
Computational and conceptual issues in the calibration of seawater
intrusion models

Jesús Carrera & Juan J. Hidalgo & Luit J. Slooten &

Enric Vázquez-Suñé

Abstract The inverse problem of seawater intrusion
(SWI) is reviewed. It represents a challenge because of
both conceptual and computational difficulties and
because coastal aquifer models display many singularities:
(1) head measurements need to be complemented with
density information; (2) salinity concentration data are
very sensitive to flow within the borehole. Data problems
can be reduced by incorporating the measurement process
within model calibration; (3) SWI models are extremely
sensitive to aquifer bottom topography; (4) the initial
conditions may be far from steady state and depend on the
location and type of sea-aquifer connection. Problems
with aquifer geometry and initial conditions can be
addressed by parameterization, which allows for modifi-
cation during inversion. The four sets of difficulties can be
partly overcome by using tidal response and electrical
conductivity data, which are highly informative and
provide extensive coverage. Still, SWI inversion is
extremely demanding from a computation point of view.
Computational improvements are discussed.
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Introduction

Protecting coastal aquifers requires not only a good
understanding of their dynamics, but also a detailed

knowledge of the variability of their parameters. Seawater
intrusion (SWI) is especially sensitive to the sea-aquifer
connection, usually associated with the presence of
preferential flow paths. Management of coastal aquifers
and design of protection and correction actions requires
identification of such paths. These goals demand that
modeling takes full advantage of collected data, which can
only be achieved in an inverse modeling framework (e.g.,
Poeter and Hill 1997).

Coastal aquifers would appear to be ideally suited to
inversion, in the sense that highly informative and
relatively easy to collect data are usually available.
Aquifer response to sea level fluctuations (caused by tides
and wind or barometric fluctuations) provides a range of
aquifer-scale hydraulic data that cannot be matched by
inland aquifers. Pollutants usually affect a small portion of
inland aquifers, whereas salinity transport may occur
along the whole coastline, bringing in information about
large-scale properties. Moreover, salinity should be rela-
tively easy to monitor by means of geophysical methods,
so that extensive data can be collected at a moderate cost.

The concurrence of need and availability of informative
data should lead to a perfunctory application of inverse
modeling techniques to coastal aquifers. Paradoxically, the
literature reports on fully fledged inversion are extremely
scarce. It can be contended that this scarcity reflects
conceptual and computational difficulties.

Conceptual difficulties start from the fact that SWI is
an essentially three-dimensional (3D) problem and is very
sensitive to the heterogeneity in hydraulic conductivity
and to the presence of preferential flow paths (e.g.,
paleochannels, Mulligan et al. 2007). It is also highly
sensitive to aquifer bathymetry (Abarca et al. 2007a).
Moreover, head measurements are affected by density
(Post et al. 2007). Salinity concentration measurements in
open wells may not reflect resident aquifer concentrations
but flux averaged concentrations. These difficulties are
shared by all transport problems, but are particularly
severe in SWI, where vertical fluxes are likely to occur
within the borehole. Computational difficulties include the
need for solving two coupled non-linear equations. Doing
so in a 3D domain, while solving the inverse problem,
requires a huge computational effort.

These difficulties often lead to questioning the wisdom
of inversion. The opposite can also be contended.
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Modeling difficulties highlight the need for inversion.
Ironically, but not surprisingly, literature on the inverse
problem for SWI problems is scant. A number of reviews
are available for conventional groundwater model inver-
sion (Yeh 1986; Carrera 1987; McLaughlin and Townley
1996; Poeter and Hill 1997; de Marsily et al. 1999;
Carrera et al. 2005), but none of them devotes any
attention to SWI. The objective of this paper is to fill such
a gap by analyzing the conceptual and computational
aspects of the inverse problem that are specific to SWI
modeling.

Basic inversion concepts

The basic issues of the groundwater inverse problem are
fairly well established. A summary of them is included
here for the sake of completeness and to define the terms
that will be used later.

Problem statement: parameterization
An inverse problem can be stated as a process of finding
the set of parameters that leads to an optimal fit between
computed and measured values of aquifer state variables.
These include both direct state variables such as head or
concentration, and derived state variables such as elec-
trical conductivity or flow rates. The term “parameter” is
more difficult to define. In the context of inversion,
parameters are a set of unknown scalars that allow for the
definition, without ambiguity, of all aquifer properties
(hydraulic conductivity, storativity, recharge, boundary
heads and fluxes, porosity, dispersivity, aquifer geometry)
at all points in space and, when applicable, time.

The process of expressing all aquifer properties in
terms of parameters is termed parameterization. Many
parameterization schemes can be used. The most popular
ones are zonation, where parameters are associated with
properties within a portion (zone) of the aquifer, or pilot
points, where properties are obtained by interpolation
between parameter values associated to those points (see
McLaughlin and Townley 1996, or Alcolea et al. 2006, for
discussions on this issue). Strictly speaking, parameter-
ization is not required for the pure geostatistically based
formulations of the inverse problem (e.g., Kitanidis and
Vomvoris 1983; Rubin and Dagan 1987; Hernández et al.
2006). However, these formulations would be unafford-
ably expensive for SWI and will not be discussed here.

Experience dictates that parameterization may be the
most difficult conceptual step of inverse modelling. On
one hand, it is desirable to keep the number of parameters
as small as possible to reduce convergence difficulties and
CPU time. On the other hand, it is clear that many
parameters may be required for a proper identification of
spatial variability patterns. As numerical methods and
computer speed advance, there is a clear trend towards
densely parameterized models (Alcolea et al. 2006; Hunt
et al. 2007).

Objective function
Model calibration is usually performed manually by trial
and error. However, the process is tedious and often
incomplete (see, e.g., Carrera and Neuman 1986a; Poeter
and Hill 1997). Automatic solution overcomes these
difficulties. Automatic calibration is normally formulated
as the minimization of an objective function. An alter-
native to this approach is the use of direct methods which
consist of substituting state variables, assumed to be
known everywhere, into the governing equations and
solve these for aquifer properties (e.g. Nelson 1960;
Giudici et al. 2000). However, this approach does not
appear feasible for coupled non-linear problems and will
not be discussed here.

