necessary to use anisotropic kernels [22]. The defini-
tion of the cloud (the MLS stencil) for each evaluation point
is an important issue that will be addressed in Sections 4.2
and 4.3. The selection process must be suitable for general
unstructured grids, and the stencil should be as compact
as possible for the sake of computational efficiency and
physical meaning.

Once the cloud of neighbour centroids has been deter-
mined, the smoothing length h for isotropic kernels (radial
weighting) is set to be proportional to the maximum dis-
tance between the evaluation point xI and its neighbours,
as

h ¼ k maxðkxj � xIkÞ: ð28Þ

Values of k around 0.6–0.7 seem to be adequate (recall
that, using radial weighting, the support of the kernel ex-
pands over a circle of radius 2h).
3.3. Moving-Least Squares vs. piecewise polynomial

interpolation

Most existing higher-order schemes are based on piece-
wise polynomial approximations, which are obtained either
within the finite element framework (consider the Discon-
tinuous Galerkin method [1]), or using some suitable form
of cell subdivision (such as the so-called Spectral Volume
method [2]). Following this approach, higher-order accu-
racy is achieved by creating new degrees of freedom inside
each cell, which are used to construct an interpolating poly-
nomial. This piecewise polynomial interpolation is discon-
tinuous across element interfaces, a feature that is quite
convenient in terms of the stability and compactness of
the scheme for hyperbolic problems, but also quite inconve-
nient in terms of the efficiency of the scheme for equations
and terms of elliptic character. The way Moving-Least
Squares approximations work is rather different, and this
section is aimed at shedding some light on its advantages
and shortcomings.

Even though the MLS approximants will be later used in
a ‘‘moving’’ (centered) sense, Figs. 4 and 5 present some
examples of MLS shape functions computed in an ‘‘ele-
ment’’ sense. By this we mean that, in order to compute
the set of p-complete MLS shape functions associated to
N points on [�1,+1], the cloud for each point comprises
all the N points, instead of using compact supports. This
may be useful to give a flavour of the structure of the shape
functions, and to have a first comparison to the Lagrange
basis.

Fig. 4 presents the computed shape functions for p = 5,
N = 9 (bottom left), and p = 10, N = 15 (bottom right).
The MLS points are uniformly spaced. The Lagrange basis
for p = 5 and p = 10, computed with uniform nodes, are
also plotted (top left and top right, respectively). For
p = 10, it is clear that non-uniform nodes should be used
for the Lagrange basis, and the same is true for MLS,
although the MLS basis is slightly better behaved. Note
that the MLS shape functions do not bear the Kronecker
delta property. The smoothing length is h = 0.6dmax, where
dmax is the maximum of the distances between the evalua-
tion point and its neighbours. Fig. 5 gives some insight into
the effect over the shape functions of changes in the number
of points in the cloud N, or in the point distribution. Thus,
the shape functions present a better behaviour when more
points are added to the cloud (top right). Good non-uni-
form point distributions have the same effect as in the
Lagrange basis (bottom left). Finally, a set of basis func-
tions for irregularly spaced points is presented (bottom
right).

This is not, however, the way Moving Least-Squares are
usually employed. They are better defined as a ‘‘centered’’
approximation, without reference to an underlying element
or patch structure. Thus, the interpolation is based on a
‘‘nearest neighbours’’ or stencil structure, which is local

and centered at the evaluation point (the stencil moves to
the evaluation point). We believe this feature has some



Fig. 4. MLS shape functions for p = 5, N = 9 (bottom left), and p = 10, N = 15 (bottom right). Lagrange basis for p = 5 (top left) and p = 10 (top right).
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advantages over piecewise polynomial interpolation. The
first one is that, for the same order, higher accuracy can
be achieved even with irregular point distributions.
Another one is that the interpolation is continuous across
interfaces, which will allow the direct computation of
high-order viscous fluxes in a multi-point fashion.

Figs. 6 and 7 present the errors in the interpolation of
u = sin(2px) in the domain [0, +1]. The function value is
interpolated at 800 points for plotting, using 40 point values
for MLS. Several values of p and N will be discussed, and the
smoothing length is defined as before. The function is also
interpolated using piecewise polynomials, with a number
of elements such that the grid resolution h/p is the same as
that of the MLS point distribution, and with the nodes
placed at the Gauss–Lobatto points. Fig. 6 plots the error
distribution for p = 4 and p = 8. The MLS points are evenly
spaced. When the minimum number of neighbours, p + 1, is
used (top left and bottom left, respectively), the accuracy of
MLS for interior nodes is significantly higher than that of
the piecewise polynomial interpolation. Furthermore, note
that the difference increases with the approximation order.
Note that in Fig. 7 the solutions were computed using ran-
dom points (MLS), and the optimal Gauss–Lobatto node
distribution (piecewise polynomial), respectively. For
redundant point clouds, N > p + 1 (Fig. 6, top right and bot-
tom right), the piecewise polynomial interpolation is more
accurate, although the differences for interior points are
small. We must point out that generating good non-uniform
nodal distributions for high-order piecewise polynomial
interpolants is straightforward in 1D (the Gauss–Lobatto
points are optimal), but the multidimensional case is far
from being so, particularly in the case of methods that use
cell subdivisions on triangles.

One of the main shortcomings of MLS approximants is
also apparent from Figs. 6 and 7. For p = 8, the interpola-
tion errors near the boundaries of the global domain are
about an order of magnitude higher than those inside the
domain. This is associated to the one-sided MLS approxi-
mation, and is more and more pronounced as p is
increased. We must point out that suboptimal node distri-
butions for piecewise polynomial interpolations would
have the same effect, but in this case on all cells, not just
near the domain boundaries as MLS. We believe that this
effect is less important for most practical values of p
(maybe up to p = 5), and that it can be alleviated by the
use of ghost points and special boundary kernels.



