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a b s t r a c t

Heat is transported in aquifers by advection and conduction. Spatial variability of hydraulic conductivity
causes fluctuations in small scale advection, whose effect can be represented by a dispersion term. How-
ever, the use of this term is still subject to controversy among modelers. The effect of heterogeneity on
the heat plume generated by a groundwater heat exchanger (GHE) in a three-dimensional aquifer under
steady state conditions is examined. Transverse dispersion is estimated using a stochastic approach in
which a distinction between effective and ensemble dispersion coefficients is made. The former quanti-
fies the typical width of the heat plume and the latter takes into account the uncertainty of the lateral
plume position. Simulations show that transverse dispersion is proportional to the variance and correla-
tion length of the log-conductivity field. On the one hand, the ensemble transverse dispersion coefficient,
which can be used for risk analysis to find the mean temperature and the potential plume spread, is high
near the heat source and then decreases. On the other hand, the effective transverse dispersion coeffi-
cient, the one required to simulate actual temperature values and plume width, displays a less marked
dependence on the distance from the source. For modeling purposes it can be approximated as
aT � 0:02r2

ln K Lx, where r2
ln K is the variance of the log-conductivity field and Lx its correlation length in

the mean flow direction. However, a zero dispersion should be used to compute the energy dissipated
by the GHE.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The use of groundwater for energy storage and heat exchange
has been an issue of great interest since the 1970s. Aquifers are
considered a source of clean, environment friendly energy and
are increasingly used to reduce the need for other energy sources
[1–3]. However, the thermal use of aquifers alters the natural tem-
perature distribution of groundwater, which can affect groundwa-
ter quality. Changes in temperature can also interfere with other
aquifers usages, surface water systems or influence the perfor-
mance of thermal devices. Understanding groundwater heat trans-
port is essential for the design, performance analysis and impact
assessment of thermal devices. Understanding is often gained
through numerical modeling, which allows synthesizing and inte-
grating the knowledge obtained from field observations.

Heat transport is frequently modeled subject to approximations
that help in solving the problem without losing the relevant as-
pects of the phenomenon. Heat transport models often disregard
density and viscosity changes caused by temperature (e.g.
[4,5,3]). Thermal properties of the soil (conductivity and heat
capacity) are usually considered homogeneous or only dependent
ll rights reserved.
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on the geological facies (e.g. [6–8]). It is also frequent to disregard
heterogeneity in hydraulic conductivity. Finally, hydrodynamic
dispersion is sometimes considered negligible compared to other
transport mechanisms, i.e., conduction and advection. While the
impact and applicability limits of the approximations on water
and soil properties are well established [9], the effect of heteroge-
neity and dispersion on heat transport is still subject to some
debate.

The relationship between dispersion and heterogeneity has
been intensively studied for solute transport (e.g. [10,11]). Solute
and energy transport obey very similar equations. Therefore, sim-
ilar behavior should be expected. However, heat diffusion is several
orders of magnitude higher than molecular diffusion (10�4–
10�5 m2/s for heat diffusivity against 10�9–10�10 m2/s for
molecular diffusion), which may have a smoothing effect on the
temperature contrast caused by spatial heterogeneity. Recently,
Ferguson [12] studied the effect of heterogeneity on the injection
and later pumping of warm water in an aquifer. He found that
heterogeneity decreases the amount of energy recovered and in-
creases the uncertainty in temperature distribution.

Traditionally, heat dispersion has been considered a process of a
lower order than conduction [13–15] or convection [16]. When
acknowledged, dispersion is treated in diverse manners. Woodbury
and Smith [4] provide a criteria based on the Peclet number to
determine if the regime is conduction dominated. Doughty et al.
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[17] consider that an effective conductivity value independent of
the velocity can be sufficient to represent dispersion in heat trans-
port models. Sauty et al. [18] define an effective conductivity linear
on velocity to simulate heat transport under radial flow conditions.
However, Willemsen and Groeneveld [19] (quoted by Chevalier
and Banton [20]) state that the addition of a dispersive term can
overestimate the process.