While a number of objective functions are feasible, the
vast majority of authors use variations of

F ¼ S
i
liFi ð1Þ

where subindex i identifies the type of data (e.g., i = h for
head, i = c for concentration, i = p for parameters, etc.),
the λi is the relative weight factor and Fi measures the fit
between measurements and computations of type i data
(including model parameters, that is, i = Y for log-K
(hydraulic conductivity), i = r for recharge, etc). A
weighted sum of squared errors is usually adopted for
Fi. For a generic type of data u (state variable or model
parameter):

Fu ¼ u pð Þ � u*ð ÞtV�1
u u pð Þ � u*ð Þ ð2Þ

where u* is the vector of measurements, u(p) is the vector
of computed values of u with parameters p at the same
location and times as measurements and V�1

u is the
covariance matrix of u residuals, that is (u(p) – u*),
which includes both measurement and model errors. This
covariance matrix is never known with accuracy. There-
fore, following Neuman and Yakowitz (1979), it is
common to write it as Cu=τuVu, where Cu is an improved
estimate of the covariance matrix and τu is an unknown
scalar. Note that, when u represents a given type of
parameter (e.g. log-K), then u(p) is itself the vector of
parameters of such type and u* is the vector of their prior
estimates.

The rationale behind the objective Eq. (1) is diverse. It
was originally proposed by Neuman (1973) with two
terms (Fh+λpFp), in a multiobjective optimization context,
to obtain a good fit of heads, while ensuring plausible
parameters (i.e., computed parameters p are close to their
prior estimates, p*). Stated like this, Fp plays the role of a
regularization term that stabilizes the solution (see the
following section Uniqueness, stability, identifiability). How-
ever, this term appears naturally in statistically based
objective functions such as the Bayesian function (Neuman
and Yakowitz 1979) or maximum likelihood estimation
(Carrera and Neuman 1986a) (see also Emselem and de
Marsily 1971). These approaches lead to sum of squared
errors objective functions, such as Eq. (2), when residuals are
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multinormal. They also provide optimal means to estimate
weight factors λi (e.g., Kitanidis and Vomvoris 1983; Medina
and Carrera 2003). Therefore, the objective function Eq. (1)
is indeed optimal when residuals are multinormal. More-
over, minimization is easy when the dependence between
observation and parameters is linear. Both requisites
(normality and linearity) may be obtained by appropriate
transformation of the variables. For example, hydraulic
conductivity is known to be log-normally distributed (Davis
1969). Therefore, the objective function for hydraulic
conductivity K should be written in terms of Y = log K.
As it turns out, this transformation may also help in
improving the quadratic component of F (Dagan 1985;
Carrera and Neuman 1986b). A careful analysis of concen-
tration errors prompted Knopman and Voss (1989) to also
log-transform concentration.

The nature of terms Fi, λi and Vi should be understood
in a somewhat lax manner (the effect of varying λi is
shown in Fig. 1). Several terms may be used for data of
the same type, but which the modeller may wish to treat
separately. For example, Rötting et al. (2006) or Alcolea et
al. (2007, 2009) separate terms representing natural head,
typically independent at different wells, and head responses
to pumping tests or river or sea level fluctuations, which are
often autocorrelated in time, thus leading to a non-diagonal
Vh (e.g., Carrera and Neuman 1986c). By the same token, a
careful analysis of model errors is needed to properly define
the error structure, which may be achieved either formally
(Refsgaard et al. 2006) or subjectively (Sanz andVoss 2006).
In short, there is a lot of room in the objective function for
modellers to introduce their conceptual views and subjective
judgement.

Minimization algorithm
Minimizing F (Eq. 1) requires an iterative process, unless
F is exactly quadratic, which is rarely the case. Numerous
minimization methods are available. Discrete optimization
methods, which solely rely on the computation of F are
the simplest to implement. Many of them are designed to

find the global minimum. Examples include simulated
annealing, genetic algorithms (e.g., Rao et al. 2003; Tsai
et al. 2003), or the shuffled complex evolution method
(Duan et al. 1992). They have been used to solve
optimization problems in coastal aquifers (e.g., Benhachmi
et al. 2003; Katsifarakis and Petala 2006; Yeh and Bray
2006; He et al. 2007). However, the cost of discrete
optimization methods grows exponentially with the number
of parameters. Moreover, discrete non-uniqueness is much
less of an issue than often purported. Therefore, the focus
will be set here on continuous methods. Cooley (1985)
showed that the most efficient of these are Gauss-Newton
methods (Marquardt method being the favourite). They are
used routinely and will be the only ones discussed here. The
algorithm proceeds as follows (see Fig. 2):

Step 1. Initialization. Set k = 0 and define initial
parameters p0. Solve the direct problem to
compute h(p0) and other derived state variables.
Compute F = F(p0).

Step 2. Compute the state variables, uk, Jacobian, Jk = ∂uk/
∂pk, first order approximation to Hessian, Hk ¼
JtV�1

u Jþ lpV
�1
p and gradient, gk=∂Fk/∂pk.

Step 3. Compute updating direction dk from Hkdk=-2gk.
Step 4. Update parameters, pkþ1 ¼ pk þ dk

Step 5. Solve the direct problem for pk+1 and compute
F k+1(pk+1).

Step 6. If converged (small gk
�� ��, small dk

�� ��, small
Fk � Fkþ1
�� ��, etc.), stop. If not, if Fkþ1 < Fk, set
k ¼ kþ 1 and go to step 2, otherwise if Fkþ1 > Fk,
either add a positive matrix to Hk (and return to
step 3), or perform line search to find α that
minimizes Fk+1 (pk+αdk).

There are numerous variations for the basic algorithm
(see, e.g., Cooley 1985; Doherty 2002; Medina and
Carrera 2003), but they will not be examined here.