Fig. 5. MLS shape functions for p = 10: N = 15 uniform points (top left), N = 19 uniform points (top right), N = 15 Gauss–Lobatto points (bottom left)
and N = 15 random points (bottom right).
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Another potential weakness of MLS is the conditioning
of the moment matrix, either due to the cloud structure
(highly anisotropic grids), or to very high values of p. In
multidimensions the definition of the stencil is probably a
more stringent limitation to stay in p’s up to 4 or 5 in
2D/3D, which, on the other hand, is enough for most prac-
tical applications. The use of anisotropic kernels that adapt
to the point distribution helps providing robustness in gen-
eral grids, but the question is far from being resolved.

3.4. Multiple scale analysis and shock detection

One of the most interesting features of the MLS approx-
imation stems from its natural connection to wavelets and
their intrinsic property of multiresolution analysis (see [19]
and references therein). Consider a function u(x), and
define two sets of MLS shape functions, Nh(x) and
N2h(x), computed using two different values of the smooth-
ing length, h and 2h, which respectively define h-scale and
2h-scale approximations of the form

uhðxÞ ¼
Xn

j¼1

ujNh
j ðxÞ; u2hðxÞ ¼

Xn

j¼1

ujN 2h
j ðxÞ: ð29Þ
A set of wavelet functions is obtained as

U2hðxÞ ¼ NhðxÞ �N2hðxÞ; ð30Þ

which allow the h-scale solution to be expressed as the sum
of its low-scale and high-scale complementary parts, as

uhðxÞ ¼ u2hðxÞ þW2hðxÞ; ð31Þ

where

W2hðxÞ ¼
Xn

j¼1

ujU
2h
j ðxÞ ¼

Xn

j¼1

ujðN h
j ðxÞ � N 2h

j ðxÞÞ: ð32Þ

The low-scale u2h(x) can be further decomposed using the
same rationale. Fig. 8 presents a function u(x), taken from
a typical gas dynamics problem, and its corresponding
high-scale component W2h, obtained using several values
of p. Clearly, W2h is a sensitive and powerful indicator of
the smoothness of u(x), that can be used as a shock detec-
tor or error sensor for adaptive and multiresolution algo-
rithms. In this latter context, it is interesting that W2h is a
‘‘single grid’’ detector, that it is naturally suited for unstruc-
tured meshes, and that, for smooth functions, it converges



Fig. 6. Error distributions with MLS and piecewise polynomial interpolations, u(x) = sin(2px). Top, p = 4, MLS with N = 5 (left) and N = 7 (right), 40
uniform points, Lagrange polynomials, 10 elements with Gauss–Lobatto nodes. Bottom, p = 8, MLS with N = 9 (left) and N = 7 (right), 40 uniform
points, Lagrange polynomials, 5 elements with Gauss–Lobatto nodes.

Fig. 7. Error distributions with MLS and piecewise polynomial interpolations, u(x) = sin(2px). Left, p = 4, MLS with N = 5, 40 random points, Lagrange
polynomials, 10 elements with Gauss–Lobatto nodes. Right, p = 8, MLS with N = 9, 40 random points, Lagrange polynomials, 5 elements with Gauss–
Lobatto nodes.
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to zero with the same order as uh does, p + 1 (it is identi-
cally zero for polynomials of degree equal or less than p).

We believe that this multiresolution smoothness indica-
tor, and its straightforward incorporation into a code that
already uses MLS approximations (one only needs to com-
pute another set of shape functions, but with 2h instead of
h), is a very attractive feature of the proposed methodol-
ogy. Even though well behaved limiters for second-order
schemes have been developed, the question for higher-
order reconstructions is far from being clear. Therefore,
selective shock-capturing is a critical issue for higher-order
schemes. If the limiters are active over the whole domain,
their effect on higher-order derivatives results into a partial
(or, quite frequently, complete) loss of the higher-order
accuracy of the reconstruction in smooth regions of the
flow, virtually taking the method back to second order.

As it is shown in one of the simulations in Section 6, the
limiters can be switched off in those areas where W2h is
lower than a certain threshold, therefore retaining the
whole accuracy of the scheme in smooth regions. Note that



Fig. 8. Multiscale analysis: u(x) (top left), and its high-scale component W2h, using p = 1, N = 3 (top right), p = 3, N = 6 (bottom left), and p = 6, N = 9
(bottom right).
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the concept of ‘‘smooth region’’ itself is strongly related to
the approximation being used, and hence the convenience
of an indicator that is of the same order and nature as
the approximants. In some sense, this procedure can be
regarded as an unstructured grid generalization of the
wavelet-based selective filtering proposed by Sjögreen and
Yee for finite differences [20].

3.5. Moving Least-Squares, finite volume solvers,

unstructured grids

This paper proposes the use of MLS approximations to
construct high-order finite volume schemes on unstruc-
tured grids, and its scope is threefold:

• Moving Least-Squares approximants provide a general
(continuous) approximation framework. For elliptic
problems, or terms of elliptic character, this allows a
straightforward, direct reconstruction of the fluxes at
the interfaces. This procedure yields a single-valued,
centered and high-order flux approximation at each
edge quadrature point. For example, the viscous
Navier–Stokes fluxes require the reconstruction of the
conserved variables and their gradients at each quadra-
ture point. We find connections between this approach
and the successful second-order Multi-Point Flux
Approximation (MPFA) methods developed by the
petroleum engineering community (see [18] for an
introduction).

• For hyperbolic problems, or terms of hyperbolic charac-
ter, the generalized Godunov method [10,11,16] is
adopted. We use ‘‘broken’’ piecewise polynomial recon-
structions based on the MLS general approximation and
Taylor series expansions. The successive derivatives of
the flow variables at the cell centroids are computed
using MLS approximations. Therefore, rather than cre-
ating new degrees of freedom inside each cell, we use
information from neighbouring cells, in a centered (mov-

ing) fashion.
• The MLS-based multiresolution indicator provides a

reliable shock-detection tool for the selective limiting
of higher-order discretizations.
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4. Practical implementation aspects

4.1. Overview

The following sections elaborate on the practical imple-
mentation of the proposed methodology. Conceptually,
two aspects of the process should be distinguished:

• How the MLS shape functions and their derivatives are
computed; in particular, the choice of the cloud of
neighbours for each evaluation point (centroids or edge
quadrature points). We call these clouds the stencil of
the MLS approximation. This choice ultimately deter-
mines the full stencil of the finite volume method.

