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[1] Seawater intrusion in coastal aquifers is a 3-D phenomenon. However, 3-D regional
aquifer models are often limited by insufficient geological and hydrological data, the large
horizontal to vertical scales ratio, and by numerical constraints. We present an effective
formulation for modeling seawater intrusion that relies on a dimensional reduction of the
original density-dependent flow and transport problem. We carry out a vertical integration
of the 3-D problem and arrive at a coupled set of 2-D equations for the mean flux and salt
concentration, which are essentially identical to those of 2-D groundwater flow. However,
two new terms emerge from the integration: (1) Darcy’s law needs not only the buoyancy
term reflecting aquifer bottom slope, but also another one reflecting variability of aquifer
thickness; and (2) transport requires a new term reflecting vertical variations of
groundwater flux, which are essential for density-dependent flow and we approximate by
means of a Fickian dispersion term. The proposed equations are verified by direct steady
state numerical simulations of confined aquifers. The results show that the effective
formulation correctly reflects the effective dynamics in the 3-D system.
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1. Introduction
[2] Seawater intrusion in coastal aquifers is a three-

dimensional phenomenon. Freshwater tends to float on top
of seawater and a mixing zone develops between them. Sea-
water disperses across this mixing zone and is subsequently
returned to the sea by freshwater discharge, thus forming a
convection cell [Cooper, 1959]. The spatial distribution and
temporal evolution of this convection cell are controlled by
hydraulic properties, recharge, and pumping (Figure 1).

[3] The 3-D simulation of seawater intrusion is well docu-
mented [Xue et al., 1995; Oude Essink, 2001a, 2001b; Gin-
gerich and Voss, 2002; Langevin, 2003; Qahman and
Larabi, 2006; Lin et al., 2009]. However, 3-D modeling of
regional coastal aquifers suffers from a large number of
drawbacks [Oude Essink and Boekelman, 1996]. The hori-
zontal extent of coastal aquifers is usually much greater than
their thickness (different spatial scales), so that 3-D modeling
usually requires an anisotropic spatial discretization, much
larger in the horizontal than in the vertical direction, which
enhances numerical dispersion and computational cost.
Moreover, detailed 3-D geological and hydrological data
are rarely available on a regional scale with the result that
the undertaking may be in vain. In summary, it may not be

reasonable to treat regional aquifers as 3-D entities. It is not
surprising, therefore, that attempts have been made to sim-
plify modeling of seawater intrusion.

[4] The most obvious simplification consists of working
with equivalent freshwater head (elevation of a freshwater
column yielding the observed pressure) while ignoring den-
sity differences. This approach neglects buoyancy forces
within the domain, which may be appropriate when flow is
largely controlled by viscous forces. This approach repro-
duces the seawater recirculation cell when driven by varia-
tions in the elevation of the aquifer-ocean boundary [Sakr,
1999; Simpson and Clement, 2003; Dentz et al., 2006]. It
may also be considered adequate in large aquifers, where
flow is driven by inland boundary conditions or internal
sink and sources [Iribar et al., 1997; Vazquez-Sune et al.,
2006; Abarca et al., 2006]. However, by neglecting buoy-
ancy, this approach looses the most distinctive feature of
seawater intrusion and its associated dynamics. Moreover,
these models typically yield very sharp seawater intrusion
patterns. That is, large portions of the model are fully sali-
nized (salinity equal to that of seawater), whereas in reality
most wells display (vertically averaged) salinities that are
only a portion of seawater salinity.

[5] A higher level of sophistication is provided by sharp
interface models in which freshwater and seawater are
treated as two immiscible fluid phases [Kacimov and
Sherif, 2006; Bakker, 1998, 2003; Sa da Costa and Wilson,
1979; Ataie-Ashtiani, 2007]. This simplification allows us
to simulate seawater intrusion with 2- or 3-D models while
acknowledging buoyancy. These models are appropriate
whenever mixing can be neglected and they become partic-
ularly convenient under steady state conditions when sea-
water is not pumped, so that saltwater fluxes are small
compared to freshwater ones, and saltwater head gradients
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can be neglected. This together with the Dupuit assumption
facilitates linearization and the derivation of analytical sol-
utions [Strack, 1976], which has made the approach popu-
lar for the design of optimal pumping schemes [Cheng et al.,
2000; Qahman et al., 2005; Mantoglou, 2003; Mantoglou
et al., 2004]. The sharp interface assumption is relaxed in
boundary layer approximations and continues to assume sea-
water to be immobile but acknowledges salt transport across
a narrow mixing zone [Paster and Dagan, 2007].

[6] The main disadvantage of the above approaches
arises from neglecting mixing as a driving force for sea-
water flux. If mixing is sizeable, then seawater must flow
inland to replenish the salt that is transported back to the
sea by freshwater (Figure 1). The magnitude of mixing is
controlled by transverse dispersion. Increasing transverse
dispersion leads to an increase in the width of the mixing
zone, to a landward seawater flux along the aquifer bottom,
and hence to a retreat of the seawater intrusion wedge
[Abarca et al., 2007a]. Unfortunately, the role and magni-
tude of transverse dispersion have not yet been resolved.
Paster and Dagan [2007], basing themselves on field
observations, argue that transverse dispersion is negligible.
On the other hand, Abarca et al. [2007a] reviewed a num-
ber of cases with sizeable mixing zones that required size-
able transverse dispersion. Moreover, heterogeneity and
wind- or tide-induced sea level fluctuations enhance trans-
verse dispersion [Dentz and Carrera, 2005, 2007]. Worse,
even a small transverse dispersivity leads to a sizable effect
on the location of the interface [Pool and Carrera, 2011].

[7] Our study was prompted by cases in which mixing
plays a major role, for instance, regional coastal aquifers.
In such cases, it is necessary to rely on fully coupled den-
sity-dependent flow and transport models, which require
significant computation time.