Sensitivity, uncertainty and worth of data
In a broad sense, sensitivity refers to the dependence of
model output on model input. As such, it can be evaluated
globally to quantify the overall dependence of model
outputs on input parameters (see, e.g., Saltelli et al. 2005).
However, sensitivity is computed locally in the context of
inverse modelling. That is, the sensitivity of a state
variable um with respect to parameter pj simply expresses
the rate of change of um per unit change in pj at the current
value of all parameters. That is:

Juð Þmj ¼
@um
@pj

ð3Þ

This definition is not very useful for qualitative
analysis, because (Ju)mj depends on the relative magnitude
of um and pj. For example, the sensitivity of a concen-
tration expressed in mg/l is 1,000 times larger than the
corresponding sensitivity to the same concentration
expressed in g/l. It is clear that sensitivities need to be

Fig. 1 Tradeoffs between Fh (model fit) and Fp (parameter
plausibility) when varying the relative weight parameter, shown
along with the transmissivity fields obtained by Alcolea et al (2006)
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scaled. The most natural way to scale sensitivities in an
inversion context is to decompose V�1

u as Wt
uWu and V�1

p

as Wt
pWp, so that the scaled sensitivity matrix would

become:

Su ¼ WuJu or SSu ¼ WuJuWp ð4Þ

In the case of diagonal Vu and Vp, the components of
SSu are:

ssmj ¼ �pj

�um

@um
@pj

ð5Þ

where σpj is the standard deviation of the jth parameter
and σum is the standard deviation of the mth residual of
type u measurements (�2

pj and �2
um are diagonal terms of

Vp and Vu, respectively). Given the uncertainty on Vu and
Vp (recall the need to find scaling parameter τ or λ), this
may still not be sufficient to properly assess the worth of
different types of data. This is why Knopman and Voss
(1989) substitute σum by a subjective magnitude and σpj

by pj (this latter choice is equivalent to assume pj log-
normally distributed with σln pj=1).

Analyzing sensitivities allows one to understand how
parameters affect results and to gain insight into model
behaviour. Sensitivity is also used to evaluate uncertainty.
This can be done either qualitatively or quantitatively. If
ssmj is large, small variations in pj should lead to large
variations in um. If the state variable um has been
measured, then the value of pj is heavily constrained by
the measurement. This is quantified by the covariance
matrix of estimated parameters or by Fisher’s information

matrix. The latter expresses the information that data
contain about parameters. It can be approximated by:

IF ¼ S
i
liJ

t
iV

�1
i Ji ¼ S

i
liS

t
iSi ð6Þ

I�1
F gives a lower bound of the a posteriori covariance

matrix, Σp. Σp is expected to be much smaller than the a
priori covariance matrix Vp because it includes all the
information contained in the observations. Several com-
ments should be made about covariance and Fisher’s
matrices. First, the covariance matrix of model parameters
quantifies the uncertainty of estimated parameters (as
measured by their variances and correlation coefficients).
It is often stated that high correlations are undesirable.
Actually (see Fig. 3), it is the opposite. Uncertainty on a
parameter is quantified by its variance (or standard
deviation, Fig. 3). A high correlation with another
parameter means that the two parameters are dependent
on each other. The correct reading of a high correlation
is that one knows something about the two parameters
(e.g., their ratio, if log-transformed parameters are used
in Fig. 3), although not about each one separately. Since
nothing is known when the parameters are uncorrelated,
one is much better off with a high than with a low
correlation.

The second remark to be made is that one needs a
careful assessment of relative weights (λi) to assess
properly both uncertainty and information (see statistical
approaches by Kitanidis and Vomvoris 1983 or Carrera
and Neuman 1986a). In practice, at least in the authors’
experience, modellers tend to be optimistic about mea-
surement and model errors (i.e., tend to assign low Vi).

Fig. 2 Schematic description of a typical optimization procedure for inversion
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Only after preliminary inversion runs does one become
fully aware of model limitations and assigns realistic Vi

matrices (this is automatically done by the above
statistical approaches). Avoiding this step will lead to
improper weighting of different types of data.

A third remark is that the covariance thus computed
is too optimistic (Fig. 3). It must be viewed as a lower
bound of uncertainty (it is exactly the lower bound, if
model output is a linear function of model parameters).
An evaluation of the degree of optimism was carried out
by Carrera and Glorioso (1991), but they showed that it
is very problem dependent. Nonlinear confidence inter-
vals can also be computed (e.g., Vecchia and Cooley
1987; Hill 1998), but they are out of the scope of this
section.

A final remark should be made regarding information.
As quantified by Fisher’s matrix, information is additive—
recall Eq. (6). In fact, the information contained by data
can be quantified by different metrics of IF (e.g., the
determinant, the sum of diagonal terms, etc., see Carrera
and Neuman 1986c). A particularly popular metric about
information on model parameters is the cumulative scaled
sensitivity (CSS; Knopman and Voss 1989), which is
obtained from the diagonal terms of the information
matrix (usually divided by the number of measurements)
and square rooted,

cssj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
m¼1

ss2mj

vuut ð7Þ

where N is the total number of observations. In finely
parameterized models, cssj can be mapped to show which
parameters can be estimated with a given observation
network and which cannot.

Cumulative scaled sensitivities can be used to assess
the information content of all measurements about each
parameter. However, to evaluate which measurements
provide most information about all parameters, the
contribution of each measurement to the information
matrix should be used. This is obtained by simply adding
the diagonal terms of such contribution (L.J. Slooten,
IDAEA-CSIC, unpublished data, 2009). That is,

Im ¼
XNp

j

ss2mj ð8Þ

where Np is the number of parameters and Im should be
read as the information contained in the mth measurement
about all parameters. Im should be integrated in time in
transient problems. Im can be computed for every node
and plotted to identify the areas where measurements are
most informative.

Uniqueness, stability, identifiability
The inverse problem is often said to be ill posed because its
solution may be non-unique or unstable. Non-identifiability
occurs when different parameter sets lead to the same
solution of the direct problem. Non-uniqueness occurs when
different parameter sets satisfy the minimum condition of the
objective Eq. (1). Instability occurs when small changes in
the observations lead to large changes in the estimated
parameters. Carrera and Neuman (1986b) discuss exten-
sively these concepts and show that they are closely related.
They argue that the most frequent problem is instability.
However its effect (Fig. 3) is identical to the ones of non-
identifiability or non-uniqueness: the solution depends on
the initial parameters. The point to stress here is that the
presence of this kind of problem can be detected and fixed.

