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[1] Flow equation expresses mass conservation for a fluid phase. In density-dependent
problems, fluid consists of at least two components, termed salt and water here. Salt
sources are usually properly accounted for when salt is dissolved in water (i.e., as a solute)
but are neglected otherwise. An analysis of the effect of neglecting pure salt sources on
flow regime and concentration distribution is performed. Two test cases are used to
illustrate the issue. The first one is the saltwater bucket problem, which consists of adding
salt to an otherwise isolated domain. The second one is the Elder problem. Discrepancies
in concentrations are moderate for reasonably small salt mass fractions. However,
currently available codes yield head drops in response to the addition of salt because fluid
mass is kept constant while its density increases. Such results contradict basic physical
principles and lead to an inversion in the flow direction.
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1. Introduction

[2] Flow and transport simulation demands the expres-
sion of mass conservation. Two equivalent approaches can
be used for multicomponent problems. The compositional
approach [e.g., Bear, 1972; Olivella et al., 1994] considers
mass conservation for each component separately. This
leads to a set of n transport equations, one per component,
including every component’s sinks and sources. This ap-
proach is typically used for multiphase flow problems.
However, for single fluid phase problems such as saltwater
transport, it is more convenient to add up the equations for
all components. This causes dispersion terms to cancel and
results in one flow equation and n�1 uncoupled transport
equations. This second approach is the usual one in density-
dependent flow and transport and it is the focus of this
work. Alternative formulations are summarized by Kolditz
et al. [1998] and Diersch and Kolditz [2002].
[3] Flow equation represents fluid mass conservation.

Therefore, it must include the sinks and sources of all
components (restricted here to salt and water for simplicity)
to represent a complete fluid mass balance. Yet, salt sources
that do not come dissolved in water are usually ignored in
the flow equation. In this work, such sources will be called
pure salt sources to distinguish them from mixed salt and
water sources.
[4] Pure salt sources can have either an internal origin or

enter through the boundaries. Internal salt sources are
associated to chemical processes. They may also be used
as model simplifications. For example, salt dissolution at

the bottom of an aquifer flowing over a salt dome may be
represented as an internal source in a two-dimensional
model. Pure salt boundary sources occur when water flux
is prescribed to be zero and either salt flux (Neumann
boundary conditions) or concentration (Dirichlet boundary
conditions) is prescribed at the boundary. Strictly speaking,
prescribed concentration boundaries are not found in nature.
However, some real boundaries can be modeled as pre-
scribed concentration boundaries. This is the case of disso-
lution boundaries, which are found in aquifers flowing over
salt rock, where aquifer water flux dissolves the salt rock,
which creeps to fill the void.
[5] Pure salt sources (i.e., solute mass inflow together

with zero water inflow) can be found in many density-
dependent flow problems. For example, the dissolution of
CO2 beneath the supercritical CO2 bubble created during
CO2 sequestration is often modeled in this fashion [Riaz et
al., 2006; Hassanzadeh et al., 2006; Xu et al., 2006].
[6] Regardless of their conceptual meaning, it is relatively

frequent to adopt Dirichlet boundary conditions for trans-
port while imposing zero flux for flow. These kind of
boundary conditions is found in density-dependent code
benchmarks such as the Elder [Elder, 1967], salt dome
[Organization for Economic Cooperation and Development,
1988] and Horton-Rogers-Lapwood [Weatherill et al., 2004]
problems.
[7] Usually, pure salt sources are only included in the salt

mass balance, that is, the transport equation or its boundary
conditions, but not in the fluid mass balance, that is, the
flow equation. This inconsistency has been pointed out in
two occasions. Hassanizadeh and Leijnse [1988] acknowl-
edge salt sources when salt rock boundaries are modeled as
Dirichlet boundaries. They provide an expression for the
flow boundary condition to model a dissolving cap rock in a
salt dome that quantifies the amount of salt entering the
system, but they do not actually solve the resulting problem.
Voss and Provost [2002] mention internal pure salt sources
when developing the equations implemented in the SUTRA
code, but they are not included in the final formulation
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because they are assumed to be small compared with other
sources.
[8] The aim of this work is to study the effect of

neglecting pure salt sources in the fluid mass balance in
single-phase density-dependent flow simulations. An accu-
rate understanding of the influence of pure salt sources on
density-dependent flow is pursued to determine the accuracy
of problem’s solutions.