In practice there is no agreement about the need for heat disper-
sion, as pointed out by Anderson [21] and Ferguson and Woodbury
[2]. Some modelers include it (e.g. [13,22]) while others do not (e.g.
[8,23]). In particular, the absence of heat dispersion is a common
characteristic of groundwater heat exchangers (GHE) models (e.g.
[7,24,3]), where only advection and conduction are considered.

The aim of this work is to study the importance of hydraulic
conductivity heterogeneity on heat transport, so as to shed light
on whether dispersion is needed or not. For this purpose, a steady
state heat plume originating from a GHE will be modeled in a
three-dimensional heterogeneous aquifer. The characterization of
the plume will be studied using a stochastic framework. Special
attention will be paid to the effect of heterogeneity on transverse
dispersion and the energy mass balance.

2. Governing equations

Equations governing water flow and heat transport in aquifers
are presented in this section. Flow is described by Darcy’s law
and local scale transport is characterized by advection and heat
conduction. As a first approximation, density and viscosity changes
will be considered negligible because the range of temperatures
used is small. Under these assumptions, steady state flow and
transport are described by the following governing equations:

$ � ½KðrÞ$hðrÞ� ¼ 0; ð1Þ
qðrÞ � $TðrÞ � Dr2TðrÞ ¼ j0sðrÞ; ð2Þ

with

D ¼ k
qwcw

and j0sðrÞ ¼
jsðrÞ
qwcw

; ð3Þ

where r [L] is the coordinate vector, K [L T�1] is hydraulic conductiv-
ity, h [L] is piezometric head, T [K] is temperature, q [L T�1] is Darcy
flux,

qðrÞ ¼ �KðrÞ$hðrÞ; ð4Þ

qw ½M L�3� is water density, cw ½L2 T�2 K�1� is the specific heat of
water, k ½M L T�3 K�1� is the medium thermal conductivity and
js ½M L T�3� is a heat source.

The above steady state transport problem can be solved analyt-
ically for an infinite homogeneous aquifer with natural flow and
transport boundary conditions. Without loss of generality, the flow
field can be assumed to be aligned with the x-direction, i.e.,
q ¼ q0êx, where q0 is the mean regional groundwater flux. For a
point-like source in two dimensions (or line-like source along the
z-direction in three dimensions) the temperature distribution is gi-
ven by [25]

TðrÞ ¼ j0s
2pD

exp
q0x
2D

� �
K0

q0ðx2 þ y2Þ
2D

� �
; ð5Þ

where K0 is the modified Bessel function of the second kind of order
zero.

3. Characterization of heat dispersion

The steady state heat plume in a homogeneous medium is
shaped by advection in the direction of flow and by lateral disper-
sion (5). The longitudinal dispersion can be neglected as can be
seen in (5), which describes an elongated plume with small gradi-
ents in the flow direction. In analogy, the plume shape in a heter-
ogeneous medium can be described by the evolution of its lateral
extension along the mean flow direction. The extension of a plume
is typically measured by the spatial moments of the temperature
distribution [26,27]. Therefore, the plume can be described by
the evolution in the flow direction of the transverse second order
spatial moment. The effect of heterogeneity can be systematically
studied using a stochastic modeling framework in which observ-
ables are defined as suitable averages over the ensemble of all pos-
sible medium realizations. In summary, heat dispersion will be
characterized here by the ensemble averages of the transverse mo-
ments of the temperature distribution. The basics of this method-
ology are presented next.

3.1. Transverse spatial moments

The zeroth, first and second transverse spatial moments of the
steady state heat plume are defined as

lð0ÞðxÞ ¼
Z

drT TðrÞ; ð6Þ

lð1Þi ðxÞ ¼
Z

drT riTðrÞ; ð7Þ

lð2Þii ðxÞ ¼
Z

drT r2
i TðrÞ; ð8Þ

where i ¼ y; z and rT ¼ ðy; zÞt .
For a given cross-section of the medium, lð0ÞðxÞ is a measure for

the stored energy and lð1Þi ðxÞ is the transverse position of the
plume center of mass. The lateral plume extent is quantified by
the second centered moments of the normalized temperature
distribution