Fig. 3 Schematic description of the stability problem. Narrow and long valleys of the objective function in the parameter space lead to a
virtually impossible convergence. The user notices that different initial sets of model parameters (squares) will lead to different parameter
estimates (circles), with similar values of the objective function. This effect can be characterized with the covariance matrix, which displays
large differences between eigenvalues. The uncertainty ellipse (depicted for the central parameter estimate) is oriented along the
eigenvectors and its axes are proportional to the square root of the eigenvalues. In the case of two parameters this implies large uncertainties
(still too small) for the two parameters and a strong correlation
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Detection can be achieved by analyzing the covariance
matrix of estimated parameters—or the information
matrix, IF (Eq. 6). When the problem is restricted to two
parameters, instability (or poor identifiability) is associated
with a very high correlation, which is why high correlations
are viewed as negative. If more than two parameters are
involved, poor identifiability is linked to high eigenvalues of
the covariance matrix (low eigenvalues of the information
matrix). The corresponding eigenvector defines the combi-
nation of parameters that cannot be identified (see Fig. 3).
Details of the procedure are described by Carrera and
Neuman (1986c) and Medina and Carrera (1996).

The impact of these problems can be reduced by
several means. The traditional option is regularization,
which consists of including Fp terms in the objective
function. These terms tend to smooth the solution and
keep it close to the prior estimates. The risk is over-
smoothing, which may cause a loss of resolution capacity
(recall Fig. 1, a too large λp led to a solution without
channels). Actually, it is sufficient to increase the weight
of prior estimates only for the parameters associated to
large eigenvalues. A second option is to reduce the
number of parameters to be estimated. This can be done
using subjective judgment, possibly aided by a sensitivity
analysis (e.g., fix the values of the most uncertain
parameters). Formal techniques have also been developed
such as single value decomposition (Chang and Yeh 1976;
Hill and Østerby 2003), hybrid parameterization (Tonkin
and Doherty 2005) or model reduction (Vermeulen et al.
2006). A third option is to increase the number and types
of data or to optimize the observation scheme, by designing
it to minimize parameter uncertainty and/or to increase the
ability of data to discriminate among alternative models
(Knopman and Voss 1989; Usunoff et al. 1992), as discussed
earlier.

Conceptual aspects

Model simplifications
The methodology outlined in the previous section has
never been reported for a full 3D SWI problem in a strict
sense (but see Dausman et al. 2009). Probably the closest
to a full calibration is the case reported by Bauer et al.
(2006a), who used PEST to solve the inverse problem in a
2D vertical cross section at the Okavango Delta, Botswana
(where water density is controlled by salinity, but this is
not really a SWI problem!). Excessive computer time
prevented them from estimating more than four parameters,
not to mention going on to calibrate the full 3D problem.
Iribar et al. (1997) used head, chloride concentration and
flow rate data to estimate 40 transmissivity values. Abarca et
al. (2006) and Vázquez-Suñé et al. (2006) used some 100
transmissivity values, plus storativity values, boundary
fluxes, porosity, dispersivity and time evolution data of river
recharge at the Llobregat Delta (Spain). However, they had
to neglect density effects, which they justified because of the
small aquifer thickness and elevation gradients. Thus, they
could only settle on a two layer model. Bray et al. (2007)

adopted an intermediate solution. They assumed hydraulic
conductivity to be known from abundant point data
interpolated by kriging and they calibrated dispersivity
against concentration data. Leaving aside the question of
whether point measurements of hydraulic conductivity are
appropriate (Barlebo et al. 2004, among others, argue the
opposite), it is worth noticing that only two parameters were
estimated.

Automatic calibration is often disregarded because of
its excessive CPU time cost (Bauer et al. 2006a; Werner
and Gallagher 2006). Sometimes, manual calibration is
made in conjunction with a formal sensitivity analysis
(Person et al. 1998; Yakirevich et al. 1998). For example,
Momii et al. (2005) used a sharp interface model to
calibrate manually head, head fluctuations caused by tides
and concentration data on a 2D plane model.

It is worth mentioning the work of Barazzuoli et al.
(2008), who calibrated a 3D model using steady-state head
to find hydraulic conductivity in each of the four layers of
the model and used transient head data to find transient
fluxes. Karahanoglu and Doyuran (2003) also calibrated a
2D vertical section in sequential phases (first steady state,
then transient).

These efforts are clearly suboptimal. Sequential calibra-
tion does not take full advantage of the worth of information
contained in the data. Sequential calibration efforts are to be
commended as practical, but a lot of information is lost in the
process. For example, if hydraulic conductivity is derived
from steady-state head data, the information contained in
transient head or concentration data is lost. Moreover, each
of the sequential problems is more likely to be uncertain.
Therefore, this type of approach must be viewed as a
struggle by modellers to cope with the computational and
conceptual difficulties discussed in the following.

Worth of data
The Fisher’s information matrix (Eq. 6) shows that the
worth of an observation in an inverse problem context is
determined by two main factors: the sensitivity of the
(simulated) observations to all the different parameters,
and the variance of the associated measurement and model
errors. Measurements of different observation types tend
to inform about different parameters, and to have different
sources of error. This has led several authors to investigate
what measurement types contain most information, and
what measurement locations are optimal.

Flow related measurements (e.g., head) do not contain
information about transport parameters in constant density
models but they do in variable density ones. Shoemaker
(2004) studied the capacity of observations of different
types to constrain model parameters by computing scaled
sensitivities (Eq. 5) and parameter correlations when using
different data sets and different parameters. He found that
using only head observations is not enough to identify
flow and transport parameters. By combining head with
salinity and flow rate observations, the parameters became
much better constrained.
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Sanz and Voss (2006) applied an analysis of the a-
posteriori parameter covariance matrix (recall the previous
section Uniqueness, stability, identifiability), and the
correlation matrix to the Henry problem (Henry 1964).
The solution depends on two dimensionless numbers,
each one a function of the classical flow and transport
parameters (permeability, diffusion coefficient, freshwater
inflow rate, etc.). This dependence can be found from an
eigenanalysis of the covariance matrix (see Medina and
Carrera 1996, for the procedure) or from a qualitative
analysis of the problem. Sanz and Voss (2006) found that
head measurements are most informative deep inland,
while concentration measurements are most informative
around the toe of the seawater wedge. Their work also
illustrates the importance of using an appropriate error
structure for state variables and relative weighting of
different types of data.