[8] One common approach to circumvent the computa-
tional cost inherent in 3-D simulations consists in modeling
a vertical 2-D cross-section [Henry, 1964; Lahm et al.,
1998; Zhang et al., 2002; Smith, 2004; Dentz et al., 2006;
Bolster et al., 2007]. Vertical 2-D cross-sections provide
physical insight into the dynamics of seawater intrusion but

not into realistic flow scenarios however simplified. This is
the rationale for 2-D subhorizontal regional models. Cer-
tainly, the main component of flow in regional models is
horizontal. Subhorizontal seawater convection cells are
generated when the aquifer displays a lateral slope [Abarca
et al., 2007b]. It can therefore be assumed, that the vertical
flow is of subleading order and can be neglected. This
behavior may be reproduced by an areal 2-D model by
averaging the 3-D flow and transport equations vertically.
This has been studied by a number of authors assuming the
sharp interface approximation [Weiss, 1982; Maas and
Emke, 1988; Sorek et al., 2001; Bakker, 2003; Nordbotten
and Celia, 2006; Gasda et al., 2009].

[9] Unfortunately, the above studies rarely address the
potential divergence between freshwater and saltwater flux.
As illustrated in the bottom of Figure 1, saltwater tends to
flow inland along the aquifer bottom whereas freshwater
floats on top as it flows seaward. Vertical integration involves
working with averaged fluxes and concentrations. However,
vertical fluxes induce mixing mechanisms that are lost in the
simplified 2-D areal model, leading to differences in toe posi-
tions, width of the mixing zone, velocity distributions, and
mass balance. One might conjecture that vertical integration
should include the impact of the fluctuations about the spatial
mean mass flux (u0) and salt mass fraction (!0) in the govern-
ing equations in order to take into account the effect of this
mechanism on dispersion. However, the effect of the mixing
mechanism induced by vertical fluctuations in horizontal
fluxes has not yet been studied.

[10] To illustrate the above, let us consider steady state
conditions, where the mean salt flux is zero because all the
salt that enters the aquifer along the bottom must exit along
the mixing zone, to prevent accumulation of salt within the
aquifer. Therefore, the total seaward water flux is equal to
that of freshwater. Yet, average concentration is nonzero,
so that integrated advection would carry salt seaward. This
advective flux could only be offset by an inland dispersive
flux. This dispersive flux must equal u0!0. We conjecture
that it should be large because fluctuations about their
mean values of both mass flux and salt mass fraction are

Figure 1. Vertical saltwater circulation cell, left, driven by buoyancy caused by mixing at the fresh-
water-seawater interface. Landward advance of the interface, right, induced by pumping. Seawater circu-
lation no longer occurs on a vertical plane. Vertical variation of mass flux (u), salt mass fraction (!),
with !f and !s, the freshwater and seawater salt mass fraction, respectively, and the product of the fluc-
tuations about their mean values (u0!0) in the cross section A–A0 shown.
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highly correlated (Figure 1) and that, consistently with sto-
chastic transport results [e.g., Gelhar and Axness, 1983], it
can be approximated by a Fickian dispersion term.

[11] Here a vertically integrated formulation is presented
for modeling regional seawater intrusion. The objectives of
this paper are (1) to test whether the conjecture of represent-
ing the inland salt flux by a dispersion term is valid, and (2)
to ascertain whether this simplified formulation correctly
reflects the effective dynamics in a fully dimensional system.

2. Governing Equations
2.1. Fully Dimensional Model

[12] The formulation presented in this paper is based on
a vertical integration of the standard variable-density
Darcy’s law and the flow and transport equations [see, e.g.,
Bear, 1972]. The origin of coordinates is located at the
coastline and the z-axis points vertically upward. Fluid den-
sity, � [ML�3], is assumed to be a linear function of the salt
mass fraction ! [M3M�3] (mass of dissolved salt per unit
mass of fluid),

� ¼ �f 1þ � !
!s

� �
; ð1Þ

where !s is the salt mass fraction in seawater ; � ¼
�s � �f
� �

=�f with �f and �s the freshwater and seawater
densities, respectively (typical values of � are �1/40).

[13] Momentum conservation in flow through porous
media is expressed by Darcy’s law, which we write in
terms of equivalent freshwater head (h ¼ p=�f g þ z) as

q ¼ �K � rhþ � !
!s
beg

� �
; ð2Þ

where q is volumetric water flux [LT�1] and the freshwater
conductivity K[LT�1] is assumed to be isotropic for sim-
plicity. The unit vector beg points upward against gravity.

[14] The fluid mass balance in the absence of sources
and sinks is given by

@ð��Þ
@t
¼ �f Ss

@h
@t
þ �f �

!s
�
@!

@t
¼ r� u; ð3Þ

where u denotes mass flux (�q), � [L3L�3] is porosity, and
Ss [L�1] is the specific storage coefficient defined as
Ss ¼ 1=�f @��=@h. Note that this (standard) definition of Ss

allows us to separate head (compressibility) and concentra-
tion dependencies of fluid mass (��).

[15] Salt mass conservation is expressed by the advec-
tion-dispersion equation

@ð��!Þ
@t

¼ !�f Ss
@h
@t
þ �f � 1þ 2�

!

!s

� �
@!

@t

¼ r� ðu!Þ � r � ðDr!Þ;
ð4Þ

where D[ML�1T�1] is a mass flux hydrodynamic diffusion-
dispersion tensor D ¼ ðD0 þ ��Df IÞ, equal to � times the
conventional hydrodynamic dispersion tensor, where Df
[L2T�1] is the molecular diffusion coefficient, I the identity
matrix, and D0, similarly to D, is a mass flux mechanical

dispersion tensor, defined in terms of �L [L] and �T [L],
longitudinal and transverse dispersivities, respectively, and
u, instead of q=�.

[16] Boundary and initial conditions are required for solv-
ing equations (3) and (4). A known flux with a zero salt frac-
tion is prescribed at the inland boundary. The shore is often
represented by imposing a freshwater head equivalent to a
zero saltwater head for flow and an advective flux condition
(Adv.SF) for transport. This implies that the salt mass frac-
tion equals that of seawater (!s) for inflowing portions of
the boundary or equals that of the resident mass fraction for
outflowing portions [see, e.g., Voss and Souza, 1987; Frind,
1982]. The bottom boundary is usually assumed as no flow
of both salt and water [see, e.g., Hidalgo et al., 2009]. The
top boundary is often represented by a recharge or a free
surface boundary condition (see discussion by Chen et al.
[2010] and Bear et al. [2010]). Later, in sections 3.1 and
3.2, we will see that the type of boundary condition adopted
is not important for the purposes of our work.