• How the MLS shape functions and their derivatives are
used to (1) construct high-order reconstructions for a
Godunov-type scheme for hyperbolic problems and to
(2) directly reconstruct the ‘‘viscous’’ fluxes at the edges,
thus obtaining a multipoint-like high-order scheme for
elliptic problems.

Sections 4.2 and 4.3 present the MLS stencils used in this
study for the cubic basis (p = 3).

4.2. p = 3 MLS stencils: I. Centroids

Fig. 9 presents the stencil used to compute the p = 3
MLS shape functions at the cell centroids. For and interior
cell I, the stencil comprises its first and second neighbours
(by neighbours we mean cells that share an edge). This
gives a 13-point stencil. For boundary cells the stencil com-
prises those cells that share a vertex with the cell and their
first neighbours. A stronger enforcement of the boundary
conditions was achieved through the introduction of a set
of ‘‘zero area’’ cells attached to the boundary (an approach
analogous to the use of so-called ghost cells [15]). Note that
the centroids of these boundary cells, i.e. the midpoints of
those edges lying on the boundary, have been included in
the above stencils. During the simulation, the variables at
these locations will be either extrapolated or assigned a cer-
tain value, depending on the type of boundary condition to
be enforced.
Fig. 9. p = 3, MLS s
4.3. p = 3 MLS stencils: II. Edges

Fig. 10 presents the stencil to compute the p = 3 MLS
shape functions at the edge quadrature points. Given a
quadrature point lying in the interface between cells A

and B, its stencil comprises those cells sharing the extre-
mum vertices of the edge, and their first neighbours. If both
vertices are shared by 4 cells, this is a 16-point stencil. For
boundary cells we also include the neighbours of the edge
opposite to the boundary, and the corresponding ghost
cells.

4.4. Comments on the full stencil of the finite volume scheme

The ‘‘inviscid’’ stencil of a cell I is obtained as the union
of its MLS stencil, and the MLS stencils of its first neigh-
bours. Fig. 11(left) depicts the p = 3 inviscid stencil for
interior cells, which comprises 25 cells. This stencil can be
used to construct a fourth-order scheme for the Euler
equations.

Analogously, the stencil of the ‘‘viscous’’ discretization
is obtained as the union of the MLS stencils associated to
all the edges of cell I. Fig. 11(right) depicts the p = 3 vis-
cous stencil for interior cells, which comprises 21 cells. This
is the stencil of a fourth-order scheme for elliptic problems.
The full stencil for Navier–Stokes computations coincides
with the inviscid one, as the latter includes the viscous sten-
cil as a subset. Note that, quite the opposite to what is usu-
ally thought about finite volume schemes, this stencil is
actually quite compact. A comparison with DG in terms
of accuracy for the same grid resolution, storage and com-
pactness is presented in [22].

4.5. Specific techniques for hyperbolic terms: ‘‘broken’’

reconstruction and limiting

Reconstruction is usually addressed in finite volume
schemes as a bottom-up process, by substituting the piece-
wise constant representation of the basic first-order scheme
by a piecewise polynomial reconstruction of the field vari-
ables inside each control volume. In practice, the develop-
ment of very high-order schemes of this kind has been
tencil: centroids.



Fig. 10. p = 3, MLS stencil: quadrature points on edges.

Fig. 11. Fourth-order MLS-FV stencil: Euler and Navier–Stokes (left) and elliptic problems (right).
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severely limited by the absence of robust approximation
techniques, capable of computing accurate estimates of
the successive derivatives of the field variables in the con-
text of unstructured grids [16,17]. Thus, the concept
‘‘high-order scheme’’ is most frequently used in the litera-
ture in reference to formally second-order schemes (piece-
wise linear reconstruction).

In contrast, our approach is top-down, as we define a
general continuous approximation framework provided
by the Moving Least-Squares approximants, and then
compute local discontinuous approximations, which are
broken high-order approximations to the underlying con-
tinuous solution, to be used in the context of a Godu-
nov-type scheme. In this study, reconstructions of up to
fourth-order (cubic) have been tested, although schemes
of up to sixth order are expected to be practical in the near
future.

The linear component-wise reconstruction of the vari-
ables inside cell I reads

UðxÞ ¼ UI þ $UI � ðx� xIÞ; ð33Þ

where UI stands for the centroid value, xI denotes spatial
coordinates of the centroid of the cell and $U I is a cell-cen-
tered gradient. This gradient is assumed to be constant on
each cell and, therefore, the reconstructed variables are dis-
continuous across interfaces.
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Analogously, the quadratic reconstruction reads

UðxÞ ¼ UI þ $UI � ðx� xIÞ þ
1

2
ðx� xIÞTH Iðx� xIÞ;

ð34Þ

where HI is the centroid hessian matrix. Finally, the cubic
reconstruction can be written as

UðxÞ ¼ UI þ $UI � ðx� xIÞ þ
1

2
ðx� xIÞTH Iðx� xIÞ

þ 1

6
D2xT

I T Iðx� xIÞ; ð35Þ

where

D2xT
I ¼ ð ðx� xIÞ2 ðy � yIÞ

2 Þ; T I ¼
o3UI
ox3 3 o3UI

ox2 oy

3 o3UI
ox oy2

o3UI
oy3

0@ 1A:
ð36Þ

For unsteady problems, additional terms must be intro-
duced in (34) and (35) to enforce conservation of the mean,
i.e.