2. Salt Sources in Single-Phase
Density-Dependent Fluid Mass Balance

[9] Fluid mass balance can be written as

@ rqð Þ
@t

¼ �rrrr � rqð Þ þ mw þ ms; ð1Þ

where t [T] is time, r [M L�3] is the fluid density, q [L3 L�3]
is the fluid content per unit volume, q [L T�1] is the
volumetric fluid flux (Darcy velocity) and ms [M L�3 T�1]
and mw [M L�3 T�1] are salt and water sources (sinks if
negative), respectively.
[10] The salt mass balance can be written in terms of salt

mass fraction w [M3 M�3] as

@ rqwð Þ
@t

¼ �rrrr � rqwð Þ þ rrrr � rDrrrrwð Þ þ ms; ð2Þ

where D[L2T�1] is the diffusion-dispersion tensor.
[11] Equation (2) is the divergence form of transport

equation. It is also called conservative form because it
expresses explicitly the salt mass balance. Groundwater
modelers often prefer the advective form, which is obtained
by subtracting fluid mass balance (1) multiplied by the
resident salt mass fraction w from (2), which yields

rq
@w
@t

¼ �rq � rrrrwþrrrr � rDrrrrwð Þ þ 1� wð Þms � mww: ð3Þ

2.1. Mass Balance Inconsistency Involving Internal
Salt Sources

[12] Internal sources are those found within the domain.
Internal pure salt sources (i.e., ms 6¼ 0, mw = 0) may be used
to model chemical reactions, dissolution, precipitation or
decay processes. It should be noticed that dissolution
processes may be accompanied by an increase in porosity,
that will in general compensate the salt source unless
refilled (case of 2-D horizontal models of a continuous
injection of CO2 or a creeping salt rock). Pure salt sources
may also be used as a simplified way to represent other
solute inflows. Pure water internal sources (i.e., ms = 0,
mw 6¼ 0) may be used to model water inflows, evaporation or
dehydration of minerals (e.g., gypsum evolving to anhydrite
in response to an increase in salinity). Most often, mixed
sources are used (ms+ mw = r* r, where r[L3L�3T�1] is a
volumetric source of fluid with density r*).
[13] Model equations become inconsistent when ms is not

present in flow equation (1) whereas it is in (2). The
inconsistency is more severe when the advective form of
the transport equation is adopted. An incomplete flow
equation is subtracted from the conservative form of the

transport equation to obtain the advective transport equa-
tion. This yields

rq
@w
@t

¼ �rq � rrrrwþrrrr � rDrrrrwð Þ þ ms � mww: ð4Þ

Note that the (1 � w) factor which multiplies ms in (3) is lost
in the process.

2.2. Mass Balance Inconsistency Involving Salt
Boundary Sources

[14] The flow and transport equations require appropriate
boundary and initial conditions to be well posed. Regardless
of the type of boundary condition adopted, a fluid flux is
always established across the boundary. This flux is explic-
itly prescribed in the Neumann and Cauchy boundary
conditions and is implicit in the Dirichlet ones. The fluid
flux across the boundary can be written as

�rqjb � n ¼ jw þ jss; ð5Þ

where n is the unit vector normal to the boundary pointing
outward and jss [M L�2 T�1] and jw [M L�2 T�1] are salt and
water fluxes, respectively. The subscript b denotes evalua-
tion at the boundary.
[15] Similarly, the boundary salt flux for transport can be

expressed as

�rqwþ rDrrrrwð Þjb � n ¼ jss: ð6Þ

The meaning of jw and jss is problem-dependent and very
much a modeler’s choice.
[16] Problems arise when flow and transport boundary

conditions are inconsistent. Inconsistencies appear if the salt
fluxes coming from the transport boundary conditions are
not considered in the fluid flux boundary conditions. To
prevent these inconsistencies, all salt boundary sources from
transport boundary conditions must also be boundary sources
in the flow equation. That is, if jss is not null in (6) it cannot be
null in (5).
[17] There are situations prone to inconsistent modeling.

This is the case of dissolution boundaries, usually modeled
as prescribed concentration plus zero fluid flux boundaries.
Concentration is prescribed because it is assumed that the
boundary and the fluid are in equilibrium. The fluid flux is
set to zero because the boundary is considered impervious,
which requires that jw and jss are such that the total flux
through the boundary is null. This requires a binary diffu-
sion process by which the salt influx is balanced by an
outward water flux. Obviously, this contradicts the imper-
viousness attributed to the boundary. That is, dissolution
boundaries are impervious only to water and there is an
actual salt flux that cannot be overlooked.
[18] The diffusive-dispersive flux of salt established

through a prescribed concentration boundary was studied
by Hassanizadeh and Leijnse [1988], where a thorough
description of dissolution boundaries and a rigorous deri-
vation of the associated salt flux can be found. The salt flux
can be obtained by subtracting (5) multiplied by w from (6),
which yields

jss ¼
1

1� w
rDrrrrwð Þjb � nþ jww

� �
: ð7Þ
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[19] For dissolution boundaries jw = 0, so that the flow
and transport boundary conditions have to be written as

�rqjb � n ¼ jss ð8Þ

wjb ¼ w*; ð9Þ

where w* is the salt mass fraction prescribed at the
boundary and jss is obtained from (7):

jss ¼
1

1� w
rDrrrrwjb � n: ð10Þ

This mass flux is undefined when w = 1, which is frequent.
However, jss can still be evaluated by computing the mass
balance (2) at the boundary. This indirect measure of jss is
inexact (the flux only becomes finite when rrrrw = 0) but
appropriate for numerical computations.