2.2. Vertically Averaged Flow Equation
[17] Vertical averaging basically entails integrating all

variables along the z coordinate and dividing by the aquifer
thickness. Vertical averaging and integration enjoy a long-
standing tradition in practical hydrogeology because most
groundwater observations are either vertically averaged
(e.g., heads, concentrations) or integrated (e.g., transmis-
sivity) [see, e.g., De Wiest and Bear, 1969; Pinder and
Celia, 2006]. Bear [1972] explains in detail the method and
some of the typical simplifications. For the sake of com-
pleteness, we outline below the derivation. For the sake of
simplicity, we assume a confined aquifer, so as to avoid
complications arising from the nonlinearity associated with
variations in thickness of unconfined aquifers or from the
phreatic level boundary conditions. However, we do so
without loss of generality, because most of the above com-
plications are associated with the flow equation, whose
integration is not particularly sensitive to density depend-
ence, as shown below.

[18] The vertical average of a function a is defined as

�aðx; yÞ ¼ 1
bðx; yÞ

Z ztðx;yÞ

zbðx;yÞ
aðx; y; zÞ dz; ð5Þ

where zbðx; yÞ and ztðx; yÞ are the vertical elevations of
the bottom and top of the aquifer at ðx; yÞ, and bðx; yÞ ¼
ðzt � zbÞ is the thickness of the aquifer, assumed subhori-
zontal (i.e., actual distances equal to horizontal distances,
cos � ¼ 1, where � is the aquifer slope, but vertical distan-
ces are still relevant for buoyancy forces).

[19] Averaging the flow equation (3), using the Leibnitz
rule for handling spatial derivatives, yields

�f Ss
@�h
@t
þ �f �

!s
�
@ �!

@t
¼ rh � uh þ R; ð6Þ

where the subscript h stands for (sub)horizontal, i.e.,
rh ¼ ð@=@x; @=@yÞ and uh ¼ �ðqx; qyÞT . Note that the
resulting differential equation is fluid mass conserving by
construction. The source term R is

R ¼ 1
b

uzðztÞ � uzðzbÞ þ uhðzbÞ � rhzb � uhðztÞ � rhzt½ �; ð7Þ
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which represents the total inflow per unit horizontal area
(recharge) across the top and bottom boundaries.

2.3. Vertically Averaged Darcy’s Law
[20] We assume that permeability (and therefore fresh-

water hydraulic conductivity) is homogeneous. Horizontal
variations can be incorporated without difficulties. However,
vertical variations are hard to accommodate. For instance, a
high K zone will enhance seawater penetration if well con-
nected to the sea at depth, but will hinder it, otherwise. The
mixing zone tends to lie close to the bottom of high K zones
[Abarca, 2006]. These examples show that the problem is
highly nonlocal, so that a rigorous derivation will require
nontrivial simplifications. Yet, Abarca [2006] and Held
et al. [2005] also showed that an equivalent homogeneous
medium reproduces quite well seawater intrusion patterns,
provided that the variance or the correlation distance of ln K
are moderate.

[21] First, we average the vertical component, which yields

�qz ¼
�1

ðzt � zbÞ

Z zt

zb

K
@h
@z
þ � !

!s

� �
dz

¼ � K
ðzt � zbÞ

ht � hb þ �ðzt � zbÞ
�!

!s

� �
:

ð8Þ

Therefore,

hb ¼ ht þ �ðzt � zbÞ
�!

!s
þ �qzðzt � zbÞ

K
; ð9Þ

where the subscripts b and t stand for the bottom and top of
the aquifer.

[22] We now integrate the horizontal component of flux
and use the Leibnitz rule to get

�qhb ¼ �K
Z zt

zb

rhh dz

¼ �Kbrh
�h� K ð�h� htÞrhzt þ ðhb � �hÞrhzb

� 	
:

ð10Þ

Using (9) to eliminate hb and terming Kb ¼ T , leads to

�qhb ¼ �T rh
�hþ �qz

K
þ � �!

!s

� �
rhzb þ

ð�h� htÞ
b

rhb

� �
; ð11Þ

where the second and third terms are zero if the aquifer bot-
tom is horizontal and the thickness is constant. Under such
conditions, Darcy’s law is independent of density varia-
tions. This may sound paradoxical, as one might expect the
flux to depend on density gradients [see, e.g., Sorek et al.,
2001]. Actually, it simply reflects that for buoyancy to
affect averaged flow, the aquifer must display some slope,
either in the mean or in the bottom elevations.

[23] Since the state variables of the problem are �h and �!,
practical application of equation (11) requires approximat-
ing �qz. In general, �qz will not be zero both because the
mean elevation of the aquifer does not need to be horizontal,
independent of density variations, and because of the verti-
cal component of seawater flux (Figure 1). The first compo-
nent of �qz, associated to variations of aquifer elevation, can
be neglected without loss of generality, as it is done in usual

aquifer studies because of the subhorizontality assumption
and because, in practice, it is implicit in the actual measure-
ments of transmissivity. The second one, associated to den-
sity differences, can be considered to be of subleading order
with respect to horizontal fluxes in regional aquifers and
also neglected (in Appendix B we will see that it may be
relevant for the local analysis of seawater intrusion if trans-
verse dispersivity is large). Neglecting �qz facilitates approx-
imating the last term of equation (11) because the pressure is
hydrostatic. Therefore, equivalent freshwater head is con-
stant above the interface zI (Figure 2) and, assuming constant
salinity (! ¼ !s) grows linearly with depth below (h ¼
ht þ �½zI � z�). Averaging and realizing that �!=!s ¼
ðzI � zbÞ=ðzt � zbÞ yields

�h� ht

b
¼ �

2
�!

!s

� �2

: ð12Þ

A more complex expression for this term assuming a mix-
ing zone is derived in Appendix B. Preliminary calculations
showed that the expression in Appendix B is required for
separating seawater and freshwater fluxes, which will be
required later. But equation (12) is sufficient to compute
the mean flux. Therefore, the averaged Darcy’s law is
written as

�qhb ¼ �T rh
�hþ � �!