1

AI

Z
x2XI

UðxÞdX ¼ UI : ð37Þ

The derivatives of the field variables are directly computed
at centroids using MLS. Thus, the approximate gradients
read

$U I ¼
XnxI

j¼1

U j$NjðxIÞ; ð38Þ

where the Uj’s stand for variables at the nxI ‘‘neighbour’’ (in
the sense of the MLS stencil) centroids. The second-order
derivatives read

o2U I

ox2
¼
XnxI

j¼1

U j
o2NjðxIÞ

ox2
;

o2UI

oxoy
¼
XnxI

j¼1

Uj
o2N jðxIÞ

oxoy
;

o
2U I

oy2
¼
XnxI

j¼1

U j
o

2NjðxIÞ
oy2

: ð39Þ

Finally, the third-order derivatives are written as

o3UI

ox3
¼
XnxI

j¼1

Uj
o3N jðxIÞ

ox3
;

o3U I

ox2 oy
¼
XnxI

j¼1

Uj
o3N jðxIÞ
ox2 oy

;

o3U I

oxoy2
¼
XnxI

j¼1

U j
o3NjðxIÞ
oxoy2

;
o3UI

oy3
¼
XnxI

j¼1

Uj
o3N jðxIÞ

oy3
:

ð40Þ

In this study, the first-order derivatives were computed as
full MLS derivatives, whereas the second and third-order
derivatives are approximated by the diffuse ones.

In the presence of shocks, some limiting procedure is
applied to the above derivatives. The choice of adequate
multidimensional limiters is critical in order to achieve
accurate and non-oscillatory shock-capturing algorithms.
4.5.1. Limiters: I. Monotonicity enforcement

Barth and Jespersen [12] have proposed an extension of
Van Leer’s scheme [25] which is suitable for unstructured
grids. The basic idea is to enforce ‘‘monotonicity’’ in the
reconstructed solution. In this context, monotonicity
implies that no new extrema are created by the reconstruc-
tion process [12]. The enforcement is local, in the sense that
only certain neighbour cells are considered for the ‘‘no new
extrema’’ criterion.

Recall the piecewise linear reconstruction U(x)I of a var-
iable U inside a certain cell I

UðxÞI ¼ UI þ $U I � ðx� xIÞ ð41Þ

and consider a limited version of this reconstruction, as

UðxÞI ¼ UI þ UI$UI � ðx� xIÞ; ð42Þ

where UI is a slope limiter (0 6 UI 6 1) such that the recon-
struction (42) satisfies

Umin
6 UðxÞI 6 Umax ð43Þ

being

Umin ¼ min
j2AI

ðU jÞ; Umax ¼ max
j2AI

ðU jÞ; ð44Þ

where AI is the set of ‘‘neighbour’’ cells. In practice, the
restriction (43) is only enforced at the quadrature points
on the edges of cell I; thus, for each quadrature point q,
its associated slope limiter Uq

I is computed in terms of the
unlimited extrapolated value U q

I , as

Uq
I ¼

min 1; Umax�UI
Uq

I�UI

� �
Uq

I � U I > 0;

min 1; Umin�UI
Uq

I�UI

� �
Uq

I � U I < 0;

1 Uq
I � U I ¼ 0

8>>><>>>: ð45Þ

and, finally,

UI ¼ min
q
ðUq

I Þ: ð46Þ

In the case of the quadratic reconstruction (34), a similar
limiting strategy is adopted

UðxÞ ¼ U I þ UI $UI � ðx� xIÞ þ
1

2
ðx� xIÞTH Iðx� xIÞ

� �
;

ð47Þ

where the limiter UI is obtained following the same proce-
dure exposed above for the linear case. An analogous
expression can be used for the cubic reconstruction.

In this study the neighbourhood to determine the
extrema Umin and Umax comprises the reconstruction cell
I and its first-order neighbours (Fig. 12A). In the following,
the above limiter will be referred to as ‘‘BJ limiter’’.
4.5.2. Limiters: II. Averaged derivatives
This section presents a general strategy to obtain limited

gradients and hessian matrices. Thus, the limited gradient



Fig. 12. Neighbourhoods for the limiting of the reconstruction inside cell I.
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associated to a certain cell I, $UI is obtained as a weighted
average of a series of representative gradients, as

$U I ¼
XN

k¼1

xk$U k; ð48Þ

where f$U k; k ¼ 1; . . . ;Ng is a set of unlimited gradients,
used as a basis to construct the limited one. In an approach
similar to that exposed in [15], the weights {xk,
k = 1, . . . ,N} are given by

xkðg1; g2; . . . ; gNÞ ¼
QN

i6¼kgi þ �N�1PN
j¼1

QN
i6¼jgi

� �
þ N�N�1

; k ¼ 1; . . . ;N ;

ð49Þ

where {gi, i = 1, . . . ,N} are functions of the unlimited gra-
dients (in this study, gi ¼ k$Uik2) and � is a small number,
introduced to avoid division by zero. The hessian matrices
will also be limited following these ideas but, in this case,
the functions gi read

gi ¼
o2U i

ox2

� �2

þ 2
o2Ui

oxoy

� �2

þ o2U i

oy2

� �2

; i ¼ 1; . . . ;N :

ð50Þ

Some existing limiters could be considered to be included in
this family. Van Rosendale [26] has proposed an extension
to three gradients of Van Albada’s limiter [27]. This limiter
was used on unstructured triangular grids and its general
structure is that of (48) with N = 3. The representative gra-
dients are evaluated at the three vertices of the cell. Jawa-
har and Kamath [15] proposed a limiter with N = 3, with
averaged gradients computed from the unlimited gradients
evaluated at the centroids of the adjacent cells on triangular
meshes. Furthermore, the denominators in (49) are slightly
different in this case.

For quadrilateral cells we propose a limiter based on
(48) and (49) with N = 5; i.e. the limited derivatives are
obtained as a weighted average of five unlimited deriva-
tives. Fig. 12 presents four suitable configurations to deter-
mine such representative derivatives. In this study only the
configuration given by 12A will be considered. In the fol-
lowing, the above limiter will be referred to as ‘‘PC5
limiter’’.
4.6. Numerical convective fluxes

The numerical inviscid fluxes in (13) are obtained using
Roe’s flux difference splitting [28]. For this purpose, left
(U+) and right (U�) states are defined on each face. The
numerical flux is then computed as