3. Evaluation of the Effect of Salt Sources
in Density-Dependent Flow Problems

[20] Two numerical experiments are carried out to illus-
trate the effect of pure sa ces. Numerical computations

were performed with the finite element code Trandens
[Hidalgo et al., 2005], in which the flow equation is
formulated using equivalent freshwater head hf [L] and the
flow storage term is approximated as

@ rqð Þ
@t

¼ rSs
@hf
@t

þ bwrq
@w
@t

; ð11Þ

where Ss [L
�1] is the specific storage coefficient and bw [�]

is (1/r) (@r/@w), which is taken as constant.

3.1. Saltwater Bucket Problem

[21] The saltwater bucket problem addresses the effect of
salt sources in a vessel with impervious boundaries (Figure 1).
The vessel is initially full of freshwater. Salt but not water
enters the system through the top boundary. Two ways of
representing the salt source are used. The first one considers
the upper limit as a transport Dirichlet boundary (Figure 1a)
and the second one as a constant rate source (Figure 1b).
The two conceptual models are not equivalent, but they help
in comparing the different types of sources. This benchmark
is similar to the one proposed by Ackerer et al. [1999]
primarily used to analyze the instabilities of numerical
solutions to density-dependent flow problems.

Figure 1. (left) Saltwater bucket problem setup. Salt enters the system through the top boundary. Two
conceptual models for the salt sources are proposed: (a) a Dirichlet boundary condition and (b) a constant
volumetric source ms = 0.005 kg/s/m3. (right) Saltwater bucket (c) average equivalent freshwater head
and (d) average salt mass fraction evolution. Note that solutions are significantly different in terms of
head (drop instead of rise when salt sources are neglected) but are less different in terms of mass fraction.
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[22] An analytical solution for average concentration can
be obtained when the salt source is modeled as a constant
rate source. Volume averaging equations (1) and (2), with
mw equal to zero, leads to

@rq
@t

¼
�
ms for the consistent case

0 for the inconsistent case
ð12Þ

@rqw
@t

¼ ms for both cases; ð13Þ

where the bar indicates volume average. Initially, hf (0) = hf0
and w(0) = 0. Stated like this, it is evident that the
inconsistent case, in which salt sources are neglected, is
wrong because the only source of fluid mass is not included.
3.1.1. Analytical Solution for the Inconsistent Case
[23] In the inconsistent formulation, equation (12) implies

that rq is constant and equal to the initial value r0q0. Then,
(13) yields

w tð Þ ¼ ms

r0q0
t: ð14Þ

[24] Expanding (12) as in (11) and assuming that r(t) 

r0e

bww(t) and that rqw 
 rqw, which are valid approxima-
tions for small values of w, the solution for head is

hf tð Þ ¼ hf 0 �
q0
Ss

r tð Þ � r0ð Þ
r tð Þ : ð15Þ

Notice that this formulation causes head to drop when salt is
added. In fact, head drop may be huge if storativity is small.
Again, the head drop simply reflects the tendency of the
fluid to shrink because its mass is held constant, while its
density is increased in response to the increase in
concentration.
3.1.2. Analytical Solution for the Consistent Case
[25] Equation (12) implies that rq is not constant but

evolves in time as

rq ¼ r0q0 þ mst: ð16Þ

Expanding (13) and using (16) leads to the solution for the
average mass fraction

w tð Þ ¼ mst

r0q0 þ mst
: ð17Þ

The solution for head is obtained by expanding again (12)
as in (11). In this case the derivative of w is replaced by its
value from (17). The resulting expression for head is

hf tð Þ ¼ hf 0 þ
q0

r tð ÞSs
r0 � r tð Þ þ ms

q0
t

� �
: ð18Þ

3.1.3. Numerical Results and Discussion
[26] The saltwater bucket problem was solved numerically

for the two conceptual models described in Figure 1 using the
consistent and the inconsistent formulations, which results in
a total of four simulations. The simulations were carried out
on a one-dimensional mesh for a time interval of 104s.
Results are shown in Figure 1.
[27] When salt is added, the mass, density and volume of

the fluid tend to increase. Therefore, head tends to increase,
as properly reproduced by the consistent formulation. How-
ever, the inconsistent formulation implies that rq is constant
(recall equation (12)). As fluid mass remains constant,
despite an increase in density, fluid volume tends to
decrease, which causes head to fall.
[28] Despite the differences in head, salt mass fraction

curves (Figure 1d) are very similar. Differences are visible
only for high values of salt mass fraction (w > 0.05).
Numerical and analytical solutions are virtually identical.