!s
rhzb þ

�

2
�!

!s

� �2

rhb

" #
: ð13Þ

2.4. Vertically Averaged Transport Equation
[24] To average the transport equation (4) we use the

same approach as for the flow equation. Regarding the stor-
age term, we separate the dependence of (��) on head and
concentration while assuming that the time fluctuations of
pressure are constant along the vertical. After combining
terms, this leads to

�!�f Ss
@�h
@t
þ ��f

@ �!

@t
þ �

!s

@!2

@t

 !
¼ rh � uh !�rh � Drh

� �
þ R�;

ð14Þ

where the source term R� is identical to R (equation (7)),
but with the salt mass flux (u!� Drh!) instead of u. It
represents the total salt flux across the top and bottom of
the aquifer.

[25] In order to evaluate the effect of vertical fluctuations
in flux and concentration, the fluid density (included in the

Figure 2. Equivalent freshwater head and salt mass fraction
profiles under the sharp interface approach and neglecting �qz.
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mass flux hydrodynamic diffusion-dispersion tensor), the
salt mass fraction, and fluid mass flux are decomposed into
their mean values and fluctuations about them

D ¼ Dþ D0; ! ¼ �!þ !0; u ¼ uþ u0; ð15Þ

where u0, D0, and !0 denote the fluctuations about the mean
of the fluid mass flux, the mass flux hydrodynamic disper-
sion tensor, and the salt mass fraction, respectively. These
equations are substituted in (14). To evaluate !2, we ap-
proximate ! again as in Figure 2, so that ! ¼ !s in the
lower �!=!s fraction of the aquifer and ! ¼ 0 in the upper
portion. Therefore, !2 ¼ �!!s, which yields

�!�f Ss
@�h
@t
þ ��f 1þ �ð Þ @ �!

@t
¼ rh � uh �!þrh � uh

0 !0

� rh � ðDrh �!Þ � rh � ðD0 rh!0Þ þ R�:

ð16Þ

Sorek et al. [2001] estimated the fourth term of the right-
hand side of (16), verifying that it is much smaller than the
product of the averaged terms. Thus, it can be neglected.
However, the second term of the right-hand side of (16)
is probably large because, at least under natural conditions,
perturbations on u0 and !0 are likely to be correlated: salt
water (!0 > 0) flows inland (u0 < 0) while freshwater
(!0 < 0) flows seaward (u0 > 0), see the bottom of Figure 1.
Strictly speaking, uh

0 !0 is a dispersion term because it
represents the effect of fluctuations in velocity over the
transport of mean concentration. As we mentioned in the
introduction, it is natural to conjecture that it can be
approximated by a Fickian dispersion term because of the
tradition in stochastic hydrology. That is, uh

0 !0 ¼ D� rh �!,
where D� is the mass flux hydrodynamic dispersion tensor
emerging from velocity fluctuations. In Appendix A, we
show that, indeed, the approximation is appropriate, but
only for horizontal aquifer bottoms. If the bottom is irregu-
lar, an additional sink-source term, r(x), is needed. The
resulting averaged transport equation is

�!�f Ss
@�h
@t
þ ��s

@ �!

@t

¼ rh � uh �!�rh � Dþ D�
� �

rh �!
� 	

þ R� þ r;

ð17Þ

where we have used the fact that seawater density �s equals
�f ð1þ �) and the additional mass flux hydrodynamic dis-
persion tensor, D�, defined by (A7), is used to represent the
inland flow of seawater. Moreover, a zero mean sink-source
term, r(x), may be needed when the aquifer bottom is irreg-
ular and, therefore, �! is not smooth. In practice, equation
(A7) is not easy to evaluate. We assume that D� can be
approximated as

D�ij ¼ �ij�
�
T uj j þ ��L � ��T

� � ui uj

uj j

� �
; ð18Þ

where ��L and ��T are effective dispersivities. They are
obtained by computing JdðxÞ ¼ uh

0 !0 and, then, ensuring
that JdðxÞ ¼ D� rh �!, which leads to

��L ¼
Jdiui þ Jdjuj

juj ui @i �!þ uj @j �!
� � ; i; j ¼ x; y; ð19Þ

��T ¼
Jdi uj � Jdj ui

juj uj @i �!� ui @j �!
� � ; i; j ¼ x; y: ð20Þ

[26] Boundary conditions are in general the vertically
integrated equivalents of the fully dimensional models,
except at the shore. In the vertically integrated models, salt
flux is simulated by dispersion with the result that an ad-
vective flux condition would not work and salt mass frac-
tion must be prescribed (Dirichlet boundary condition) to
the value of the average concentration at the shore.

3. Numerical Solution and Validation
[27] The proposed equations can be solved with any con-

ventional 1- or 2-D density-dependent flow and transport
code. The only requirements are that Darcy’s law includes
a term projecting buoyancy forces on to the aquifer bottom
slope (second term in equation (13)), can be modified to
include the aquifer thickness gradient term (third term in
equation (13)), and optionally, the vertical fluxes term in
equation (11), which we have neglected here.

[28] The only potential difficulty lies in the evaluation of
the upscaled dispersivities (equations (19) and (20)), which
require having computed uh

0 !0. To evaluate this term, a
simplified profile of ! and u as a function of z (such as
those in Figure 1) must be obtained from the vertically
averaged variables (u; �!; �h). Actual application to complex
real problems requires code development that fall beyond
the scope of this paper. Still, we present a simple algorithm
in Appendix B to show that the problem is not complex
from a conceptual point of view. In essence, it entails split-
ting u and h into their freshwater and seawater portions,
above and below the mixing zone, zI (see Figure 1), which
is obtained from �!. The resulting profiles are used to com-
pute uh

0 !0, which allows computing dispersivities (equa-
tions (19) and (20)). These are used to recompute �h and �!,
and the procedure is repeated until convergence is reached.
As shown in Appendix B, the algorithm can be pro-
grammed in a spreadsheet for 1-D steady state problems.