As mentioned at the beginning of this section, the
worth of data is increased not only by seeking informative
measurements, but also by minimizing the variance of
measurement and model errors. Regarding the latter, careful
scrutiny of data and large residuals may help in identifying
outliers, a frequent case of trouble during automatic
inversion, or deficiencies in the conceptual model. Error
filtering and time averaging is specially recommended when
long time data records are available. This eliminates high
frequency errors and favors Gaussianity.

Use of head data
Using head data for calibration of density-dependent flow
models is much more delicate than for constant density
models (Post et al. 2007). For one thing, head is not a state
variable in density dependent flow. SWI models are solved
in terms of either pressure or equivalent freshwater head.
Yet, head data are often gathered by measuring water
elevation in a well. This is only informative if density
along the piezometer water column is known (Fig. 4). To
address this difficulty, one may either measure directly
pressure at depth (e.g., Alcolea et al. 2009), which may

imply a slight loss of accuracy, or monitor both water
elevations and average salinity, which is costly.

The situation is much more complex if the borehole is
open. On the one hand, measured head is an average along
the vertical weighted by the hydraulic conductivity. While
this problem may affect all types of aquifers, it is relatively
easy to deal with in constant density flow models (see, e.g.,
Martínez-Landa and Carrera 2006). On the other hand, a
vertical flux should be expected as a result of the vertical
pressure gradient created by the influence of the sea. This
effect can be explicitly included in the inversion process.
Two alternatives are available. First, the borehole can be
explicitly modeled by using a string of one-dimensional
elements connected to aquifer nodes. The conductances of
these connections depend on the hydraulic conductivity of
the node. Density-dependent flow and transport is then
solved in the expanded grid, which includes both aquifer and
borehole nodes. This option may be expensive because the
short-circuit effect of the borehole causes large head and
concentration gradients and, if tides are simulated, fast
fluctuations. Therefore, this option is only recommended for
highly detailed small-scale models. The second alternative
consists of assuming that aquifer head and concentration will
not be significantly affected by the borehole. Therefore, the
model is solved without explicitly simulating the short-
circuit effect. This effect needs to be taken into account only
for computing head (or pressure) to be compared to
measurements.

An additional source of uncertainty may be caused by
sea level fluctuations. As discussed later in section On the
use of tidal data, high frequency fluctuations (e.g., tides)
will be dampened close to the coast in free aquifers and
should not be a problem. However, in confined aquifers,
the tidal signal may affect measurements deep inland and
would cause an additional source of noise, if not monitored
properly. Addressing this issue requires averaging head over
a long period, which is costly, but may be useful.

In summary, head errors may be large. As described
earlier, addressing them in detail may be costly. If the
measurement process is not modeled explicitly, errors

Fig. 4 Schematic description of potential problems with head measurements in the seawater intrusion problem displayed in (a).
Measurements (b) depend on whether the piezometer is full of (A) saltwater, (B) freshwater, or (C) open
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should be acknowledged in the head covariance matrix,
V�1

h (recall the previous section Objective function). It
must be added, that these errors, especially the ones
caused by salinity within the borehole, are likely to be
highly correlated, which requires a non-diagonal V�1

h . A
simple way to account for auto-correlated noise is
described in detail by Neuman and Carrera (1985).

Use of concentration data
The use of concentration data is not as simple as it might
look. The most immediate difficulty is caused by saltwater
circulation within the well (Fig. 4b, case C). Circulation
causes measured salinity profiles to be much sharper than
the actual width of the mixing zone (Tellam et al. 1986).
Using pore water samples, as Tellam et al. (1986) did, can
only be justified for a research project. Alternatives such
as profiles deduced from induction in closed PVC wells
(Lebbe 1999) should be explored further. It is clear,
however, that (1) vertical salinity profiles should be used
with care, and (2) the issue needs to be studied in much
more detail (see, e.g., Shalev et al. 2009).

Concentration at pumping wells also needs close
scrutiny. Ideally, mixing at the well can be represented in
models, so that measured concentrations are comparable
with computed concentrations. In practice, however, model
simplifications may make this comparison non-trivial, e.g.,
when using a sharp interface model (as discussed in
Mantoglou 2003).

A third source of concern is the difference between
resident and flow concentration. Here, again, the issue is
related to the type of model adopted. In general, measured
concentration will be close to flowing concentration over
the open portion of a pumping well screen. If this portion
is long, the difference with resident concentration can be
quite large. In periods of intrusion, flowing concentration
will be larger than resident concentration. The opposite
should occur during periods of retreat. As transport
models are usually solved in terms of resident concen-
tration, a post-processing is required. Only models based
on non-local transport formulations represent the differ-

ence between resident and flow concentration explicitly
(see discussion by Willmann et al. 2008). To the authors'
knowledge, there has not been any attempt to use these
kind of models for SWI problems. These problems can be
addressed by explicitly modelling the measurement bore-
hole (as described previously); however, the solution is
numerically difficult and computationally costly.

Regarding the worth of concentration data, Fig. 5
shows that the concentration field is heavily dependent on
hydraulic conductivity (sharp drop on areas of low trans-
missivity, saltwater wedge lying below high permeability
zones, etc). The problem is more severe in aquifers affected
by SWI, which salinize primarily along channels well
connected to the sea (e.g., Iribar et al. 1997).

Nevertheless, some studies conclude that concentra-
tions are not very informative about hydraulic parameters
(e.g., Bray et al. 2007), whereas others conclude that the
inclusion of concentration data significantly improves
parameter estimation (Shoemaker 2004). A partial explan-
ation may be that steady-state unpumped conditions such
as the ones shown in Fig. 5, may not be comparable to
SWI conditions observed during pumping. When pumping
drives SWI, hydraulic gradients may override buoyancy
forces, so that transport parameters become less important to
explain concentration. Still, buoyancy forces may dominate
on portions of the aquifer (see, e.g., Pool and Carrera 2009).
In short, while it is clear that concentration data should be
used for calibration whenever possible, it appears clear that
the issue deserves further analysis.