jiiðxÞ ¼
lð2Þii ðxÞ
lð0ÞðxÞ �

lð1Þi ðxÞ
lð0ÞðxÞ

" #2

for i ¼ y; z: ð9Þ

A relation between the above defined transverse moments and the
dispersion of the heat plume can be obtained for the homogeneous
case (i.e., qi ¼ q0di1) for a line-like heat source (i.e., j0ðrÞ ¼ Qdðx; yÞ,
where Q ½K T�1� is constant). Disregarding longitudinal dispersion
because @T=@x� @T=@rT , (2) reduces to

q0
@TðrÞ
@x
� D

@2TðrÞ
@y2 þ @

2TðrÞ
@z2

 !
¼ Qdðx; yÞ: ð10Þ

Multiplying Eq. (10) by y2 and integrating it by parts in the trans-
verse direction yields

q0
@lð2Þyy ðxÞ
@x

� 2D ¼ 0; ð11Þ

which is obtained taking into account that when r!1; T and $T
vanish, and that the integral of the source term is null for symmetry.
Integrating (11) and substituting lð2Þyy into (9) yields

jyyðxÞ ¼
2D
q0

x: ð12Þ

Note that for the homogeneous case lð0Þ is constant and lð1Þy ðxÞ ¼ 0.
Eq. (12) shows that the transverse width of the steady state

plume increases as
ffiffiffi
x
p

and establishes a relation between the
transverse moment and the dispersion coefficient. This relation
can be generalized to the heterogeneous case to measure the rate
of increase of the transverse plume extension along the x-direction.
A transverse dispersion coefficient DT can be defined as

DT ¼
1
2

djyyðxÞ
dx

q0; ð13Þ

where q0 is the mean flow for the heterogeneous case.



Fig. 1. Groundwater heat exchanger 3D numerical model setup.
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3.2. Stochastic model and ensemble averages

In the stochastic approach, the spatially varying conductivity
field KðrÞ is modeled as a typical realization of an ensemble of con-
ductivity fields fKðrÞg, which is characterized by its joint distribu-
tion density PfKðrÞg. Hydraulic conductivity is found to be log-
normally distributed, so that it can be completely characterized
by the mean and semivariogram of the log-conductivity field
f ðrÞ ¼ ln KðrÞ.

In a stochastic model, the definition of the plume width is not
unique and depends on the order in which averages are taken. This
has been extensively studied for the transport of contaminant
plumes in heterogeneous porous media (e.g. [27–31]). In this spirit,
an effective and ensemble plume widths can be defined. The effec-
tive plume width is defined by ensemble averaging over the second
centered moments in single realizations

jeff
ii ðxÞ ¼ hjiiðxÞi for i ¼ y; z; ð14Þ

where the angular brackets denote the average over all realizations.
The ensemble plume width is defined in terms of the second cen-
tered moment of the ensemble averaged heat distribution hTðrÞi

jens
ii ðxÞ ¼

hlð2Þii ðxÞi
hlð0ÞðxÞi �

hlð1Þi ðxÞi
hlð0ÞðxÞi

" #2

for i ¼ y; z: ð15Þ

Accordingly, the effective and ensemble transverse dispersion coef-
ficients are defined by

Dens
T ¼ 1

2
dj ens

yy ðxÞ
dx

q0 ð16Þ

and

Deff
T ¼

1
2

djeff
yy ðxÞ
dx

q0; ð17Þ

respectively.
The effective quantities measure the evolution of the typical

plume width along the mean flow direction. The ensemble quanti-
ties incorporate an artificial dispersion effect due to lateral center
of mass fluctuations of the heat plume from realization to realiza-
tion. This uncertainty of the lateral plume position is encountered
at any point along the mean flow direction. By analogy with the
temporal evolution of the dispersion coefficients in heterogeneous
media (e.g. [29]) it can be expected that this difference decreases
with distance from the injection point. Note that the uncertainty
decreases as the temperature samples an increasing part of the
medium heterogeneity.

4. Numerical model

The study of heat dispersion is carried out on a three-dimen-
sional heterogeneous aquifer. The source of heat is a GHE at pre-
scribed temperature. The resulting plume is characterized using
the stochastic methodology described above.