[29] We have also solved fully dimensional models to
validate the Fickian approximation of the saltwater flux
(and also to compare with the dimensionally reduced solu-
tion). Fluctuations and mean mass flux and salt mass frac-
tions are obtained along vertical strings of nodes. These
values are used for computing the additional dispersion
term D�, equation (18). The resulting dispersivities are
added to the local ones in the equivalent dimensionally
reduced models.

[30] In the following, we test the validity of the equa-
tions derived in section 2 in three 2-D vertical cross sec-
tions and one 3-D sloping aquifer. We evaluate the fit
between fully and dimensionally reduced results. All com-
parisons concern steady state and confined aquifers. Thus,
R and R� are zero in equations (6) and (17), respectively.

3.1. 2-D Models - 1-D Equivalent Models
[31] Three geometries of a confined aquifer were studied

(Figure 3). The first one is the dispersive Henry problem
[Abarca et al., 2007a], case (a) in Figure 3. This problem is
a generalization of the traditional diffusive Henry problem
[Henry, 1964] to ensure realistic salinity profiles. Since
conventional seawater intrusion benchmarks assume a
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horizontal aquifer bottom, two other geometries were
employed to study the effects of irregularities in the aquifer
topography, so as to provide more complex tests of the pro-
posed methodology. In case (b) Figure 3, the aquifer top is
flat, but the bottom varies stepwise, which leads to discon-
tinuous mean concentrations. The thickness is constant in
case (c) Figure 3. Flow and transport parameters used for
the models are listed in Table 1. We have solved the equa-
tions with code TRANSDENS [Hidalgo et al., 2005].

[32] Boundary conditions are identical for the three
models. A constant flow rate (Qb ¼ 25 m3 d�1 m�1) of

Figure 3. Schematic descriptions of the numerical 2-D cross-section models. Seawater head is pre-
scribed at the sea boundary, where salt mass flux is prescribed to be advective, Adv.SF (u � n!jx¼L
where water exits the aquifer, and u � n!s where it enters). Isoconcentration lines of 95%, 75%, 50%,
25%, and 10% isochlors for a constant freshwater inflow of Qb ¼ 25 m3 d�1 m�1. Effective dispersiv-
ities and the zero mean sink-source used for the equivalent 1-D models for the different constant fresh-
water inflow values, and those calculated from the proposed iterative algorithm. The sink-source term
takes the form of sequence dipoles (one at each step) for case (b) and a single mass injection at the deep-
est point of the aquifer and a distributed extraction toward the sea for case (c). Finally, we show a com-
parison between the averaged salt mass fraction and equivalent freshwater head results of the averaged
2-D model (thick solid lines), the solution of the traditional 1-D model (dashed lines), and the solution of
the equivalent, vertically integrated 1-D model (open circles) for the different constant freshwater inflow
values, as well as results from the iterative algorithm (crosses) and sharp interface results.

Table 1. Parameters Used in the Simulations

Parameter Value

X 500 m Domain length
B 100 m Domain thickness
K 1.18e-10 m2 Permeability (isotropic)
�L �L 10 m Longitudinal dispersivity
�T �T 1 m Transverse dispersivity
Dm 1.0e-9 m2 s�1 Molecular diffusion coefficient
� 0.001 kg ms�1 Freshwater viscosity
� 0.2 Porosity
2 0.027 Density contrast parameter
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freshwater (with a salt mass fraction equal to ! ¼ 0 kg kg�1)
is imposed along the inland boundary. Seawater hydrostatic
pressure is prescribed along the seaside boundary and the
Adv.SF boundary condition is adopted for transport. The
remaining boundaries are closed to flow and solute
transport.

[33] The results are shown in Figure 3. Upscaled disper-
sivities do indeed reflect the increase in dispersion required
to represent the seawater influx in the dimensionally
reduced (1-D) models. In fact, the dispersivities calculated
tend to increase with seawater penetration.

[34] In addition to dispersion, the zero mean sink-source
term, r in equation (17), needs to be activated in cases (b)
and (c). Geometrical irregularities cause nonuniform mean
concentration gradients, which cannot be represented by a
Fickian dispersion term (the dispersion coefficient would
lead to negative dispersivities, which is computationally
inconvenient and conceptually puzzling). In case (b), D� is
approximated by interpolation from neighboring points at
each step and r(x) takes the form of a sequence of dipoles
(one at each step) with a strength that is proportional to
D���!, where ��! is the jump in mean concentration (equa-
tion (A10)). In case (c), r(x) consists of a single mass injec-
tion (at the deepest point of the aquifer) of strength that is
proportional to the jump in concentration gradients, and a dis-
tributed extraction toward the sea in the region where rh �! is
negative so as to ensure a zero mean r(x) (see Figure 3).
Details of the procedure are discussed in Appendix A.

[35] Computed mean mass fractions and equivalent
freshwater heads using the vertically averaged model (open
circles) are virtually identical to those obtained by averag-
ing the solution of the fully dimensional model (thick solid
lines). In contrast, the solution obtained with a traditional
1-D approximation (i.e., using the same equations as in the
effective 1-D model, but without upscaling dispersion)
leads to very inaccurate results, underestimating penetra-
tion. Therefore, we conclude that the proposed equations,
though simple, capture the essential dynamics of the sea-
water recirculation.

[36] It is worth noticing that the solution is not overly
sensitive to the precise value of D�. The solutions obtained
with the spreadsheet approximation of Appendix B (crosses
in cases [a] and [b]) are quite accurate, despite the fact that
the estimated dispersivities are somewhat high. This sug-
gest that, whereas upscaling dispersion is critical, small

errors in D� do not translate into large errors of either com-
puted mean mass fraction or, much less, heads.

3.2. 3-D Model - 2-D Equivalent Areal Model
[37] A confined aquifer with a lateral slope (1%) is cho-

sen to validate the proposed equations. This case was pro-
posed by Abarca et al. [2007b] to study the effect of
variation in aquifer bathymetry. The size of the model is
3000 � 1500 � 50 m3 (see Figure 4). Owing to the symme-
try with respect to the y-axis, numerical calculations are
carried out in one half of the aquifer. To avoid numerical
dispersion, the vertical discretization is fine compared with
the horizontal one.