Geophysical methods
In view of the difficulties associated with concentration
data, it is not surprising that electrical conductivity (EC)
measurements, typically derived from geophysics, have
been extensively used. In fact, the whole suite of electro-
magnetic methods have been used in model calibration
attempts: electrical resistance tomography (ERT; Bauer et al.
2006b, Comte and Banton 2007), short and long offset
transient-electromagnetic-measurements (SHOTEM and
LOTEM) (Kafri et al. 2007), or time-domain electromag-

Fig. 5 Qualitative assesment of the impact of heterogeneity on steady state saltwater intrusion. The red lines represent seawater mixing
fractions ranging from 0.1 (top) to 0.9 (bottom). Notice that the mixing zone flattens and narrows down below high permeability zones
(Abarca et al. 2007b)
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netic methods (TDEM) (Yechieli et al. 2001). By providing
extensive coverage, electrical conductivity measurements
should allow a rather complete, albeit often blurry, picture of
the interface shape. As already discussed, the interface shape
and its time evolution should be sensitive to heterogeneity
(Fig. 5) and, especially, preferential flow paths connecting
the aquifer to the coast (Mulligan et al. 2007).

Electrical geophysics is not free of problems. Resistivity
maps cannot be compared directly to water salinity, but
require a calibration of their own (Comte and Banton 2007).
This does not preclude qualitative use, but hinders direct use
for inversion. Moreover, connate saltwater at low perme-
ability areas may hide deeper resistivity measurements.
Ironically, this would hinder qualitative use of resistivity
maps, but could be overcome by joint inversion of SWI and
geoelectric model parameters. In summary, EC mapping is
an extremely attractive option, but should be made in
connection with flow and transport inversion.

On the use of tidal data
Sea level fluctuations such as astronomical or wind driven
tides, represent a large-scale stress on the system. As such,
they yield information about hydraulic parameters. As
pointed out earlier, taking advantage of these data should
improve parameter identifiability and inverse problem
stability. More importantly, Knudby and Carrera (2006)
showed transport connectivity, which controls how fast
SWI will contaminate an aquifer, correlates best with
hydraulic diffusivity (T/S, T being transmissivity and S the
storage coefficient). In fact, Carr and Vanderkamp (1969)
showed that the head response in homogeneous aquifers
depends solely on the characteristic length:

L ¼
ffiffiffiffiffiffiffi
TP

pS

r
ð9Þ

where P is the period of fluctuation. Equation (9) is not
applicable to heterogeneous aquifers, but the sole depen-
dence on diffusivity remains true. That is, the response to

tides is not sufficient to identify T (or K) and S (or specific
storage Ss), but needs to be complemented by other data
such as concentration or hydraulic tests (Alcolea et al.
2007, 2009). Another advantage of tidal response is that it
is cheap to measure and to simulate because equivalent
freshwater head response is virtually insensitive to density
variations (Ataie-Ashtiani et al. 2001; L.J. Slooten,
IDAEA-CSIC, unpublished data, 2009). Therefore, com-
putations required for this type of data can be made with a
constant density flow model.

Tidal response can provide large-scale information.
Characteristic length, L can be quite large for confined
aquifers. For example, with a tidal period of half a day, L
will equal 1,260 m for a confined aquifer (S = 10–4) of
1,000 m2/day transmissivity. Obviously, this distance is
much shorter for unconfined aquifers. Equation (9) is also
valid when several fluctuations are superimposed. Typical
tides are dominated by a half day period, but longer
components are also present. In fact, wind or barometric
pressure fluctuations may contain modes with periods of
several days. This implies that L (Eq. 9) can vary quite
widely, so that aquifer fluctuations driven by sea level
fluctuations may penetrate significantly inland even in
unconfined aquifers.

A sensitivity analysis for tidal response data, aimed
at identifying optimal observation locations (Fig. 6) using
the methodology described in the previous section
Sensitivity, uncertainty and worth of data was performed
(L.J. Slooten, IDAEA-CSIC, unpublished data, 2009).
They found that if the aquifer is treated as homogeneous,
maximum information is obtained at a distance L from the
coast. However, if heterogeneity is acknowledged, max-
imum information is contained by heads measured at a
distance around L/2 from the coast. Yet, assuming a dense
observation network, the parameters that can be best
estimated are those right at the coast. This finding
supports the earlier assertion about the identification of
connectivity. Given that connectivity to the sea is
important for coastal aquifer management, it is clear that
the full advantage of aquifer response to sea level
fluctuations should be taken whenever possible.

Fig. 6 Information in tidal response data on hydraulic conductivity parameters. a Overall information on model parameters (Eq. 6) per
location. The optimal measurement location is closer to the coast in a finely parameterized model than in a homogeneous model. In a finely
parameterized model (b), the parameters that can be best estimated (i.e., high composite scaled sensitivity) are those close to the coast.
Further inland, composite scaled sensitivity decreases
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Initial conditions: aquifer bathymetry
Specifying initial conditions is required for simulating any
transient problem. When the history of pumping is well
known, the best option usually consists of simulating such
history while assuming that the aquifer is at an initial
steady state. In failing to do so, the model will generate
spurious results until it accommodates the instabilities
introduced by the specified, non-equilibrium, initial con-
dition (e.g., Werner and Gallagher 2006; Doherty 2008).

It is generally believed that the initial steady state must
be the result of a sufficiently long simulation. As it turns
out, the nonlinear density dependent flow and transport
equations can also be solved under steady-state conditions
provided that a sufficiently close initial guess is available.
Since such an initial guess is not easy to come up with,
most codes do not provide the steady state option.
However, in an inverse modelling context, a good initial
guess for steady state may be the solution of the steady
state resulting from the previous inverse problem iteration.