3.2. Elder Problem

[29] The Elder problem [Elder, 1967] is an unstable
interface density-dependent problem. It consists of a 600 �
150 m rectangular domain with salt mass fraction prescribed
at the bottom and in a 300 m long segment in the central
part of the top boundary (Figure 2). All boundaries are
impervious except at the two top corners, where head is
prescribed. Owing to its extended use as a benchmark, it is
worth examining how salt sources influence the solution to
this problem. The solution to the Elder problem is known to
be dependent on mesh size, temporal discretization and
convergence criteria [Ackerer et al., 1999; Frolkovič and
De Schepper, 2000]. Variations in those elements lead to
important changes in the concentration fingering pattern,
mainly in the central finger [see, e.g., Oltean and Bues,
2001; Diersch and Kolditz, 2002]. However, differences
between the consistent and the inconsistent solutions should
be qualitatively independent of numerical discretization
because of their conceptual nature.
[30] Simulations were carried out using a fine mesh of

triangular elements. Because of the symmetry, only half of
the domain was simulated. The simulations span 240months.
Two simulations were performed. They are identical to the
original problem except that the value of w the imposed at
the boundary is 0.2 (rescaling bw to maintain density
contrast), because the typical value of 1.0 is absurd (it
implies that the fluid consists solely of salt). The first
simulation uses the traditional formulation (neglecting salt
sources in the flow equation). The second simulation
acknowledges salt sources.

Figure 2. Definition of the Elder problem and salt mass
fraction isolines (in percent of maximum mass fraction) in
the 240th month (solid line, consistent solution; dashed line,
inconsistent solution). Only the left half of the domain is
shown.
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[31] Results of the simulations (Figure 2) show that
concentration contours change little when salt sources are
considered. This reflects that the influence of salt sources on
concentration is small for moderate values of the salt mass
fraction.
[32] The main difference between consistent and incon-

sistent solutions is found in the velocity field (Figure 3).
Velocities never cross the boundaries in the traditional
problem solution, but point toward the Dirichlet ones in
the adjacent elements (displayed in Figure 3) to compensate
the downward diffusion with an upward advection. This is
consistent with the impervious boundary condition set for
the flow equation. When salt sources are acknowledged,
velocities are tilted downward to become parallel to the no
flow boundaries. This reflects the direction of salt flux at
prescribed concentration boundaries, which occurs mostly
by diffusion.
[33] The behavior of flow across the prescribed head

corner (Figure 3) node is illustrative. Freshwater enters
the system through this point in the inconsistent solution.
By contrast, water leaves the system when salt sources are
acknowledged. Salt mass entering the system causes the
fluid volume and, hence, head to increase, thus pushing
fluid out of the system. The inversion in the flux direction
explains the difference in the 10% line in Figure 2.

4. Conclusions

[34] Pure salt sources are not common in density-
dependent flow problems. Yet, when present, their effect
may be qualitatively important. Salt influxes cause both fluid
density and volume to increase. Therefore, they cause head to
rise and fluid to flow away from the source. The opposite
occurs when salt sources are accounted for in the transport
but not in the flow equation. The obvious conclusion is that
salt sources, when present, should also be acknowledged in
the flow equation.
[35] Neglecting the influence of pure salt sources on fluid

mass balance can lead to erroneous solutions. This is
especially important when Dirichlet boundaries for transport
and impervious (i.e., no water flux) boundaries for flow are
combined inconsistently. Discrepancies in concentrations
are significant only wh prescribed mass fraction is

close to one. However, solutions are wrong for flow, at least
from a qualitative point of view. The fluid mass balance will
not close. Moreover, the head drop caused by the salt influx
needs to be offset by a water influx, which causes an
inversion in flux direction at prescribed head or mixed
boundary condition nodes.
[36] Two final disclaimers should be made. First, the

inconsistency discussed here does not occur if the compo-
sitional approach is used. Second, the problem can be fixed
even in density-dependent flow codes that do not handle
pure salt sources. It is sufficient (1) to add a water source
term of magnitude equal to the salt source term to the flow
equation and (2) to multiply the salt source term in the
transport equation by (1�w), if the advective form is used.
If the pure salt source term is not known a priori, it can be
evaluated from a preliminary inconsistent run because the
effect on concentration is small.
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