[38] The boundary conditions (Figure 4) are: constant
freshwater inflow from inland (Qb ¼ 214 m3 d�1 with ! ¼
0 kg kg�1Þ, specified pressure along the seaside boundary
(p ¼ �sgz), and the Adv.SF boundary condition for transport.
The remaining boundaries are closed to flow and solute
transport. The aquifer parameters are given in Table 2. The
computer simulations were performed with SUTRA [Voss
and Provost, 2002].

[39] The effective dispersivities, computed with equa-
tions (19) and (20), are shown in Figure 5. They are largest
in the region adjacent to the sea and in the deepest portion
of the aquifer, diminishing further inland. Note also, the
relatively large values of �T .

[40] The effective 2-D model (see Figure 6) accurately
reproduces both equivalent freshwater head and salt mass
fraction distributions of the 3-D model. In contrast, the tra-
ditional 2-D areal model (i.e., without upscaling dispersion)
leads to a much narrower mixing zone, far shorter saltwater
penetration (50% isochlor), and misses the lateral convec-
tion cell in the saltwater wedge. Therefore, we conclude
again that upscaling dispersion is required for the effective

Figure 4. A schematic description of a laterally sloping
confined aquifer. A 3-D model and boundary conditions
shows freshwater flows from the background (inland) toward
the foreground (seaside).

Table 2. Parameters Used in the 3-D Sloping Aquifer

Parameter Value

K 1.25e-11 m2 Permeability (isotropic)
�Lmax 10 m Max. longitudinal dispersivity
�Lmed 10 m Med. longitudinal dispersivity
�Lmin 1 m Min. longitudinal dispersivity
�T 1 m Transverse dispersivity
Dm 1.0e-9 m2 s�1 Molecular diffusion coefficient
� 0.001 kg ms�1 Freshwater viscosity
� 0.2 Porosity
2 0.027 Density contrast parameter

Figure 5. The distribution of the longitudinal and trans-
verse effective dispersivities for each element from the
fluctuations about the spatial mean flow and concentration.
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2-D areal model to approximate the 3-D dynamics. The
agreement between the two models indicates that the
effects of vertical fluxes may be represented by a Fickian
dispersion term, and that the dynamics of seawater intru-
sion in a 3-D system may be captured very well by effective
dimensionally reduced equivalent models.

[41] Several sets of simulations were carried out to test
mass balance accuracy by increasing the value of freshwater
inflow. Smith [2004] studied the role of the quantification of
the saltwater mass flux (SMF) in seawater intrusion studies
with velocity dependent dispersion. He found that saltwater
flux depends on the geometric average of the principal
components of hydraulic conductivity and on the square
root of the transverse dispersivity. This was further tested
by Abarca et al. [2007a], who showed that seawater flux is
essentially proportional to the geometric average of the hy-
draulic conductivity and ð�T Þ1=3, and independent of the
freshwater flux from inland.

[42] The resulting behavior of SMF, illustrated in Figure
7, indicates that prescribed freshwater flux plays a major
role. In fact, SMF depends nonmonotonically on freshwater
flux. In the absence of prescribed freshwater flux, SMF
would be zero because the aquifer would fill with saltwater.

The prescribed freshwater flux increases, as do the pressure
gradients close to the seaside boundary and the dispersion
coefficient. Therefore, SMF increases although the inter-
face rotates and retreats seaward. This dependence is main-
tained while most of the seaside boundary is occupied by
seawater. If this does not occur, further increases in fresh-
water inflow results in a parallel seaward retreat of the mix-
ing zone and in a slight reduction in SMF. Figure 7 shows
that, in contrast to the traditional model, the effective 2-D
areal model reflects such behavior.

[43] Finally, we test the dimensionally reduced formula-
tion on a pumping scenario. Constant freshwater inflow
from inland was Qb ¼ 600 m3 d�1, and a fully penetrating
well at a distance Lw ¼ 750 m from the coast pumps a rate
Qw that is gradually increased (Qw=Qb ¼ 0:2� 1).

[44] Figure 8 displays the results. As in the unpumped
case, the proposed vertically integrated model accurately
reproduces the fully dimensional model results, while the
traditional 2-D model does not. Saltwater penetration is
shorter and pumped water salinity lower in the 2-D tradi-
tional model than in the 3-D model. Moreover, the tradi-
tional 2-D models yield an unrealistically sharp seawater
intrusion wedge. The vertically averaged salinity computed
with the proposed approach reproduces much better the
smooth transition zones typically observed in actual sea-
water intrusion problems [e.g., Iribar et al., 1997; Vazquez-
Sune et al., 2006].

4. Summary and Conclusions
[45] A vertically integrated formulation was developed

for modeling regional seawater intrusion. We demonstrate
that vertical integration should include the impact of the
fluctuations about the spatial mean mass flux (u0) and salt
mass fraction (!0) in the governing equations to take into
account the effects of mixing mechanisms induced by verti-
cal fluctuations in horizontal fluxes. The dimensionally
reduced formulation correctly reflects the effective dynam-
ics in a 3-D system.

[46] The resulting equations are similar to a plain dimen-
sional reduction of the original 3-D equations with some addi-
tional terms. Two additional terms are required in Darcy’s
law: one representing the slope of the aquifer bottom and the
other the variations in aquifer thickness. As for transport, a
dispersion term must be added to represent the inland flux of
salt. A Fickian dispersion with enhanced dispersivity near the
coast is sufficient whenever the aquifer geometry is regular.
However, an additional zero mean sink-source term is neces-
sary if the geometry of the aquifer is irregular. Step changes
in thickness can be accommodated by mass dipoles, whereas
the injection-extraction of mass must be distributed in cases
where the slope of the aquifer is irregular.

[47] The accuracy of this formulation is validated by
comparing the direct steady state numerical simulations of
the fully dimensional and the dimensionally reduced prob-
lems. The traditional dimensionally reduced models (i.e.,
without upscaling dispersion) cannot accurately depict the
effective dynamics in a 3-D system. They produce much
shorter and sharper seawater intrusion wedges than
observed in reality. Our effective formulation produces
rather accurate agreements in terms of head and salt mass
fraction distributions. We conclude that the additional

Figure 6. A plan view of the equivalent freshwater head
(a) and salt mass fraction distribution (b) for the averaged
3-D model (thick solid lines) compared with the traditional
2-D areal model (dashed lines), and the effective 2-D areal
model (circles). When the additional dispersion term is
included, the effective 2-D areal model approximates to the
3-D dynamics with satisfactory results.