A problem with starting from a steady state is that it
may be unrealistic: the time needed to reach the steady
state can be longer than the timescales on which changes
in external forcing occur (Feseker 2007). The problem
may occur in both directions (i.e., initial salinities larger
than suggested by a steady state simulation, and vice
versa). On the one hand, connate saltwater is likely to be
found in Holocene aquifers poorly connected to the sea
(Gámez et al. 2009). It is also likely to be present in low
permeability areas (Custodio et al. 1971; Bridger and
Allen 2006). On the other hand, sea level had been rising
during the Holocene. Therefore, low permeability zones
may not have yet been reached by salt water, although
they would under a steady state condition with current sea
levels. In this regard, one should bear in mind that the last
glacial maximum occurred “only” some 15,000 years ago.
Therefore, it is very likely that the initial salinities do not
reflect current sea level in poorly connected areas. This
problem can be identified by performing two long-term
simulations: one with initially salinized conditions, and
one with initial freshwater conditions. If they lead to the
same solution, then the problem can be ignored and initial
steady-state conditions can be adopted.

Difficulties with initial conditions lead to the develop-
ment of an alternative approach discussed by Doherty
(2008). In this work, the initial conditions are controlled
by estimation parameters: “spreading parameters” that
describe the width of the mixing zone around the inter-

face, and “elevation parameters” that define the initial
height of the interface above the aquifer bottom.

The issue of initial conditions also makes apparent the
need for a careful assessment of aquifer elevations and
connection to the sea. As illustrated in Fig. 7, initial
conditions may be highly sensitive to the elevation of the
discharge point (Gámez et al. 2009). Moreover, valleys of
the aquifer bottom should coincide with regions of
maximum inland penetration of seawater, even under
steady-state conditions (Abarca et al. 2007a). Things can
be worsened if these valleys coincide with high-perme-
ability regions, which should be expected if they corre-
spond to paleochannels deposited during periods of low
sea level. In such cases, deep portions will represent
preferential flow initial salinity makes them perfect
candidates for fast SWI. The problem is especially severe
in karstic regions, where flow along high-permeability
channels may be turbulent, so that Darcy’s law is not valid.

The previous discussion points to the importance of
characterizing aquifer elevation and connection to the sea.
The most immediate option is to extend the parametriza-
tion of Doherty (2008) to the aquifer bottom and sea-
aquifer connection. Parameters controlling aquifer bottom
and sea connection can then be estimated during calibra-
tion. The fact that no efforts along this direction have been
published in the scientific literature may reflect that either
(1) the resulting inversion is too complex (in 3D models,
the grid would have to be updated during calibration), (2)
the problem is only truly relevant for unusually high
variations in aquifer elevation, or (3) modelers are over-
come by other difficulties. In any case, it is clear that the
issue requires further analysis.

Computational aspects

SWI problems inversion is computationally costly. High
cost reflects mainly the need for the sensitivity matrix (3) of
Gauss-Newton methods. In the following, a summary of the
methods to compute Ju and some possible improvements of
the computational performance are discussed.

Computation of sensitivities
Three methods can be used to compute sensitivities: the
adjoint state method (Jacquard and Jain 1965; Townley
and Wilson 1985), the influence coefficient method

Fig. 7 Sensitivity of initial concentrations to the elevation of natural discharge outlet (z0). a The confined aquifer is initially salinized if the
freshwater head at the outlet (hf0=40z0) is lower than the inland head (hu). b Otherwise, the confined aquifer will contain freshwater and
inland wells will take much longer to be polluted by SWI. Improper accounting of this elevation or, in general, initial conditions will lead to
an unreliable inversion
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(Becker and Yeh 1972) and the sensitivity equation method
(Distefano and Rath 1975). The adjoint state method is not
well suited for SWI problems because this method is most
appropriate for linear problems. It can be used for non-linear
problems, but it is no longer convenient, especially for
transient ones. The influence coefficient method, also known
as incremental ratio or parameter perturbation method,
approximates the sensitivity matrix using a finite difference
scheme (i.e., ratio of change in computed state variables per
unit change in each component of the parameter set). This
approach requires the evaluation of the direct model at least
NP+1 times (one time with the original parameter set and NP

times corresponding to each parameter perturbation). There-
fore, the resulting cost is high (see Shoemaker (2004) for an
example of the increase in the calibration time). Moreover,
an adequate choice of the magnitude of each parameter
perturbation is required to obtain a good approximation of
the sensitivity matrix. Inaccuracies in the sensitivity matrix
may affect the computation of the gradient of the objective
function, covariance matrices and the determination of the
correlation between parameters (Hill and Østerby 2003).
Precision in the computation of the sensitivity matrix can be
enhanced using a higher-order finite difference scheme at
the expense of an increase in CPU time. In spite of these
disadvantages, the influence matrix method is the most
widely used method in seawater intrusion applications
because of its simplicity and the availability of generic
calibration tools such as UCODE (Poeter et al. 2005) or
PEST (Doherty 2002). These facilitate solving the inverse
problem with conventional simulation codes. Also VanMeir
and Lebbe (2005) used the parameter perturbation method to
calibrate an axi-symmetric density dependent flow model.

The sensitivity equation method computes the sensi-
tivity matrix by differentiating the direct problem equa-
tions, which leads to

@fF
@h

@fF
@c

@fT
@h

@fT
@c

0
@

1
A

@h
@p
@c
@p

0
@

1
A ¼

@fF
@p
@fT
@p

0
@

1
A ð10Þ

where fF and fT are the (discretized) flow and solute
transport equations, respectively. Solving this set of linear

systems yields the sensitivities. Evaluating the coefficient
matrix and right hand side in Eq. (10) requires tedious
programming and verification, which has deterred mod-
elers from implementing it. An alternative to this problem
is to use autodifferentiation tools (Rall 1981; Griewank
2000) to generate the necessary code automatically. Rath
et al. (2006) used the code SHEMAT (Clauser 2003) to do
so while calibrating coupled flow and heat transport.
However, autodifferentiation requires the original code to
follow some coding conventions (e.g., adapt the code to
Fortran 77 standard, avoid implicit loops) which can make
the process as arduous as the actual implementation of the
derivatives. Furthermore, if not correctly implemented, it
can worsen the performance of the original code.