ðFx;FyÞ � n ¼
1

2
½ðFxðUþÞ;FyðUþÞÞ þ ðFxðU�Þ;FyðU�ÞÞ� � n

� 1

2

X3

k¼1

~akj~kkj~rk; ð51Þ
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where f~kk; k ¼ 1; 4g and f~rk; k ¼ 1; 4g are, respectively,
the eigenvalues and eigenvectors of the approximate jaco-

bian eJ ðUþ;U�Þ
~k1¼~v �n�~c; ~k2¼ ~k3¼~v �n; ~k4¼~v �nþ~c; ð52Þ

ð~r1~r2~r3~r4Þ¼

1 0 1 0

~u�~cnx �~cny ~u ~uþ~cnx

~v�~cny ~cnx ~v ~vþ~cnyeH �~c~v �n ~cð~vnx�~unyÞ 1
2
ð~u2þ~v2Þ eH þ~c~v �n

0BBBBB@

1CCCCCA
ð53Þ

and the corresponding wave strengths f~ak; k ¼ 1; 4g

~a1 ¼
1

2~c2
½DðpÞ � ~q~cðDðuÞnx þ DðvÞnyÞ�;

~a2 ¼
~q
~c
½DðvÞnx � DðuÞny �;

~a3 ¼ �
1

~c2
½DðpÞ � ~c2DðqÞ�;

~a4 ¼
1

2~c2
½DðpÞ þ ~q~cðDðuÞnx þ DðvÞnyÞ�;

ð54Þ

where D(Æ) = (Æ)� � (Æ)+, n = (nx,ny) is the outward pointing
unit normal to the interface, and the Roe-average values
~v ¼ ð~u;~vÞ and eH (computed using U+ and U�) are defined
as

~u ¼ uþ
ffiffiffiffiffiffi
qþ
p

þ u�
ffiffiffiffiffiffi
q�
pffiffiffiffiffiffi

qþ
p

þ ffiffiffiffiffiffi
q�
p ; ~v ¼ vþ

ffiffiffiffiffiffi
qþ
p

þ v�
ffiffiffiffiffiffi
q�
pffiffiffiffiffiffi

qþ
p

þ ffiffiffiffiffiffi
q�
p ;

eH ¼ Hþ
ffiffiffiffiffiffi
qþ
p

þ H�
ffiffiffiffiffiffi
q�
pffiffiffiffiffiffi

qþ
p

þ ffiffiffiffiffiffi
q�
p : ð55Þ

On the other hand, the average values ~q and ~c are com-
puted as

~q ¼
ffiffiffiffiffiffiffiffiffiffiffi
qþq�

p
; ~c2 ¼ ðc� 1Þ eH � 1

2
~u2 þ ~v2
� �	 


: ð56Þ
4.7. Viscous fluxes

As mentioned before, one of the major advantages of
the proposed method is that we use the MLS approximants
as a global (centered) reconstruction procedure to evaluate
the viscous fluxes at the quadrature points on the edges.
This procedure provides a single high-order flux and,
therefore, it is not necessary to create new degrees of free-
dom to compute the derivatives of the variables at the cell
edges.

Recall that the evaluation of the viscous stresses and
heat fluxes requires interpolating the velocity vector
v = (u,v), temperature T, and their corresponding gradi-
ents, $v and $T , at each quadrature point xiq. Using
MLS approximation, these entities are readily computed as

viq ¼
Xniq

j¼1

vjNjðxiqÞ; T iq ¼
Xniq

j¼1

T jN jðxiqÞ ð57Þ
and

$viq ¼
Xniq

j¼1

vj � $N jðxiqÞ; $T iq ¼
Xniq

j¼1

T j$N jðxiqÞ; ð58Þ

where niq is the number of neighbour centroids (in the sense
of the MLS stencil). Once the above information has been
interpolated, the diffusive fluxes can be computed, accord-
ing to (3).
4.8. Flux integration

One quadrature point (the midpoint) was used in the
case of linear reconstruction, whereas two and three Gauss
points were respectively used in the case of quadratic and
cubic reconstructions.
4.9. Time integration

We use the third-order TVD-Runge–Kutta algorithm
proposed by Shu and Osher [29]. Given the field variables
Un at the previous time step n, the algorithm proceeds in
three stages to obtain the updated field variables Un+1, as

U 1 ¼ Un þ DtLðU nÞ;

U 2 ¼ 3

4
U n þ 1

4
U 1 þ 1

4
DtLðU 1Þ;

Unþ1 ¼ 1

3
Un þ 2

3
U 2 þ 2

3
DtLðU 2Þ;

ð59Þ

where the operator L(Æ), which represents the time deriva-
tive given by (13), reads

LðUÞ ¼ 1

A

Xnedge

iedge¼1

Xngau

igau¼1

½ðFV �FÞ � n�igauWigau: ð60Þ
5. Accuracy tests

This section presents some convergence results of the
proposed finite volume method with Moving Least-
Squares approximations. The tests are intended to assess
the performance of the methodology with respect to two
distinct areas of its scope: high-order variable reconstruc-
tion for Godunov-type schemes, and high-order, multi-
point viscous flux evaluation.
5.1. Hyperbolic problems: Ringleb flow

Ringleb flow is an exact solution of the Euler equations,
obtained by means of the hodograph method [30]. The
problem is solved on the square [�1.15,�0.75] · [+0.15,
+0.55], imposing the exact value of the conserved variables
on the boundary. Linear, quadratic and cubic reconstruc-
tions are developed by means of MLS derivatives, as
exposed above. A refinement study was carried out using
a sequence of four nested grids, the coarsest of which is



Fig. 13. Coarse grid level and convergence results for Ringleb flow.
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showed in Fig. 13(top), along with the convergence curves,
which are broken down in Table 1.

All linear, quadratic and cubic reconstructions exhibit
the correct second, third and fourth-orders of convergence,
respectively, as expected. One, two, and three Gauss quad-
rature points per edge have been employed for the second,
third, and fourth-order schemes, respectively. In addition,
Fig. 13(bottom right) presents a comparison of the different
reconstructions with respect to accuracy vs. workload. The
cpu times are expressed in terms of time units per time step
of the Runge–Kutta integrator, and normalized with
Table 1
Fourth-order results

Grid Linear rec. Quadratic re

Work L2 error Slope Work

10 · 10 1.3 5.04 · 10�5 2.1
20 · 20 3.5 1.28 · 10�5 1.98 6.8
40 · 40 11 3.14 · 10�6 2.03 23
80 · 80 35 7.81 · 10�7 2.01 80.5
respect to the cpu time associated to a time step of the
first-order scheme (no reconstruction) on the 10 · 10 grid,
which is taken as the reference workload, Work = 1. The
benefits and efficiency of the higher-order reconstructions
are quite apparent. Comparing the second and fourth-
order reconstructions, for example, we see that, for the
same grid, the accuracy of the latter is about three orders
of magnitude higher than that of the former, with a cpu
increase of a factor of four. Moreover, most of the addi-
tional cpu time associated to the fourth-order scheme is
due to the use of three quadrature points per edge, and
c. Cubic rec.