Figure 7. Salt mass flux (kg s�1) results from the 3-D
model (thick solid lines), the effective 2-D areal model
(circles), and from the traditional 2-D areal model (dashed
lines) for different freshwater inflow values from inland (Qb).
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dispersion term to represent the mixing mechanisms
induced by vertical fluctuations in horizontal fluxes allows
for a realistic and an efficient modeling of seawater intru-
sion in coastal aquifers by means of 2-D areal models.

Appendix A: Perturbation Analysis
[48] Inserting (15) into (4) yields

r�u �!þr�u0 �!þr�u!0 þr�u0!0

�r�Dr�!�r�D0r �!�r�Dr!0 �r�D0r!0 ¼ 0:
ðA1Þ

Averaging (A1) gives (16). Subtracting the mean equation
(16) from (A1) and disregarding terms that are quadratic in
the fluctuations and source terms that contain spatial deriv-
atives of an order higher than one yields

r�u !0 �r�Dr!0 ¼�ðuhÞ0 �rh �!: ðA2Þ

The Green theorem allows solving (A2) as

!0ðxÞ¼�
Z

gðxjx0Þu0hðx0Þrh
0 �!ðx0Þdx0; ðA3Þ

where the Green function gðxjx0Þ denotes the solution of
(A2) for the source term �ðx�x0Þ. Thus, the third term in
(16) can be written formally as

rh�u0h !
0 �rh� JdðxÞ¼rh�

Z
Cðx;x0Þr0h �!ðx0Þdx0: ðA4Þ

This term represents a nonlocal dispersive flux, where
Cðx; x0Þ is defined by

Cðx; x0Þ �
Z

gðxjx0Þu0hðxÞ	u0hðx0Þdz0: ðA5Þ

We assume that Cðx; x0Þ is small for large deviations
jx� x0j. Thus, (A4) can be localized according to

rh�JdðxÞ¼rh�
Z

Cðx;x0Þdx0
� �

rh �!ðxÞ: ðA6Þ

We define the term in the square brackets asZ
Cðx; x0Þdx0 �D�: ðA7Þ

[49] Note that this localization is based on the assumption
that Cðx; x0Þ is small for jx�x0j large and that �!ðxÞ is a
smooth function of x. Inserting the latter in (16), the aver-
aged transport equation yields (17). The validity of this
approximation is tested numerically (equations (18)–(20)).
Accordingly, it works well whenever the aquifer bathyme-
try and thus �! are smooth. Otherwise, additional source
terms appear in the localization of (A4) as outlined below.
Two cases must be addressed (Figure A1). If the aquifer
bottom displays a step jump, �! will be discontinuous. If the
aquifer bottom displays sharp irregularities, �! will be

Figure 8. A plan view of the salt mass fraction distribution considering a fully penetrating well at a
distance of 750 m from the coast for different pumping rates (Qw=Qb ¼ 0.4 and 0.9). The thick solid
lines represent the averaged 3-D model, the dashed lines represent the traditional 2-D areal model, and
the circles represent the effective 2-D areal model. Salinity at the pumping well in the 3-D model, the
effective 2-D areal model, and the traditional 2-D areal model for different pumping rates.
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nonderivable. Neither type of solution can be represented
by a localized dispersion term as (A6).

[50] In the case of a step jump in the aquifer bottom, expan-
sion of the integral in (A4) in two spatial dimensions gives

@

@x
JdðxÞ ¼

@

@x
�
"Z x�0

0
Cðx; x0Þ @

@x0
�!ðx0Þdx0þ

Z L

xþ0

Cðx; x0Þ @
@x0

�!ðx0Þdx0 þ
Z x�0

xþ0

Cðx; x0Þ @
@x0

�!ðx0Þdx0
#
;

ðA8Þ

where we set x6
0 ¼ x0 6 � with � a very short distance

compared with the problem dimensions. Assuming that
Cðx; x0Þ is continuous in x0, the last term is the last term
Cðx; x0Þ��!, where ��! ¼ �!þ � �!�. The remaining inte-
grals can be localized as in (A6). Thus, we obtain for (A8)

@

@x
JdðxÞ ¼

@

@x
� D�

@

@x
�!

� �
þ r; ðA9Þ

where r represents the jump in dispersive fluxes. Recogniz-
ing that Cðx; x0Þ is sharply peaked about x0, thus, this term
can be approximated by

r ¼ @

@x
Cðx; x0Þ��! ¼ A0½�ðx� x�0 Þ � �ðx� xþ0 Þ���!: ðA10Þ

That is, the net effect of the step jump is a dipole at x0,
where A0 is a constant that depends on Cðx; x0Þ (Figure A2).
Inserting (A10) into (A9) to approximate uh

0 !0 in equation
(17) leads to the following averaged transport equation:

@

@x
� uh �!� @

@x
� Dþ D�

� � @

@x
�!

� �
¼ A0½�ðx� x�0 Þ � �ðx� xþ0 Þ��!:

ðA11Þ

In the second case of Figure A1, the derivative of �!ðxÞ is
discontinuous at x0 and negative between x0 and x1. There-
fore, we approximate rh �!ðxÞ in ½x0 � �; x1� as

@

@x
�!ðxÞ ¼ a0Hðx0 � xÞ þ a1Hðx� x0Þ; ðA12Þ

where a0 and a1 are the slopes of �!ðxÞ to the left and the
right of x0. We rewrite now the flux JdðxÞ tautologically by
defining a sink-source term, r(x), which is precisely the re-
sidual error between the original problem (A4) and the
localized definition, yielding

rðxÞ ¼ @

@x

ZL

0

dx0Cðx; x0Þ @
@x0

�!ðx0Þ � @

@x
D�ðxÞ @

@x
�!ðxÞ: ðA13Þ

We assume that r(x) is only of importance for x 2 ½x0 � �;
x1� and otherwise the localized expression provides a good
approximation. Thus, we restrict the term r(x) to the inter-
val ½x0 � �; x1�. In this interval, the derivative rh �!ðxÞ can
be approximated by (A12). We also assume that D�ðxÞ
varies only moderately within ½x0 � �; x1� and set
D�ðxÞ 
 D�m ¼ ½D�ðx0Þ þ D�ðx1Þ�=2. Thus, we obtain for
the second term in (A13)

r2ðxÞ 
 �D�mða1 � a0Þ�ðx� x0Þ: ðA14Þ

This term represents an injection of mass at x ¼ x0. For
mass conservation reasons, the first term in (A13) should
represent an extraction of the same amount of mass over

Figure A2. The averaged salt mass fraction and approximation of the derivative of �!ðxÞ in the cases
where the bottom of the aquifer is irregular : step jump (left) or change in slope (right).