Still, the exact computation of the sensitivity matrix
yields benefits in the calibration performance. The
computational advantages of the sensitivity equation
method can be seen analyzing the cost of calibrating a
given model. The costs of a single iteration of the inverse
problem for the sensitivity equation and influence coef-
ficient methods are

CIC ¼ aNp þ 1
� �� CDP

CSE ¼ CDP þ CSMð Þ þ Np � CLSE
ð11Þ

where a is an integer depending on the finite difference
scheme used to approximate the derivatives (1 for back-
ward and forward differences and 2 for central differ-
ences), CIC is the cost of the influence coefficient method,
CSE the cost of the sensitivity equation method, CDP the
cost of solving the direct problem, CSM the cost of
computing the sensitivity matrix and CLSE is the cost of
solving a linear system of equations of the form of Eq. (10).
Equation (11) shows that the calibration cost grows propor-
tionally with the number of estimated parameters with a
slope equal to aCDP for the influence coefficient method.
The sensitivity equation method has an initial overhead
because of the computation of the derivatives but the growth
rate of the cost is only CLSE (<< aCDP).

A comparison of the performance of the influence
coefficient and sensitivity equation methods is shown in
Fig. 8. Results correspond to the calibration of a Henry
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Fig. 8 CPU time consumed for calibrating a seawater intrusion mode (the Henry problem with a heterogeneous transmissivity field) using
the influence coefficient and sensitivity equation methods for an increasing number of parameters. a The time used for a single iteration on a
fine mesh. b The time of the whole iterative process. Graphs a and b are obtained for different numbers of nodes and time steps but show a
similar trend
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problem but with a random Gaussian transmissivity field.
Calibration was done using the pilot point method for an
increasing number of parameters. As can be seen, the cost
of successful iterations was dramatically reduced with the
direct derivation method. However, the difference between
the overall calibration cost was not as different as suggested
by Eq. (11). In the implementation adopted here, the
influence coefficient method detects failed iterations, which
do not require computation of the sensitivities, after the first
simulation of that iteration, thus avoiding the need for extra
computations. The sensitivity equation method, instead,
computes sensitivities in all iterations.

Areas of improvement
The results of the previous example point out that there is
a lot of room for improvement related to computational
performance. Inverse modeling codes may profit from the
repeatedly simulated problems with similar parameters
during the calibration process. Stored information on the
state variables from previous calibration iterations can be
used as initial guess for the resolution of the non-linear
direct problem (Galarza et al. 1999), which can reduce its
cost.

Code parallelization can improve the performance of
the inversion process. Parallelization can be done at
different levels. Adequate division and numbering of the
model mesh result in a direct problem sparse matrix
suitable for parallel linear solvers (Canot et al. 2006). This
process is straightforward in finite difference and regular
finite element meshes, which may not be appropriate for
the geometry of real aquifers. Efficiency relies in the
storage scheme and the linear solver. Parallelization can be
generalized to all the computations in the problem to
improve the efficiency. It has been successfully applied to
CO2 sequestration problems (Lu and Lichtner 2007),
although the technical resources may not be commonly
affordable. Regarding the inverse problem, parameter
perturbation methods can benefit largely from paralleliza-
tion. If the (Np+1) direct problem computations needed for
each inverse problem iteration are distributed among Np+1

processors, the actual time required for computing the
sensitivity matrix is comparable to that of a direct
simulation. This functionality is included in the UCODE
and PEST suites. In the same manner, genetic algorithms
can benefit from parallel processing, as shown by Bray
and Yeh (2008).

Conclusions

The discussion presented here points out that the full
inversion formalism has not yet been applied to seawater
intrusion (but see Dausman et al. 2009). Automatic
calibration efforts reported so far are based on numerous
simplifications: 2D modeling, ignoring density dependence,
neglecting mixing, splitting the problem (separate inversion
of different data sets), disregarding variations in aquifer

elevation, or combinations of these. These simplifications
reflect both conceptual and computational difficulties.

From a computational point of view, the inversion of
two non-linear coupled equations on a 3D domain is
challenging. Computer cost can be significantly reduced
by analytical evaluation of sensitivities or by taking
advantage of the fact that similar problems have to be
solved, varying only model parameters. However, these
kinds of improvements require tedious and costly pro-
gramming. Instead, recent trends appear to point in the
direction of generic inversion codes such as PEST or
UCODE, whose performance can be greatly enhanced by
parallelization.

It can be contended, however, that the main difficulties
reflect conceptual shortcomings. Moreover, SWI inversion
is complex because SWI models depend on many factors
that can be neglected in conventional freshwater aquifers.
The use and meaning of measured heads and concen-
trations is sensitive to borehole construction (length of
open interval) and history (whether full of freshwater or
saltwater). These problems can be addressed by explicitly
modeling the measurement process, which is feasible, but
represents an added source of complexity.

Seawater intrusion is sensitive to aquifer bathymetry
and initial conditions. The latter can be obtained numeri-
cally if a steady state is chosen as initial state. However,
the solution may be difficult because it requires a good
initial guess. Fortunately, such a guess can be obtained
from previous iterations in the context of automatic
inversion. Unfortunately, initial conditions may not be at
steady state because actual salinization prior to pumping
may not reflect current sea level. In such cases, an option
is to parameterize initial salinities, which are then
estimated during model calibration. In fact, the same can
be done regarding aquifer bathymetry (especially the
elevation of the discharge point in confined aquifers).
Obviously, these options represent a marked increase in
model complexity. Further analysis is needed to find out
whether and when they are sensible.

These difficulties are partially overcome by the avail-
ability of informative extra data sets, notably electro-
magnetic geophysics and tidal response. These data are
highly informative, relatively easy to obtain, and they
provide extensive areal coverage. Taking advantage of
them increases computational cost and conceptual com-
plexity of inversion, but is likely to be worth the effort.

In all, the time is ripe. The number of publications on
the conceptual aspects of SWI has grown exponentially in
recent years. Therefore, most of the difficulties addressed
here should be overcome soon. As a result, a surge in SWI
inversion should be expected.
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