4.1. Steady state GHE 3D model

The steady state plume created by the GHE is modeled in a
1000� 500� 500 m rectangular parallelepiped domain (Fig. 1).
Water at a reference temperature T0 enters the system by the
x ¼ �80 m plane where flow is prescribed and leaves the domain
by the x ¼ 920 m side where head is prescribed. The other bound-
aries are considered impervious. Water is heated by a GHE mod-
eled as a line-like source located at the origin of the coordinate
system and extended all along the vertical. The GHE is considered
to be at a constant temperature T0 þ DT above the incoming water.
All the domain boundaries are adiabatic except the sides where
flow and head are prescribed in which the corresponding energy
flow is computed. Therefore, the boundary conditions are written
as

hjb ¼ H at the outflow; ð18Þ

� ðK$hÞjb � n ¼
q0 at the inflow;
0 elsewhere

�
ð19Þ

for flow, where H ½L� is the value of head prescribed at the outflow,
and

ð�qT þ D$TÞjb � n ¼
qbT0 at the inflow;
qbT at the outflow;
0 elsewhere;

8><
>: ð20Þ

T ¼ T0 þ DT at x; y; z ¼ 0 ð21Þ

for transport, where qb is the flow at the outflow, i.e.,

qb ¼ �ðK$hÞjb � n: ð22Þ

Actually, qb ¼ q0 at the inflow boundary, evenly distributed over the
plane, but will be variably distributed over the outflow boundary.
These boundary conditions ensure that the mean flow is aligned
with the x-direction.

Posed this way, the problem is characterized by the Peclet num-
ber Pe

Pe ¼ qwcwq0L
k

; ð23Þ

where L is a characteristic length.
A final comment has to be made on the heat source term. The

GHE can be modeled by prescribing either temperature or the dis-
sipated energy. A prescribed temperature boundary condition is
preferred here because it allows to compute the influence of heter-
ogeneity in the efficiency of the GHE. However, when temperature
is prescribed it is necessary to determine the equivalent radius of
the GHE. It should be noticed that, since temperature is only pre-
scribed at one column of nodes, the effective radius depends on
grid size and on grid Peclet number. To determine this dependence,
heat transport in a bi-dimensional a homogeneous medium was
simulated numerically by prescribing T at the GHE. The solution
was compared with Eq. (5) for the same dissipated energy. Then
the effective radius is given by the isotherm of (5) which corre-
sponds to a temperature perturbation identical to the one imposed
in the numerical model in the first place.

Results of the simulations confirmed the dependence with the
Peclet number and grid size. For a regular grid of element size
Dx ¼ 20 m, the equivalent radius was between 4 and 4.5 m
(approximately Dx=5) for the range of the Peclet number of this
study. This radius was reduced to 2 m by refining the grid around
the prescribed temperature zone.



Fig. 2. One realization of the ln K fields for r2
ln K ¼ 3 (left) and the 0.5, 1.5, 2.5, 3.5 and 5.5 �C isosurfaces of temperature increment above T0 (Pe ¼ 14:06 case) (right).

Fig. 3. Comparison between the ensemble temperature for ln K fields with different
r2

ln K and the homogeneous case ðPe ¼ 14:06Þ. Figure shows a section at z ¼ 250 m.
Isolines correspond to T0 þ 1 �C and T0 þ 0:1 �C.
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4.2. Numerical setup

The effect of heterogeneity on heat transport is studied by per-
forming several sets of Monte Carlo simulations. The thermal
parameters of the medium are fixed as constant for all simulations:
k ¼ 1:6369 J=m s K and qwcw ¼ 4:18� 106 J=m3 K. The GHE is set
20 �C above reference temperature, i.e., DT ¼ 20 �C. The geometric
mean of hydraulic conductivity is set to Kg ¼ 0:392� 10�4 m=s,
with variance for ln K;r2

ln K ¼ 1;2 and 3. The heterogeneity struc-
ture of the ln K field is simulated by an anisotropic Gaussian semi-
variogram with correlation lengths Lx ¼ Ly ¼ 2Lz ¼ 100:14 m. Lz is
taken smaller than Lx and Ly to simulate a more realistic bedding
structure. A hundred realizations of every case are simulated.
Hydraulic conductivity fields are generated using GCOSIM3D
[32]. Head is prescribed to 1 m at the outflow boundary. Four dif-
ferent cases corresponding to Pe ¼ 7:03;10:23;14:06 and 16:62
are simulated by varying the prescribed flow an the inflow, q0. Pe
is computed using Lx as the characteristic length.