Figure A1. A comparison of the sink-source term r for
the cases where the bottom of the aquifer is irregular (cases
[b] and [c]) and their qualitative approximation (equations
(A10)–(A14)).

W11506 POOL ET AL.: VERTICAL AVERAGE FOR MODELING SEAWATER INTRUSION W11506

10 of 12



the interval ½x0; x1� (Figure A2). In order to verify this, we
integrate r1ðxÞ from x0 to x1. This givesZx1

x0

dx r1ðxÞ ¼
Zx1

x0

dx
@

@x0

ZL

0

dx0Cðx; x0Þ @
@x0

�!ðx0Þ

¼
ZL

0

dx0Cðx1; x
0Þ @
@x0

�!ðx0Þ �
ZL

0

dx0Cðx0; x
0Þ @
@x0

�!ðx0Þ

¼ D�mða1 � a0Þ;

ðA15Þ

where the last two integrals can now be localized by taking
into account that Cðx0; x0Þ and Cðx1; x0Þ are sharply peaked
about x0 and x1, respectively. We have also used the fact
that a0 and a1 are the slopes of �!ðxÞ in x0 and x1. Thus, the
term r(x) represents an injection of mass at the point x0 and
an extraction of the same mass over the interval ½x0; x1�.
Appendix B: Generic Solution Algorithm

[51] We outline here a generic solution algorithm based
on approximating the 3-D distribution of salt mass fraction
and water fluxes from the 2-D solution. In essence,

[52] Step 0: Initialization. Set the iteration counter i to 0
and solve flow for the sharp interface approximation to obtain
	, the depth of the freshwater-saltwater interface. Actually, it
is better to assume the interface a bit deeper. Here we used
the approximation of Pool and Carrera [2011]:

	 ¼ �zI ¼
ffiffiffiffiffiffiffiffiffiffi
2Qbx
�� K

r
; ðB1Þ

where �� is the corrected density factor defined as

�� ¼ � 1� �T=bð Þ1=6
h i

. The initial salt mass fraction is

defined as �! 0 ¼ ½!sðzI � zbÞ=ðzt � zbÞ�.
[53] Step 1: Given �! i, �h is computed solving the flow

equation (13). Note that �h is independent of �! i in constant
thickness or horizontal bottom aquifers, such as in the
Henry problem.

[54] Step 2: Estimate the width of the mixing zone
(WMZ). Here we used the expression of Abarca et al.
[2007a], WMZ ¼ 5:4�G, where �G is the geometric mean
of the local dispersivity coefficients. The profile of !(z) can
then be obtained from �! i, assuming a simplified form such
as the one in the bottom of Figure B1 (dashed lines).

[55] Step 3: The freshwater head of the freshwater por-
tion, hf, and the saltwater head of the saltwater portion, hs,
are evaluated from �h and zI, Figure B1. Note that the width
of the mixing zone and vertical fluxes are relevant for split-
ting �h into its freshwater and saltwater portions. We have
tested this split both assuming hydrostatic conditions (�qz ¼
0) and �qz ¼ �T �qh=WMZ (dispersive flux divided by !s). In
our test, it can be neglected.

[56] Step 4: Freshwater flux, qf, and saltwater flux, qs, are
calculated using Darcy’s law and hf and hs. Note that qf and
qs must be such that the mean mass flux is equal to uh,
which was obtained in step 1. In 1-D, this implies

qs ffi
uh

�s

zt � zb

zI � zb
� qf

1� �
zt � zI

zI � zb
þ �

2
WMZ
zI � zb

� �� �
: ðB2Þ

This approximation allows more stable results than with
Darcy’s law and hs in our examples (the difference was rel-
atively small).

[57] Step 5: uh ! is evaluated from qf and qs assuming the
!ðzÞ profile of Figure 1 (bottom). The fluctuations about mean
mass flux and salt mass fraction are calculated by u0h !

0

¼ uh !� uh �!. Thus, equation (19) is solved to compute ��L.
[58] Step 6: Solve the transport equation (17) to get !iþ1.

In the 1-D examples presented in section 3.1, we have used
finite differences, which yields

�!j ¼ �!jþ1

ð��jþ1=2 ��x=2Þ
ð��jþ1=2 þ�x=2Þ ; ðB3Þ

where j is the cell number and the calculation starts at the
shore, where the concentration is prescribed (recall section
2.4). When steps are present (case b in section 3.1), the cell
is split in two, jþ and j�. Thus, !jþ is computed using equa-
tion (B3); and !j�, which will be used for computing ! fur-
ther inland, is obtained assuming the same elevation of the
interface. That is,

�!j� ¼ ½ðzbjþ � zbj� þ !jþ þ bjþ�=bj�: ðB4Þ

[59] Step 7: The algorithm ends if !i ffi !iþ1, that is, if
the change in the solution between two consecutive itera-
tions is negligible. Otherwise, the procedure sets i ¼ iþ 1
and returns to step 1.

[60] We had planned to correct WMZ (step 2) to ensure
that the saltwater flux computed in step 4 is equal to the
vertical dispersion flux mentioned in step 3. As it turned
out, this correction was not needed in our examples, but
may be needed in general.

[61] We have programmed this simple algorithm in a
spreadsheet that can be download from http://www.h2ogeo.
upc.es/software/RED/index.htm.
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