L2 error Slope Work L2 error Slope

4.71 · 10�6 4 1.39 · 10�7

2.23 · 10�7 4.40 12.6 1.06 · 10�8 3.71
2.34 · 10�8 3.25 42.5 6.60 · 10�9 4.01
2.80 · 10�9 3.06 152 4.07 · 10�10 4.02
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therefore more flux evaluations, and not to the higher-
order reconstruction itself.

5.2. Viscous discretization. A first ‘‘worked’’ example: 1D

Poisson

This first ‘‘viscous’’ example is intended to provide a fla-
vour of the power of the proposed method for the numer-
ical solution of elliptic equations, and for viscous flux
evaluation as a particular application. The finite volume
discretization of the 1D boundary-value problem

d

dx
�j

du
dx

� �
¼ f ðxÞ; x 2 ½0; 1�; ð61Þ

uð0Þ ¼ 0; uð1Þ ¼ 0; ð62Þ

reads, for each control volume Xi

qiþ1=2 � qi�1=2 ¼
Z

Xi

f ðxÞdx; ð63Þ

where qi+1/2 (resp. qi�1/2) is the numerical flux evaluated at
the interface between control volumes i and i + 1 (resp. i

and i � 1), i.e. a suitable approximation to �jdu
dx

��
iþ1=2

(resp.

�jdu
dx

��
i�1=2

). Computing the gradients of the variables di-
rectly at the midpoints using MLS approximation, qi+1/2

and qi�1/2 can be expressed in a multi-point fashion, as

qiþ1=2 ¼ �j
XNþ
j¼1

uj
dN j

dx

����
iþ1=2

; qi�1=2 ¼ �j
XN�
j¼1

uj
dNj

dx

����
i�1=2

;

ð64Þ
where for the sake of simplicity, j was assumed to be con-
stant, and N+ (resp. N�) is the number of ‘‘neighbours’’ of
point i + 1/2 (resp. i � 1/2). Denoting by S+ (resp. S�) the
cloud associated to i + 1/2 (resp. i � 1/2), the stencil of the
finite volume method given by (63) is S+ ¨ S� (Fig. 14).
For centered clouds and N+ = N� = N, the stencil of an
Table 2
Convergence results for viscous discretizations: 1D Poisson equation

Cells MLS order (N = number of neighbours)

p = 3 (N = 6) p = 4 (N = 6)

Error Slope Error Slope

10 1.20 · 10�2 8.02 · 10�4

20 3.91 · 10�4 4.94 3.31 · 10�5 4.60
40 2.00 · 10�5 4.29 8.53 · 10�7 5.28
80 1.39 · 10�6 3.85 2.01 · 10�8 5.41

Fig. 14. Stencil for multi-point MLS
interior cell comprises N + 1 neighbours, since S+ and S�

overlap (Fig. 14).
With all the above in mind, the model problem (61) is

solved with j = 1 and f(x) = 4p2 sin(2px), which corre-
sponds to u(x) = sin(2px).

Note that only diffusive fluxes are present and, there-
fore, special attention must be paid to the proper enforce-
ment of the Dirichlet boundary conditions. To this end, a
ghost cell is placed at each boundary, x = 0 and x = 1.
These ghost cells are given the exact boundary value, and
included in the cloud generation process. This (somewhat
weak) enforcement of the Dirichlet boundary conditions
has proved to be very effective in the elliptic problems ana-
lyzed in this study.

The fully discrete equations constitute a linear system of
equations of the form

XNþ
j¼1

uj
dN j

dx

����
iþ1=2

�
XN�
j¼1

uj
dNj

dx

����
i�1=2

¼ 2pðcosð2pxiþ1=2Þ � cosð2pxi�1=2ÞÞ ð65Þ

for each control volume i. The coefficient matrix is straight-

forwardly assembled once the ‘‘cloud’’ derivatives
dNj

dx

���
iþ1=2

and
dNj

dx

���
i�1=2

are computed at the midpoints of each control

volume. The bandwith of this matrix is obviously N + 1
(see Fig. 14). Note that the cloud associated to each mid-
point is unique and, therefore, the numerical flux is also un-
ique at each midpoint, which yields a conservative scheme.
This feature of uniqueness of the computed flux is quite
convenient, in the sense that higher-order schemes can be
achieved without decomposing the original second-order
problem into a set of several first-order ones.

The convergence results for various MLS orders are pre-
sented in Table 2, in terms of the order of the polynomial
basis, p, and number of neighbours for each midpoint, N.
p = 5 (N = 8) p = 6 (N = 9)

Error Slope Error Slope

3.08 · 10�3 4.16 · 10�4

3.52 · 10�5 6.45 1.55 · 10�6 8.07
3.60 · 10�7 6.61 1.31 · 10�8 6.89
4.33 · 10�9 6.38 1.15 · 10�10 6.83

-based viscous flux computation.