The problem is solved using the code Transdens [33] on a trian-
gular prismatic finite element mesh. Discretization is chosen so
that there are at least 10 correlation lengths in x and z directions
and five elements per correlation length. This ensures a good sam-
pling of the heterogeneity field. The mesh is refined around the
heat source to maintain the GHE effective radius within a reason-
able range.

4.3. Numerical calculation of heat plume moments

As discussed in Section 3, effective dispersion is computed from
the plume moments. Moments, Eqs. (14) and (15), are obtained by
means of numerical integration over the nodes of the finite ele-
ment mesh using a trapezoidal rule. Dispersion coefficient, defined
according to (13), where jyy is given by (14) and (15) for the effec-
tive and ensemble dispersion respectively is computed by a for-
ward finite difference scheme.

4.4. Results

4.4.1. Plume dispersion
The effect of heterogeneity on heat dispersion is displayed in

Fig. 2. A comparison between the average temperature distribution
of the heterogeneous cases and the homogeneous case (Fig. 3) indi-
cates that there is indeed an increment of the lateral extension of
the heat plume. The increase in lateral extent is also reflected in
a shortening of the temperature isolines, which become less elon-
gated. The effect is proportional to r2

ln K . That is, heterogeneity in-
deed affects the temperature distribution.

To quantify the effect of heterogeneity on the plume width, the
behavior of the second moment of the heat plume (Fig. 4) is ana-
lyzed. It can be seen that the width of the plume grows faster with
the distance from the source in the heterogeneous cases, which
leads to wider plumes. The influence of the domain boundaries
manifests itself in the departure of jyy from the theoretical value
for the homogeneous case. When the Peclet number is low, i.e.,
low water flux, the boundary affects the results at relatively short
distances.

Fig. 5 shows the ratio between the heterogeneous and homoge-
neous transverse dispersion coefficients for the different simulated
cases computed using the ensemble and effective second moments
(17) and (16). The behaviors of Dens

T and Deff
T reflect the influence of

the boundaries on the simulations. The heterogeneous cases dis-
play high transverse dispersion near the heat source. The disper-
sion obtained by the ensemble and the effective second moments
are quite similar. Still, as expected, the ensemble dispersion is al-
ways higher than the effective one because it quantifies some arti-
ficial spreading due to center of mass fluctuations of the plume
along the principal flow direction.

The transverse dispersion coefficient also depends on the Peclet
number. In the homogeneous media, dispersion is high while diffu-
sion is the dominant process (small Peclet numbers). Dispersion in
the heterogeneous media is greater than in the homogeneous one
as expected.

An appropriate effective transverse dispersion can be estimated
from the deviation of the heterogeneous model results from the
homogeneous case. The average dispersion coefficients DT defined
by (17) and (16) can be decomposed into a contribution due to spa-
tial heterogeneity and one due to thermal conductivity as follows:

DT ¼ aT q0 þ
k

qwcw
; ð24Þ



Fig. 4. Effective and ensemble plume second moments for the different values of the Peclet number and r2
ln K . The departure of jyy for the r2

ln K ¼ 0 case from the theoretical
value (solid line) indicates where the boundary effects become relevant.