Table 3
Convergence results for the 1D Poisson equation: tenth order scheme

Cells MLS order (N)

p = 9 (N = 12)

Error Slope

20 1.32 · 10�7

30 2.16 · 10�9 10.16
40 1.14 · 10�10 10.22
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The expected p + 1 convergence order is achieved in all
cases considered. Recall that, as mentioned before, the
stencil for interior cells is N + 1. As a final example, Table
3 presents the convergence results for p = 9. A tenth-order
scheme is realized, with a stencil of 13 and just one degree
of freedom per cell.
Fig. 16. 2D Darcy flow: convergence for the p = 3 MLS-FV scheme.
5.3. Viscous discretization: 2D Darcy flow

Consider the elliptic equation

$ � ð�K$pÞ ¼ f in X;

p ¼ pD on CD;

v � n ¼ h on CN ;

ð66Þ

which is a prototype for the pressure equation in porous
media flow, K is the permeability tensor and v ¼ �K$p is
the Darcy velocity. The problem (66) is solved in
[0,+1] · [0, 1+] using the p = 3 MLS-FV scheme, with
k11 = k22 = 1, k12 = k21 = 0, and a source term and bound-
ary conditions such that p = sin(2px)sin(2py). The exact
Dirichlet boundary condition is enforced on C. A refine-
ment study was carried out on a sequence of uniform
and random grids. The coarse random grid and first level
refinement are plotted in Fig. 15. The convergence results
are presented in Fig. 16 and Table 4. Orders 4 and 3.5 in
pressure and velocity, respectively, are realized for both
the uniform and irregular grids. Velocities seem to be
Fig. 15. Coarse random grid for 2D Darcy fl
slightly superconvergent in the gradient (3.5 instead of 3),
but this phenomenon requires further analysis.
6. Representative simulations

6.1. Selective limiting and the multiresolution detector

This 1D Euler example intends to provide some insight
into the behaviour of the limited higher-order reconstruc-
tions in the presence of shocks and smooth flow regions.
In addition, it serves as an example of the performance
of the multiresolution-based selective limiting procedure
exposed in Section 3.4. The Shu–Osher case [31] is solved
using 400 cells in [�5,+5], with initial conditions

ðqR; uR; pRÞ ¼ ð3:857; 2:629; 10; 333Þ;
ðqL; uL; pLÞ ¼ ð1þ 0:2 sinð5xÞ; 0; 1Þ:

ð67Þ
ow (left) and one level refinement (right).



Table 4
Convergence results for viscous discretizations: Darcy flow (p = 3 MLS-FV scheme)

Grid Pressure Velocity

Uniform Random Uniform Random

Error Slope Error Slope Error Slope Error Slope

10 · 10 3.98 · 10�3 5.08 · 10�3 4.73 · 10�2 5.66 · 10�2

20 · 20 2.65 · 10�4 3.91 4.91 · 10�4 3.37 4.20 · 10�3 3.49 7.84 · 10�3 2.85
40 · 40 1.57 · 10�5 4.08 4.01 · 10�5 3.61 3.80 · 10�4 3.47 1.00 · 10�3 2.97
80 · 80 9.31 · 10�7 4.08 2.78 · 10�6 3.85 3.39 · 10�5 3.49 9.68 · 10�5 3.37
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The solution is advanced until t = 1.8 using linear, qua-
dratic and cubic reconstructions, with the limiters being ac-
tive everywhere (Fig. 17). In order to focus our analysis on
the reconstructions and limiting alone, all the derivatives
are computed using p = 3 MLS with N = 7 points per
cloud and h = 0.55dmax.

Even though the higher-order schemes perform fairly
better than the second-order one, it is clear that the limiters
Fig. 17. Shu–Osher problem, 400 cells, limiters active everywhere. Density p
(bottom left) order schemes. Detailed comparison (bottom right).
are introducing excessive dissipation when applied to the
higher-order derivatives. Actually, the third-order scheme
seems to perform better than the fourth-order one.

Selective limiting is then introduced. Thus, the deriva-
tives on cell I are only limited whenever the high-scale com-
ponent verifies jWj > 0.04jumax � uminj, where umax (resp.
umin) is the maximum (resp. minimum) value of the sensed
variable (density) within the cloud of cell I. Fig. 18 presents
rofiles computed with the second (top left), third (top right) and fourth



Fig. 18. Shu–Osher problem, 400 cells, multiresolution-based selective limiting. Density profiles computed with the third and fourth-order schemes (top
left and top right, respectively), high-scale components of the density (center) and detailed comparison of the densities with and without selective limiting
(bottom).
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the computed density profiles and location of the limited
cells (top), and the high-scale component of the density
(center) for the quadratic and cubic reconstructions.
The response of the indicator W is interesting by itself. A
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comparison of the computed densities with limiters every-
where and with selective limiting is also plotted (bottom).
The results are good, comparable only to those of high
order ENO/WENO schemes.

6.2. Inviscid flow: airfoils

6.2.1. A subsonic test

The problem set up corresponds to a subsonic flow
around a NACA 0012 airfoil. The freestream Mach num-
ber is M = 0.63 and the angle of attack is a = 2�. The com-
putational grid is rather coarse (5322 cells). Given the poor
mesh resolution near the leading and trailing edges, the
inherent dissipation associated to each reconstruction
becomes apparent through the inspection of the Mach
number isolines.

Fig. 19 presents a close-up view of the Mach number iso-
lines obtained by using linear (A), quadratic (B) and cubic
(C and D) reconstructions. The inviscid fluxes have been
integrated using one, two and either two (C) or three (D)
Gauss points per edge, for the linear, quadratic and cubic
reconstructions, respectively. The solution provided by the
linear reconstruction clearly shows an anomalous pseudo-
Fig. 19. Subsonic inviscid flow around a NACA 0012 airfoil (M = 0.63, a = 2.
quadratic (B) and cubic (with 2 and 3 Gauss points per edge, C and D) recon
viscous behaviour of the Mach number contours near the
surface. The entropy layer is dramatically reduced by the
increase of the order of the reconstruction. Note that
the grid was not modified near the airfoil for the higher-
order schemes, and therefore straight edges are used in
the boundary cells. The maximum entropy production
reduces from DSmax = 0.03336 (linear reconstruction) to
DSmax = 0.00772 (cubic reconstruction), where S is given by

S ¼ ln
h

c
c�1

p

 !
; h ¼ c E � 1

2
ðu2 þ v2Þ

� �
: ð68Þ
6.2.2. Two transonic examples

A non-adapted finer grid (12243 cells) has been used to
solve two transonic test cases: (I) M = 0.8, a = 1.25�, and
(II) M = 0.85, a = 1�. Figs. 20 and 21 show the results
for test cases I and II, respectively, using quadratic recon-
struction and either the BJ or the PC5 limiter: Mach num-
ber isolines, pressure isolines and surface pressure
coefficient Cp distribution. Both limiters provide sharp
shock-capturing (one interior cell) and clear slip lines,
although the PC5 limiter appears to be slightly more
dissipative.
0�): close-up view of the Mach number contours obtained with linear (A),
structions.