Fig. 5. Ratio between the effective and ensemble transverse dispersion coefficients and the homogeneous dispersion coefficient for different values of the Peclet number and
r2

ln K . The horizontal line ðDT=D ¼ 1Þ is the homogeneous case. The departure of the r2
ln K ¼ 0 case from this line indicates where the boundary effects become relevant.
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where aT ½L� is the transverse dispersivity. aT is assumed to be pro-
portional to r2

ln K and to the correlation length Lx [34], i.e.,

aT ¼ aTr2
ln K Lx; ð25Þ

where aT is a dimensionless coefficient dependent on the distance
from the source. Using (25) in (24) leads to
1
r2

ln K

DT

D
� 1

� 	
¼ aT Pe: ð26Þ

The proportionality coefficient aT at a certain distance from the
source can be obtained from a linear fit between the deviation from
the homogeneous case and Pe. Fig. 6 (left) shows an example of that



Fig. 6. Left: Dependence of the deviation of DT from the homogeneous case on the Peclet number (40 m from the heat source). The slope of the fitted line is proportional to
transverse dispersion. Right: Dependence of transverse dispersion on the distance from the heat source (taking into account only Pe ¼ 14:06 and 16.62 to remove the strong
influence of boundaries in the small Pe cases).

Fig. 7. Dissipated power in the groundwater heat exchanger for the homogeneous
case and different Peclet numbers. Bars show the range of average dissipated power
for the heterogeneous cases. The lower limit always correspond to the case with
highest r2

ln K .
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fit for a point at 40 m from the heat source. In order to remove the
influence of boundaries in the small Pe cases, only the ones corre-
sponding to Pe ¼ 14:06 and 16.62 were taken into account to eval-
uate aT . Fig. 6 (right) shows the computed values of aT for the first
300 m from the heat source. It can be seen that for the ensemble
average aT increases until the first correlation length from the
source. Then, it decreases as distance from the source grows. In con-
trast, for the effective average, aT displays a less marked depen-
dence on the distance from the source. The difference in the
behavior is again caused by the center of mass fluctuations con-
tained in the ensemble magnitudes. For practical purposes, Fig. 6
(right) suggests that the effective transverse dispersion coefficient
can be approximated by

aeff
T � 0:02r2

ln K Lx: ð27Þ
4.4.2. Energy balance
The above results suggest that heterogeneity may lead to a

marked increase in the dissipated energy. However, the GHE dissi-
pated energy for the heterogeneous cases is very similar to that of
the homogeneous case (Fig. 7). A very small dependence on r2

ln K is
observed, which is slightly stronger for big Peclet numbers. There-
fore, the main controlling factors seem to be the mean flow, i.e., the
local flux around the GHE, and the heat conduction, but not
dispersion.

5. Conclusions

The role of dispersion in heat transport has been subject to
some controversy. The numerical simulations presented in this
work show that heterogeneity in the permeability of aquifers
causes a dispersive effect on the heat plume generated by a GHE.
For the steady state, longitudinal dispersion is negligible and trans-
verse dispersion is proportional to the mean flow q0, the variance
r2

ln K , and correlation length Lx of the log-conductivity field. Ensem-
ble transverse dispersion is high near the heat source (higher than
the value for the homogeneous case) and decreases with the dis-
tance to the source towards the local dispersion value. However,
effective transverse dispersion dependence with the distance from
the source is less stronger. Moreover, the amplitude of variation is
also smaller. For the conditions simulated here and for modeling
purposes Deff

T � 0:02r2
ln K Lxq0 could be used.

Transverse dispersion determines the shape and width of the
heat plume. Therefore, it must be used for models of arrays of GHEs
aimed at assessing the impact of thermal groundwater devices. The
value of dispersion to be used depends on the objective of the cal-
culations. If the interest is set on the potential spread of the heat
signal, which may be the case for environmental impact assess-
ments and risk analysis, then the ensemble dispersion should be
used. In that manner, the fluctuations of the center of mass of
the plume are taken into account. Thus, the model will provide
an estimation of the region that is likely to be affected by the
plume. However, if the interest is set on the actual width of the
plume and the actual values of temperature, then the effective dis-
persion should be used.

From the point of view of the efficiency of the GHE, dispersion is
not a key factor. The dissipated energy depends solely on the mean
flow and on the thermal conductivity. That is, no dispersion should
be taken into account when evaluating dissipated energy. This par-
adox (dispersion needed to assess the temperature plume, but not
to compute dissipated energy) may explain the controversy over
the use of dispersion. It must be stressed, however, that our finding
is restricted to the type of boundary conditions adopted here.
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