Fig. 20. Inviscid flow around a NACA 0012 airfoil (M = 0.8, a = 1.25�): results obtained using quadratic reconstruction with either the BJ limiter (A–C–E)
or the PC5 limiter (B–D–F). Mach number contours (A and B), pressure contours (C and D) and surface pressure coeffcients Cp (E and F).
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6.3. Viscous flow

6.3.1. Shock wave impingement on a spatially evolving

mixing layer

We reproduce the example presented in [32]. An oblique
shock impacts on a spatially developing mixing layer. The
flow is fully supersonic at the outflow, so no explicit out-
flow boundary conditions are required. The problem
domain is the rectangle 0 6 x 6 200 and �20 6 y 6 20,
with inflow velocities specified as a hyperbolic tangent
profile
u ¼ 2:5þ 0:5 tanhð2yÞ: ð69Þ

Hence, the velocity of the upper stream is u1 = 3, whereas
the velocity of the lower stream is u2 = 2. The convective
Mach number, defined as u1�u2

c1þc2
, where c1 and c2 are the free

stream sound speeds, is equal to 0.6.
The shear layer is excited by adding a periodic fluctua-

tion to the vertical component of the velocity inflow, as

v0 ¼
X2

k¼1

ak cos
2pkt

T
þ /k

� �
e
�y2

b

� �
; ð70Þ



Fig. 21. Inviscid flow around a NACA 0012 airfoil (M = 0.85, a = 1�): results obtained using quadratic reconstruction with either the BJ limiter (A–C–E)
or the PC5 limiter (B–D–F). Mach number contours (A and B), pressure contours (C and D) and surface pressure coeffcients Cp (E and F).
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where b = 10 and T ¼ k
uc

, being uc = 2.68 is the convective
velocity, defined by uc ¼ u1c2þu2c1

c1þc2
, and k = 30 the wave-

length. For k = 1 we take a1 = 0.05 and /1 = 0. For
k = 2, a2 = 0.05 and /2 = p/2.

The reference density is taken as the average of the two
free streams and the reference pressure is given by

pR ¼
ðq1 þ q2Þðu1 � u2Þ2

2
: ð71Þ

Under the assumption that both streams have equal stag-
nation enthalpies, the local speed of sound reads
c2 ¼ c2
1 þ
ðc� 1Þ

2
ðu2

1 � u2
2Þ: ð72Þ

Equal pressure through the mixing layer is assumed. The
following values are used at the inflow (left boundary):

p0 ¼ 0:3327; H 0 ¼ 5:211; l0 ¼ 5� 10�4; ð73Þ

whereas on the upper boundary we set

u ¼ 2:9709; v ¼ �0:1367; q ¼ 2:1101;

p ¼ 0:4754: ð74Þ



Fig. 22. Shock wave impingement on a mixing layer at t = 120. Fourth-
order results on the 600 · 300 grid. Contours of density (top), pressure
(center) and temperature (bottom).

Fig. 23. Shock wave impingement on a mixing layer at t = 120. Fourth-
order results on the 400 · 100 grid. Contours of density (top), pressure
(center) and temperature (bottom).
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On the lower boundary, a slip wall condition was specified.
With this problem setup, an oblique shock originates from
the top left corner, impacting the shear layer around
x = 90. The shock wave reflects at the lower wall and
passes back through the deflected shear layer.

The problem was run using the fourth-order scheme on
two grids of 400 · 100 and 600 · 300 cells. Figs. 22 and 23
show the contours of density (top), pressure (center) and
temperature (bottom) on the fine and coarse grids, respec-
tively. On both grids the fourth-order scheme is capable of
capturing the fine scale features of the flow, such as the for-
mation of shocklets or the splitting in two of the vortex
core located at x = 148, caused by its interaction with the
reflected shock wave.

7. Conclusions

This paper explored the approximation power of MLS
approximations in the context of higher-order finite
volume schemes on unstructured grids. The scope of the
application of MLS is threefold: (1) computation of high
order derivatives of the field variables for a Godunov-type
approach to hyperbolic problems or terms of hyperbolic
character, (2) direct reconstruction of the fluxes at cell
edges, for elliptic problems or terms of elliptic character,
and (3) multiresolution shock detection and selective
limiting.

A major advantage of the proposed methodology over
the most popular existing higher-order methods is related
to the viscous discretization. The use of MLS approxima-
tions allows the direct reconstruction of high order viscous
fluxes using quite compact stencils, and without introduc-
ing new degrees of freedom, which results in a significant
reduction in storage and workload.

A selective limiting procedure is proposed, based on the
multiresolution properties of the MLS approximants,
which allows to switch off the limiters on smooth regions
of the flow.

Accuracy tests show that the proposed method achieves
the expected convergence rates. Representative simulations
show that the methodology is applicable to problems of
engineering interest.
Acknowledgements

This work has been partially supported by the
‘‘Ministerio de Educación y Ciencia’’ of the Spanish Gov-
ernment (grants #DPI2004-05156 and #DPI2006-15275)
cofinanced with FEDER funds, and by the ‘‘Xunta de Gali-
cia’’ (grants #PGIDIT05PXIC118002PN and #PGDIT06-
TAM11801PR).

The research of Dr. Luis Cueto-Felgueroso is supported
by the ‘‘Ministerio de Educación y Ciencia’’ through its
program of postdoctoral scholarships. Furthermore, it is
also gratefully acknowledged the financial support received
in the past from ‘‘Colegio de Ingenieros de Caminos, Cana-
les y Puertos’’, ‘‘Fundación de la Ingenierı́a Civil de Gali-
cia’’ and ‘‘Caixanova’’. Mr. Xesús Nogueira gratefully
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